Michael E P Murphy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8420752/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sequence Divergence in the Arginase Domain of Ornithine Decarboxylase/Arginase in <i>Fusobacteriacea</i> Leads to Loss of Function in Oral Associated Species. Biochemistry, 2022, 61, 1378-1391.	2.5	2
2	Peptidoglycan binding by a pocket on the accessory NTF2-domain of Pgp2 directs helical cell shape of Campylobacter jejuni. Journal of Biological Chemistry, 2021, 296, 100528.	3.4	5
3	Structural and functional analysis of lignostilbene dioxygenases from Sphingobium sp. SYK-6. Journal of Biological Chemistry, 2021, 296, 100758.	3.4	7
4	Biophysical characterization of the ETV6 PNT domain polymerization interfaces. Journal of Biological Chemistry, 2021, 296, 100284.	3.4	2
5	A copper site is required for iron transport by the periplasmic proteins P19 and FetP. Metallomics, 2020, 12, 1530-1541.	2.4	5
6	Smoking Prevalence and Secondhand Smoke Exposure during Pregnancy and Postpartum—Establishing Risks to Health and Human Rights before Developing a Tailored Programme for Smoking Cessation. International Journal of Environmental Research and Public Health, 2020, 17, 1838.	2.6	12
7	A bacterial surface layer protein exploits multistep crystallization for rapid self-assembly. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 388-394.	7.1	18
8	Introduction of the Menaquinone Biosynthetic Pathway into <i>Rhodobacter sphaeroides</i> and <i>de Novo</i> Synthesis of Menaquinone for Incorporation into Heterologously Expressed Integral Membrane Proteins. ACS Synthetic Biology, 2020, 9, 1190-1200.	3.8	7
9	Identification of functionally important residues and structural features in a bacterial lignostilbene dioxygenase. Journal of Biological Chemistry, 2019, 294, 12911-12920.	3.4	10
10	The heme-sensitive regulator SbnI has a bifunctional role in staphyloferrin B production by Staphylococcus aureus. Journal of Biological Chemistry, 2019, 294, 11622-11636.	3.4	11
11	Structural insight into the high reduction potentials observed for <i>Fusobacterium nucleatum</i> flavodoxin. Protein Science, 2019, 28, 1460-1472.	7.6	3
12	Staphylococcus aureus heme and siderophore-iron acquisition pathways. BioMetals, 2019, 32, 409-424.	4.1	42
13	Peptides Containing meso â€Oxaâ€Diaminopimelic Acid as Substrates for the Cellâ€Shapeâ€Determining Proteases Csd6 and Pgp2. ChemBioChem, 2019, 20, 1591-1598.	2.6	10
14	Sbnl is a free serine kinase that generates -phospho-l-serine for staphyloferrin B biosynthesis in. Journal of Biological Chemistry, 2018, 293, 6147-6160.	3.4	12
15	Structure–function analyses reveal key features in Staphylococcus aureus IsdB-associated unfolding of the heme-binding pocket of human hemoglobin. Journal of Biological Chemistry, 2018, 293, 177-190.	3.4	55
16	Crystallographic study of dioxygen chemistry in a copper-containing nitrite reductase fromGeobacillus thermodenitrificans. Acta Crystallographica Section D: Structural Biology, 2018, 74, 769-777.	2.3	2
17	Metal- and Serine-Dependent Meta-Cleavage Product Hydrolases Utilize Similar Nucleophile-Activation Strategies. ACS Catalysis, 2018, 8, 11622-11632.	11.2	6
18	Investigating the Campylobacter jejuni Transcriptional Response to Host Intestinal Extracts Reveals the Involvement of a Widely Conserved Iron Uptake System. MBio, 2018, 9, .	4.1	24

#	Article	IF	CITATIONS
19	Repression of branched-chain amino acid synthesis in Staphylococcus aureus is mediated by isoleucine via CodY, and by a leucine-rich attenuator peptide. PLoS Genetics, 2018, 14, e1007159.	3.5	55
