Erica Novo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8419492/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hepatocyte-Specific Deletion of HIF2α Prevents NASH-Related Liver Carcinogenesis by Decreasing Cancer Cell Proliferation. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 459-482.	4.5	13
2	Oncostatin <scp>M</scp> is overexpressed in <scp>NASH</scp> â€related hepatocellular carcinoma and promotes cancer cell invasiveness and angiogenesis. Journal of Pathology, 2022, 257, 82-95.	4.5	12
3	Hepatic Myofibroblasts: A Heterogeneous and Redox-Modulated Cell Population in Liver Fibrogenesis. Antioxidants, 2022, 11, 1278.	5.1	8
4	Hypoxia, Hypoxia-Inducible Factors and Liver Fibrosis. Cells, 2021, 10, 1764.	4.1	35
5	Hyperdynamic circulatory syndrome in a mouse model transgenic for SerpinB3. Annals of Hepatology, 2020, 19, 36-43.	1.5	1
6	Oncostatin M, A Profibrogenic Mediator Overexpressed in Non-Alcoholic Fatty Liver Disease, Stimulates Migration of Hepatic Myofibroblasts. Cells, 2020, 9, 28.	4.1	26
7	HDL cholesterol protects from liver injury in mice with intestinal specific LXRα activation. Liver International, 2020, 40, 3127-3139.	3.9	8
8	Liver fibrogenesis: un update on established and emerging basic concepts. Archives of Biochemistry and Biophysics, 2020, 689, 108445.	3.0	15
9	ERK Pathway in Activated, Myofibroblast-Like, Hepatic Stellate Cells: A Critical Signaling Crossroad Sustaining Liver Fibrosis. International Journal of Molecular Sciences, 2019, 20, 2700.	4.1	72
10	SerpinB3 Differently Up-Regulates Hypoxia Inducible Factors -11± and -21± in Hepatocellular Carcinoma: Mechanisms Revealing Novel Potential Therapeutic Targets. Cancers, 2019, 11, 1933.	3.7	22
11	Hypoxiaâ€inducible factor 2α drives nonalcoholic fatty liver progression by triggering hepatocyte release of histidineâ€rich glycoprotein. Hepatology, 2018, 67, 2196-2214.	7.3	66
12	Therapeutic pro-fibrogenic signaling pathways in fibroblasts. Advanced Drug Delivery Reviews, 2017, 121, 57-84.	13.7	51
13	SerpinB3 Promotes Pro-fibrogenic Responses in Activated Hepatic Stellate Cells. Scientific Reports, 2017, 7, 3420.	3.3	23
14	Microvesicles released from fat-laden cells promote activation of hepatocellular NLRP3 inflammasome: A pro-inflammatory link between lipotoxicity and non-alcoholic steatohepatitis. PLoS ONE, 2017, 12, e0172575.	2.5	49
15	In vivo reprogramming of hepatic myofibroblasts into hepatocytes attenuates liver fibrosis: back to the future?. Stem Cell Investigation, 2016, 3, 53-53.	3.0	1
16	Role of Chymase in the Development of Liver Cirrhosis and Its Complications: Experimental and Human Data. PLoS ONE, 2016, 11, e0162644.	2.5	14
17	NLRP3 inflammasome as a target of berberine in experimental murine liver injury: interference with P2X7 signalling. Clinical Science, 2016, 130, 1793-1806.	4.3	39
18	Hypoxia up-regulates SERPINB3 through HIF-2α in human liver cancer cells. Oncotarget, 2015, 6, 2206-2221	1.8	59

