
Loudes GÃ³mez-GÃ³mez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8419506/publications.pdf

Version: 2024-02-01

LOUDES CA3MEZ-CA3MEZ

#	Article	IF	CITATIONS
1	Chitosan nanoparticles loaded with garlic essential oil: A new alternative to tebuconazole as seed dressing agent. Carbohydrate Polymers, 2022, 277, 118815.	10.2	51
2	Thymoquinone-Loaded Chitosan Nanoparticles as Natural Preservative Agent in Cosmetic Products. International Journal of Molecular Sciences, 2022, 23, 898.	4.1	9
3	Metabolic Engineering of Crocin Biosynthesis in Nicotiana Species. Frontiers in Plant Science, 2022, 13, 861140.	3.6	16
4	Comparative evaluation of carvacrol and eugenol chitosan nanoparticles as eco-friendly preservative agents in cosmetics. International Journal of Biological Macromolecules, 2022, 206, 288-297.	7.5	21
5	The Biosynthesis of Non-Endogenous Apocarotenoids in Transgenic Nicotiana glauca. Metabolites, 2022, 12, 575.	2.9	5
6	Identification and characterization of apocarotenoid modifiers and carotenogenic enzymes for biosynthesis of crocins in <i>Buddleja davidii</i> flowers. Journal of Experimental Botany, 2021, 72, 3200-3218.	4.8	12
7	A New Glycosyltransferase Enzyme from Family 91, UGT91P3, Is Responsible for the Final Glucosylation Step of Crocins in Saffron (Crocus sativus L.). International Journal of Molecular Sciences, 2021, 22, 8815.	4.1	19
8	Biogenic Silver Nanoparticles from Iris tuberosa as Potential Preservative in Cosmetic Products. Molecules, 2021, 26, 4696.	3.8	13
9	Efficient production of saffron crocins and picrocrocin in Nicotiana benthamiana using a virus-driven system. Metabolic Engineering, 2020, 61, 238-250.	7.0	48
10	Differential interaction of Or proteins with the PSY enzymes in saffron. Scientific Reports, 2020, 10, 552.	3.3	11
11	Determination of In Vitro and In Vivo Activities of Plant Carotenoid Cleavage Oxygenases. Methods in Molecular Biology, 2020, 2083, 63-74.	0.9	3
12	UGT709G1: a novel uridine diphosphate glycosyltransferase involved in the biosynthesis of picrocrocin, the precursor of safranal in saffron (<i>Crocus sativus</i>). New Phytologist, 2019, 224, 725-740.	7.3	44
13	Multi-species transcriptome analyses for the regulation of crocins biosynthesis in Crocus. BMC Genomics, 2019, 20, 320.	2.8	16
14	The Specialized Roles in Carotenogenesis and Apocarotenogenesis of the Phytoene Synthase Gene Family in Saffron. Frontiers in Plant Science, 2019, 10, 249.	3.6	32
15	Differential accumulation of pelargonidin glycosides in petals at three different developmental stages of the orange-flowered gentian (Gentiana lutea L. var. aurantiaca). PLoS ONE, 2019, 14, e0212062.	2.5	26
16	Seed germination requirements of relictic and broadly-distributed populations of Chaerophyllumaureum (Apiaceae): connecting ecophysiology and genetic identity. Turkish Journal of Botany, 2019, 43, 320-330.	1.2	1
17	A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research, 2018, 70, 62-93.	11.6	634
18	Transcriptome analysis in tissue sectors with contrasting crocins accumulation provides novel insights into apocarotenoid biosynthesis and regulation during chromoplast biogenesis. Scientific Reports, 2018, 8, 2843.	3.3	41