20	Iron Uptake Oxidoreductase (IruO) Uses a Flavin Adenine Dinucleotide Semiquinone Intermediate for Iron-Siderophore Reduction. ACS Chemical Biology, 2017, 12, 1778-1786.	3.4	20
21	Antibiotic Capture by Bacterial Lipocalins Uncovers an Extracellular Mechanism of Intrinsic Antibiotic Resistance. MBio, 2017, 8, .	4.1	31
22	The bacterial meta-cleavage hydrolase LigY belongs to the amidohydrolase superfamily, not to the $\hat{l} \pm / \hat{l}^2$ -hydrolase superfamily. Journal of Biological Chemistry, 2017, 292, 18290-18302.	3.4	11
23	Surface-layer protein fromCaulobacter crescentus: expression, purification and X-ray crystallographic analysis. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 677-680.	0.8	4
24	Deciphering the Substrate Specificity of SbnA, the Enzyme Catalyzing the First Step in Staphyloferrin B Biosynthesis. Biochemistry, 2016, 55, 927-939.	2.5	22
25	A Bacterial Cell Shape-Determining Inhibitor. ACS Chemical Biology, 2016, 11, 981-991.	3.4	16
26	Redox-coupled proton transfer mechanism in nitrite reductase revealed by femtosecond crystallography. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2928-2933.	7.1	88
27	The B-type Channel Is a Major Route for Iron Entry into the Ferroxidase Center and Central Cavity of Bacterioferritin. Journal of Biological Chemistry, 2015, 290, 3732-3739.	3.4	24
28	A Single-Crystal EPR Study at 95ÂGHz of the Type-2 Copper Site of Nitrite Reductase From Alcaligenes faecalis. Applied Magnetic Resonance, 2015, 46, 411-420.	1.2	1
29	Helical Shape of Helicobacter pylori Requires an Atypical Glutamine as a Zinc Ligand in the Carboxypeptidase Csd4. Journal of Biological Chemistry, 2015, 290, 3622-3638.	3.4	17
30	A Ferric–Peroxo Intermediate in the Oxidation of Heme by Isdl. Biochemistry, 2015, 54, 2613-2621.	2.5	14
31	A Diatom Ferritin Optimized for Iron Oxidation but Not Iron Storage. Journal of Biological Chemistry, 2015, 290, 28416-28427.	3.4	31
32	The Fate of Intracellular Metal Ions in Microbes. , 2015, , 39-56.		1
33	SbnG, a Citrate Synthase in Staphylococcus aureus. Journal of Biological Chemistry, 2014, 289, 33797-33807.	3.4	18
34	Structural and kinetic properties of Rhodobacter sphaeroides photosynthetic reaction centers containing exclusively Zn-coordinated bacteriochlorophyll as bacteriochlorin cofactors. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 366-374.	1.0	9
35	Hemoglobin Binding and Catalytic Heme Extraction by IsdB Near Iron Transporter Domains. Biochemistry, 2014, 53, 2286-2294.	2.5	23
36	Steric Mechanism of Auto-Inhibitory Regulation of Specific and Non-Specific DNA Binding by the ETS Transcriptional Repressor ETV6. Journal of Molecular Biology, 2014, 426, 1390-1406.	4.2	44

#	Article	IF	CITATIONS
37	Synthesis of L-2,3-Diaminopropionic Acid, a Siderophore and Antibiotic Precursor. Chemistry and Biology, 2014, 21, 379-388.	6.0	60
38	Improved Manganese-Oxidizing Activity of DypB, a Peroxidase from a Lignolytic Bacterium. ACS Chemical Biology, 2013, 8, 700-706.	3.4	89
39	The Mannoprotein Cig1 Supports Iron Acquisition From Heme and Virulence in the Pathogenic Fungus Cryptococcus neoformans. Journal of Infectious Diseases, 2013, 207, 1339-1347.	4.0	96
40	Role of <i>Rhodobacter sphaeroides</i> Photosynthetic Reaction Center Residue M214 in the Composition, Absorbance Properties, and Conformations of H _A and B _A Cofactors. Biochemistry, 2013, 52, 2206-2217.	2.5	17
41	IruO Is a Reductase for Heme Degradation by IsdI and IsdG Proteins in Staphylococcus aureus. Journal of Biological Chemistry, 2013, 288, 25749-25759.	3.4	23