Erica Novo

#	Article	IF	CITATIONS
19	Angiogenesis and Fibrogenesis in Chronic Liver Diseases. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 477-488.	4.5	104
20	Hepatic myofibroblasts and fibrogenic progression of chronic liver diseases. Histology and Histopathology, 2015, 30, 1011-32.	0.7	18
21	Oxidative Stress and Liver Fibrogenesis. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , 171-196.	0.4	2
22	nâ€3 polyunsaturated fatty acids worsen inflammation and fibrosis in experimental nonalcoholic steatohepatitis. Liver International, 2014, 34, 918-930.	3.9	17
23	Cellular and molecular mechanisms in liver fibrogenesis. Archives of Biochemistry and Biophysics, 2014, 548, 20-37.	3.0	177
24	Hypoxia, hypoxia-inducible factors and fibrogenesis in chronic liver diseases. Histology and Histopathology, 2014, 29, 33-44.	0.7	37
25	Human-induced pluripotent stem cells as a source of hepatocyte-like cells: new kids on the block. Hepatology International, 2013, 7, 299-305.	4.2	4
26	Hepatic Angiogenesis and Fibrogenesis in the Progression of Chronic Liver Diseases. Current Angiogenesis, 2013, 2, 23-29.	0.1	3
27	Lack of CC chemokine ligand 2 differentially affects inflammation and fibrosis according to the genetic background in a murine model of steatohepatitis. Clinical Science, 2012, 123, 459-471.	4.3	59
28	The biphasic nature of hypoxiaâ€induced directional migration of activated human hepatic stellate cells. Journal of Pathology, 2012, 226, 588-597.	4.5	71
29	The role of redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis and Tissue Repair, 2012, 5, S4.	3.4	50
30	Intracellular reactive oxygen species are required for directional migration of resident and bone marrow-derived hepatic pro-fibrogenic cells. Journal of Hepatology, 2011, 54, 964-974.	3.7	109
31	Mammalian target of rapamycin mediates the angiogenic effects of leptin in human hepatic stellate cells. American Journal of Physiology - Renal Physiology, 2011, 301, G210-G219.	3.4	39
32	Dissection of the Biphasic Nature of Hypoxia-Induced Motogenic Action in Bone Marrow-Derived Human Mesenchymal Stem Cells. Stem Cells, 2011, 29, 952-963.	3.2	51
33	Oxidative stress parameters in paediatric non-alcoholic fatty liver disease. International Journal of Molecular Medicine, 2010, 26, 471-6.	4.0	78
34	Curcumin limits the fibrogenic evolution of experimental steatohepatitis. Laboratory Investigation, 2010, 90, 104-115.	3.7	84
35	Hypoxia, angiogenesis and liver fibrogenesis in the progression of chronic liver diseases. World Journal of Gastroenterology, 2010, 16, 281.	3.3	91
36	Epithelial–Mesenchymal Transition: From Molecular Mechanisms, Redox Regulation to Implications in Human Health and Disease. Antioxidants and Redox Signaling, 2010, 12, 1383-1430.	5.4	226

Erica Novo

#	Article	IF	CITATIONS
37	Liver fibrosis: a dynamic and potentially reversible process. Histology and Histopathology, 2010, 25, 1075-91.	0.7	110
38	The upâ€regulation of BACE1 mediated by hypoxia and ischemic injury: role of oxidative stress and HIF1α. Journal of Neurochemistry, 2009, 108, 1045-1056.	3.9	217
39	Hepatic myofibroblasts: A heterogeneous population of multifunctional cells in liver fibrogenesis. International Journal of Biochemistry and Cell Biology, 2009, 41, 2089-2093.	2.8	87
40	Silybin, a component of sylimarin, exerts anti-inflammatory and anti-fibrogenic effects on human hepatic stellate cells. Journal of Hepatology, 2009, 50, 1102-1111.	3.7	186
41	Angiogenesis and liver fibrogenesis. Histology and Histopathology, 2009, 24, 1323-41.	0.7	55
42	Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis and Tissue Repair, 2008, 1, 5.	3.4	328
43	Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: engraftment and hepatocyte differentiation versus profibrogenic potential. Gut, 2008, 57, 223-231.	12.1	248
44	ß-Catenin triggers nuclear factor ?B-dependent up-regulation of hepatocyte inducible nitric oxide synthase. International Journal of Biochemistry and Cell Biology, 2008, 40, 1861-1871.	2.8	17
45	Redox mechanisms switch on hypoxia-dependent epithelial–mesenchymal transition in cancer cells. Carcinogenesis, 2008, 29, 2267-2278.	2.8	274
46	Prevention of severe toxic liver injury and oxidative stress in MCP-1-deficient mice. Journal of Hepatology, 2007, 46, 230-238.	3.7	93
47	Proangiogenic Cytokines as Hypoxia-Dependent Factors Stimulating Migration of Human Hepatic Stellate Cells. American Journal of Pathology, 2007, 170, 1942-1953.	3.8	196
48	Thrombopoietin stimulates migration and activates multiple signaling pathways in hepatoblastoma cells. American Journal of Physiology - Renal Physiology, 2006, 290, G120-G128.	3.4	19
49	Dose dependent and divergent effects of superoxide anion on cell death, proliferation, and migration of activated human hepatic stellate cells. Gut, 2006, 55, 90-97.	12.1	78
50	Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology, 2005, 42, 1339-1348.	7.3	310
51	Overexpression of Bcl-2 by activated human hepatic stellate cells: resistance to apoptosis as a mechanism of progressive hepatic fibrogenesis in humans. Gut, 2005, 55, 1174-1182.	12.1	143
52	Nrf1 gene expression in the liver: A single gene linking oxidative stress to NAFLD, NASH and hepatic tumours. Journal of Hepatology, 2005, 43, 1096-1097.	3.7	21
53	4-Hydroxynonenal as a selective pro-fibrogenic stimulus for activated human hepatic stellate cells. Journal of Hepatology, 2004, 40, 60-68.	3.7	103
54	4â€Hydroxyâ€2,3â€alkenals as signal molecules modulating proliferative and adaptative cell responses. BioFactors, 2001, 15, 103-106.	5.4	10

#	Article	IF	CITATIONS
55	SerpinB3 as a Pro-Inflammatory Mediator in the Progression of Experimental Non-Alcoholic Fatty Liver Disease. Frontiers in Immunology, 0, 13, .	4.8	9