Loudes GÃ³mez-GÃ³mez

#	Article	IF	CITATIONS
19	A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. TrAC - Trends in Analytical Chemistry, 2018, 100, 82-102.	11.4	278
20	Expression and Interaction Analysis among Saffron ALDHs and Crocetin Dialdehyde. International Journal of Molecular Sciences, 2018, 19, 1409.	4.1	13
21	Evolutionarily distinct carotenoid cleavage dioxygenases are responsible for crocetin production in Buddleja davidii. Journal of Experimental Botany, 2017, 68, 4663-4677.	4.8	47
22	Unraveling Massive Crocins Transport and Accumulation through Proteome and Microscopy Tools during the Development of Saffron Stigma. International Journal of Molecular Sciences, 2017, 18, 76.	4.1	46
23	Tissue-Specific Accumulation of Sulfur Compounds and Saponins in Different Parts of Garlic Cloves from Purple and White Ecotypes. Molecules, 2017, 22, 1359.	3.8	56
24	Identification and Cloning of Differentially Expressed SOUL and ELIP Genes in Saffron Stigmas Using a Subtractive Hybridization Approach. PLoS ONE, 2016, 11, e0168736.	2.5	3
25	Gene-Metabolite Networks of Volatile Metabolism in Airen and Tempranillo Grape Cultivars Revealed a Distinct Mechanism of Aroma Bouquet Production. Frontiers in Plant Science, 2016, 7, 1619.	3.6	38
26	Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions. International Journal of Molecular Sciences, 2016, 17, 1781.	4.1	132
27	The carotenoid cleavage dioxygenase <scp>CCD</scp> 2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme. New Phytologist, 2016, 209, 650-663.	7.3	88
28	Intron retention and rhythmic diel pattern regulation of carotenoid cleavage dioxygenase 2 during crocetin biosynthesis in saffron. Plant Molecular Biology, 2016, 91, 355-374.	3.9	29
29	Evaluation of fire recurrence effect on genetic diversity in maritime pine (Pinus pinaster Ait.) stands using Inter-Simple Sequence Repeat profiles. Science of the Total Environment, 2016, 572, 1322-1328.	8.0	10
30	Red Anthocyanins and Yellow Carotenoids Form the Color of Orange-Flower Gentian (Gentiana lutea) Tj ETQq0 C	0 rgBT /C	overlock 10 Tf
31	Structural characterization of highly glucosylated crocins and regulation of their biosynthesis during flower development in Crocus. Frontiers in Plant Science, 2015, 6, 971.	3.6	31
32	Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation. Plant Science, 2015, 234, 60-73.	3.6	39
33	Saffron: Its Phytochemistry, Developmental Processes, and Biotechnological Prospects. Journal of Agricultural and Food Chemistry, 2015, 63, 8751-8764.	5.2	83
34	Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12246-12251.	7.1	239
35	Pathogenicity and genetic diversity of Fusarium oxysporum isolates from corms of Crocus sativus. Industrial Crops and Products, 2014, 61, 186-192.	5.2	28
36	Apical dominance in saffron and the involvement of the branching enzymes CCD7 and CCD8 in the	3.6	50