42	Mechanism of Ferrous Iron Binding and Oxidation by Ferritin from a Pennate Diatom. Journal of Biological Chemistry, 2013, 288, 14917-14925.	3.4	53
43	Inactivation of the Heme Degrading Enzyme Isdl by an Active Site Substitution That Diminishes Heme Ruffling. Journal of Biological Chemistry, 2012, 287, 34179-34188.	3.4	31
44	Distal Heme Pocket Residues of B-type Dye-decolorizing Peroxidase. Journal of Biological Chemistry, 2012, 287, 10623-10630.	3.4	90
45	Discovery of an Iron-Regulated Citrate Synthase in Staphylococcus aureus. Chemistry and Biology, 2012, 19, 1568-1578.	6.0	30
46	Monomer–Dimer Control and Crystal Engineering in TASPs. Chemistry - A European Journal, 2012, 18, 11409-11416.	3.3	2
47	Unique Heme-Iron Coordination by the Hemoglobin Receptor IsdB of <i>Staphylococcus aureus</i> . Biochemistry, 2011, 50, 5443-5452.	2.5	79
48	Characterization of Dye-Decolorizing Peroxidases from <i>Rhodococcus jostii</i> RHA1. Biochemistry, 2011, 50, 5108-5119.	2.5	144
49	Iron-Coordinating Tyrosine Is a Key Determinant of NEAT Domain Heme Transfer. Journal of Molecular Biology, 2011, 413, 684-698.	4.2	47
50	Characterization of a Dipartite Iron Uptake System from Uropathogenic Escherichia coli Strain F11. Journal of Biological Chemistry, 2011, 286, 25317-25330.	3.4	34
51	Electronic properties of the highly ruffled heme bound to the heme degrading enzyme IsdI. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13071-13076.	7.1	48
52	Structural biology of heme binding in the Staphylococcus aureus Isd system. Journal of Inorganic Biochemistry, 2010, 104, 341-348.	3.5	125
53	The IsdGâ€ f amily of haem oxygenases degrades haem to a novel chromophore. Molecular Microbiology, 2010, 75, 1529-1538.	2.5	138
54	The Staphylococcus aureus Siderophore Receptor HtsA Undergoes Localized Conformational Changes to Enclose Staphyloferrin A in an Arginine-rich Binding Pocket. Journal of Biological Chemistry, 2010, 285, 11162-11171.	3.4	65

#	Article	IF	CITATIONS
55	Directed evolution of copper nitrite reductase to a chromogenic reductant. Protein Engineering, Design and Selection, 2010, 23, 137-145.	2.1	22
56	Specificity of Staphyloferrin B Recognition by the SirA Receptor from Staphylococcus aureus. Journal of Biological Chemistry, 2010, 285, 34579-34588.	3.4	56
57	Structure and Function of P19, a High-Affinity Iron Transporter of the Human Pathogen Campylobacter jejuni. Journal of Molecular Biology, 2010, 401, 590-604.	4.2	35
58	lron core mineralisation in prokaryotic ferritins. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 732-744.	2.4	97
59	Structural and Mechanistic Studies of a Stabilized Subunit Dimer Variant of Escherichia coli Bacterioferritin Identify Residues Required for Core Formation. Journal of Biological Chemistry, 2009, 284, 18873-18881.	3.4	23
60	Crystallographic characterization of the passenger domain of theBordetellaautotransporter BrkA. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 608-611.	0.7	3
61	Characterization of staphyloferrin A biosynthetic and transport mutants in <i>Staphylococcus aureus</i> . Molecular Microbiology, 2009, 72, 947-963.	2.5	120
62	Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature, 2009, 457, 467-470.	27.8	287
63	X-ray Crystal Analysis of a TASP: Structural Insights of a Cavitein Dimer. Journal of the American Chemical Society, 2009, 131, 7421-7429.	13.7	24
64	Conserved Active Site Residues Limit Inhibition of a Copper-Containing Nitrite Reductase by Small Molecules. Biochemistry, 2008, 47, 4452-4460.	2.5	26
65	Ruffling of Metalloporphyrins Bound to IsdG and IsdI, Two Heme-degrading Enzymes in Staphylococcus aureus. Journal of Biological Chemistry, 2008, 283, 30957-30963.	3.4	97
66	Heme Coordination by Staphylococcus aureus IsdE. Journal of Biological Chemistry, 2007, 282, 28815-28822.	3.4	86
67	Stable Copperâ^'Nitrosyl Formation by Nitrite Reductase in Either Oxidation State. Biochemistry, 2007, 46, 12366-12374.	2.5	45
68	Effect of the Methionine Ligand on the Reorganization Energy of the Type-1 Copper Site of Nitrite Reductase. Journal of the American Chemical Society, 2007, 129, 519-525.	13.7	25
69	Haem recognition by a Staphylococcus aureus NEAT domain. Molecular Microbiology, 2007, 63, 139-149.	2.5	142
70	Type-2 copper-containing enzymes. Cellular and Molecular Life Sciences, 2007, 64, 2887-2899.	5.4	126
71	A Rearranging Ligand Enables Allosteric Control of Catalytic Activity in Copper-containing Nitrite Reductase. Journal of Molecular Biology, 2006, 358, 1081-1093.	4.2	12
72	Cofacial Heme Binding is Linked to Dimerization by a Bacterial Heme Transport Protein. Journal of Molecular Biology, 2006, 362, 1108-1119.	4.2	45

#	Article	IF	CITATIONS
73	Structures of Ternary Complexes of BphK, a Bacterial Glutathione S-Transferase That Reductively Dechlorinates Polychlorinated Biphenyl Metabolites. Journal of Biological Chemistry, 2006, 281, 30933-30940.	3.4	23
74	Anion-independent Iron Coordination by the Campylobacter jejuni Ferric Binding Protein. Journal of Biological Chemistry, 2005, 280, 9283-9290.	3.4	36
75	Characterization of a Nucleotide-Binding Domain Associated with Neisserial Iron Transport. Journal of Bacteriology, 2004, 186, 3266-3269.	2.2	2
76	Side-On Copper-Nitrosyl Coordination by Nitrite Reductase. Science, 2004, 304, 867-870.	12.6	218
77	A Caged Lanthanide Complex as a Paramagnetic Shift Agent for Protein NMR. Chemistry - A European Journal, 2004, 10, 3252-3260.	3.3	93
78	Specificity of the Synergistic Anion for Iron Binding by Ferric Binding Protein fromNeisseria gonorrhoeaeâ€. Biochemistry, 2004, 43, 9195-9203.	2.5	12
79	Directing the mode of nitrite binding to a copper-containing nitrite reductase from Alcaligenes faecalis S-6: Characterization of an active site isoleucine. Protein Science, 2003, 12, 248-256.	7.6	38
80	Reconstitution of the Type-1 Active Site of the H145G/A Variants of Nitrite Reductase by Ligand Insertionâ€. Biochemistry, 2003, 42, 4075-4083.	2.5	37
81	S-Nitrosation of Ca2+-Loaded and Ca2+-Free Recombinant Calbindin D28Kfrom Human Brainâ€. Biochemistry, 2002, 41, 6185-6192.	2.5	18
82	Crystal structure of the soluble domain of the major anaerobically induced outer membrane protein (AniA) from pathogenic Neisseria: a new class of copper-containing nitrite reductases. Journal of Molecular Biology, 2002, 315, 1111-1127.	4.2	101
83	Alternate Substrate Binding Modes to Two Mutant (D98N and H255N) Forms of Nitrite Reductase from Alcaligenes faecalis S-6:  Structural Model of a Transient Catalytic Intermediate,. Biochemistry, 2001, 40, 9132-9141.	2.5	67
84	A Single-Crystal Electron Paramagnetic Resonance Study at 95 GHz of the Type 1 Copper Site of the Green Nitrite Reductase of Alcaligenes faecalis. Journal of Physical Chemistry B, 2001, 105, 2236-2243.	2.6	17
85	Structure and Site-directed Mutagenesis of a Flavoprotein fromEscherichia coli That Reduces Nitrocompounds. Journal of Biological Chemistry, 2001, 276, 2816-2823.	3.4	89