#	Article	IF	CITATIONS
37	New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus. Plant Molecular Biology, 2014, 86, 555-569.	3.9	84
38	Genomic organization of a UDP-glucosyltransferase gene determines differential accumulation of specific flavonoid glucosides in tepals. Plant Cell, Tissue and Organ Culture, 2014, 119, 227-245.	2.3	5
39	Saffron corm as a natural source of fungicides: The role of saponins in the underground. Industrial Crops and Products, 2013, 49, 915-921.	5.2	19
40	Screening for polyphenols, antioxidant and antimicrobial activitiesof extracts from eleven Helianthemum taxa (Cistaceae) used in folk medicine in south-eastern Spain. Journal of Ethnopharmacology, 2013, 148, 287-296.	4.1	24
41	Crocins with High Levels of Sugar Conjugation Contribute to the Yellow Colours of Early-Spring Flowering Crocus Tepals. PLoS ONE, 2013, 8, e71946.	2.5	39
42	Genetic Diversity of Pinus nigra Arn. Populations in Southern Spain and Northern Morocco Revealed By Inter-Simple Sequence Repeat Profiles. International Journal of Molecular Sciences, 2012, 13, 5645-5658.	4.1	48
43	Developmental and stress regulation of gene expression for a 9-cis-epoxycarotenoid dioxygenase, CstNCED, isolated from Crocus sativus stigmas. Journal of Experimental Botany, 2012, 63, 681-694.	4.8	37
44	Identification and possible role of a MYB transcription factor from saffron (Crocus sativus). Journal of Plant Physiology, 2012, 169, 509-515.	3.5	25
45	Characterization of a Glucosyltransferase Enzyme Involved in the Formation of Kaempferol and Quercetin Sophorosides in <i>Crocus sativus</i> Â Â Â. Plant Physiology, 2012, 159, 1335-1354.	4.8	55
46	Genetic characterization and variation within and among populations of Anthyllis rupestris Coss., and endangered endemism of southern Spain. Biochemical Systematics and Ecology, 2012, 45, 138-147.	1.3	9
47	Molecular cloning and characterisation of a pathogenesisâ€related protein CsPR10 from <i>Crocus sativus</i> . Plant Biology, 2011, 13, 297-303.	3.8	34
48	Intersimple sequence repeat markers for molecular characterization of Crocus cartwrightianus cv. albus. Industrial Crops and Products, 2010, 32, 147-151.	5.2	14
49	Crocins transport in Crocus sativus: The long road from a senescent stigma to a newborn corm. Phytochemistry, 2010, 71, 1506-1513.	2.9	45
50	The expression of a chromoplast-specific lycopene beta cyclase gene is involved in the high production of saffron's apocarotenoid precursors. Journal of Experimental Botany, 2010, 61, 105-119.	4.8	83
51	Genomic analysis and gene structure of the plant carotenoid dioxygenase 4 family: A deeper study in Crocus sativus and its allies. Genomics, 2010, 96, 239-250.	2.9	60
52	Cloning and characterization of a glucosyltransferase from Crocus sativusstigmas involved in flavonoid glucosylation. BMC Plant Biology, 2009, 9, 109.	3.6	36
53	Metabolite and target transcript analyses during Crocus sativus stigma development. Phytochemistry, 2009, 70, 1009-1016.	2.9	106
54	Isolation of a new fungi and wound-induced chitinase class in corms of Crocus sativus. Plant Physiology and Biochemistry, 2009, 47, 426-434.	5.8	32

#	ARTICLE	IF	CITATIONS
55	Saffron is a monomorphic species as revealed by RAPD, ISSR and microsatellite analyses. BMC Research Notes, 2009, 2, 189.	1.4	54
56	Cytosolic and Plastoglobule-targeted Carotenoid Dioxygenases from Crocus sativus Are Both Involved in β-Ionone Release. Journal of Biological Chemistry, 2008, 283, 24816-24825.	3.4	235
57	Implications of Carotenoid Biosynthetic Genes in Apocarotenoid Formation during the Stigma Development of Crocus sativus and Its Closer Relatives. Plant Physiology, 2005, 139, 674-689.	4.8	138
58	Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Planta, 2004, 219, 955-966.	3.2	121
59	Plant perception systems for pathogen recognition and defence. Molecular Immunology, 2004, 41, 1055-1062.	2.2	66
60	Flagellin perception: a paradigm for innate immunity. Trends in Plant Science, 2002, 7, 251-256.	8.8	488
61	MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 2002, 415, 977-983.	27.8	2,407
62	Both the Extracellular Leucine-Rich Repeat Domain and the Kinase Activity of FLS2 Are Required for Flagellin Binding and Signaling in Arabidopsis. Plant Cell, 2001, 13, 1155-1163.	6.6	327
63	Sensitivity of Different Ecotypes and Mutants ofArabidopsis thaliana toward the Bacterial Elicitor Flagellin Correlates with the Presence of Receptor-binding Sites. Journal of Biological Chemistry, 2001, 276, 45669-45676.	3.4	164
64	FLS2. Molecular Cell, 2000, 5, 1003-1011.	9.7	1,968
65	A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant Journal, 1999, 18, 277-284.	5.7	603
66	Differential Expression of theS-Adenosyl-l-Methionine Synthase Genes during Pea Development1. Plant Physiology, 1998, 117, 397-405.	4.8	47
67	Hormonal regulation of S-adenosylmethionine synthase transcripts in pea ovaries. Plant Molecular Biology, 1996, 30, 821-832.	3.9	36