86	Catalytic Roles for Two Water Bridged Residues (Asp-98 and His-255) in the Active Site of Copper-containing Nitrite Reductase. Journal of Biological Chemistry, 2000, 275, 23957-23964.	3.4	115
87	Carbon Monoxide Binding to Copper-Containing Nitrite Reductase fromAlcaligenes faecalisâ€. Journal of Physical Chemistry B, 2000, 104, 10738-10742.	2.6	28
88	Crystal structures of two mutants (K206Q, H207E) of the N″obe of human transferrin with increased affinity for iron. Protein Science, 2000, 9, 49-52.	7.6	26
89	X-ray Crystallography and Mass Spectroscopy Reveal that the N-lobe of Human Transferrin Expressed inPichia pastorisls Folded Correctly but Is Glycosylated on Serine-32â€,‡. Biochemistry, 1999, 38, 2535-2541.	2.5	25
90	Consequences of factor IX mutations in 26 families with haemophilia B. British Journal of Haematology, 1998, 100, 58-61.	2.5	11

#	Article	IF	CITATIONS
91	A domain mutations in 65 haemophilia A families and molecular modelling of dysfunctional factor VIII proteins. British Journal of Haematology, 1998, 103, 1051-1060.	2.5	34
92	Two High-Resolution Crystal Structures of the Recombinant N-Lobe of Human Transferrin Reveal a Structural Change Implicated in Iron Releaseâ€,‡. Biochemistry, 1998, 37, 7919-7928.	2.5	242
93	1.8 Ã crystal structure of the major NAD(P)H:FMN oxidoreductase of a bioluminescent bacterium, Vibrio fischeri: overall structure, cofactor and substrate-analog binding, and comparison with related flavoproteins. Journal of Molecular Biology, 1998, 280, 259-273.	4.2	86
94	On the Mechanism of Nitrite Reductase: Complex between Pseudoazurin and Nitrite Reductase from A. Cycloclastes. , 1998, , 115-128.		3
95	Structure of Nitrite Bound to Copper-containing Nitrite Reductase from Alcaligenes faecalis. Journal of Biological Chemistry, 1997, 272, 28455-28460.	3.4	195
96	Loss of Tolerance to Exogenous and Endogenous Factor VIII in a Mild Hemophilia A Patient With an Arg593 to Cys Mutation. Blood, 1997, 90, 1902-1910.	1.4	77
97	Structural comparison of cupredoxin domains: Domain recycling to construct proteins with novel functions. Protein Science, 1997, 6, 761-770.	7.6	118
98	Site-directed mutagenesis of azurin fromPseudomonas aeruginosaenhances the formation of an electron-transfer complex with a copper-containing nitrite reductase fromAlcaligenes faecalisS-6. FEBS Letters, 1996, 394, 87-90.	2.8	27
99	Structure of Alcaligenes faecalis Nitrite Reductase and a Copper Site Mutant, M150E, That Contains Zinc. Biochemistry, 1995, 34, 12107-12117.	2.5	102
100	Replacements in a conserved leucine cluster in the hydrophobic heme pocket of cytochrome <i>c</i> . Protein Science, 1995, 4, 198-208.	7.6	15
101	Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallographica Section D: Biological Crystallography, 1994, 50, 869-873.	2.5	2,205
102	X-ray Structure and Site-Directed Mutagenesis of a Nitrite Reductase from Alcaligenes Faecalis S-6: Roles of Two Copper Atoms in Nitrite Reduction. Biochemistry, 1994, 33, 5246-5252.	2.5	185
103	The structure and function of omega loop A replacements in cytochrome <i>c</i> . Protein Science, 1993, 2, 1429-1440.	7.6	27
104	Structure determination and analysis of yeast iso-2-cytochrome c and a composite mutant protein. Journal of Molecular Biology, 1992, 227, 160-176.	4.2	46
105	Structure of recombinant human renin, a target for cardiovascular-active drugs, at 2.5 A resolution. Science, 1989, 243, 1346-1351.	12.6	234
106	Comparative molecular model building of two serine proteinases from cytotoxic T lymphocytes. Proteins: Structure, Function and Bioinformatics, 1988, 4, 190-204.	2.6	78