Guojun Sheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/841888/publications.pdf

Version: 2024-02-01

40 papers 4,600 citations

20 h-index 330143 37 g-index

44 all docs 44 docs citations

44 times ranked 9505 citing authors

#	Article	IF	CITATIONS
1	Developmental biology in China (Part 1). Development Growth and Differentiation, 2022, 64, 86-87.	1.5	О
2	HMGN3 represses transcription of epithelial regulators to promote migration of cholangiocarcinoma in a SNAI2â€dependent manner. FASEB Journal, 2022, 36, .	0.5	3
3	Epithelial-Mesenchymal Transition Drives Three-Dimensional Morphogenesis in Mammalian Early Development. Frontiers in Cell and Developmental Biology, 2021, 9, 639244.	3.7	4
4	Epithelial–Mesenchymal Transition in Liver Fluke-Induced Cholangiocarcinoma. Cancers, 2021, 13, 791.	3.7	4
5	Defining epithelial-mesenchymal transitions in animal development. Development (Cambridge), 2021, 148, .	2.5	13
6	Twenty years on for The Epithelial-Mesenchymal Transition International Association (TEMTIA): an interview with co-founders Erik Thompson and Donald Newgreen. Cells Tissues Organs, 2021, , .	2.3	0
7	Partial EMT/MET: An Army of One. Methods in Molecular Biology, 2021, 2179, 29-33.	0.9	2
8	Japan: prize diversity, not conformity, to boost research. Nature, 2021, 599, 201-201.	27.8	1
9	The primitive streak and cellular principles of building an amniote body through gastrulation. Science, 2021, 374, abg1727.	12.6	20
10	Comparative transcriptomics of primary cells in vertebrates. Genome Research, 2020, 30, 951-961.	5.5	29
11	NPAS4L is involved in avian hemangioblast specification. Haematologica, 2020, 105, 2647-2650.	3.5	3
12	Mesenchymal-epithelial transition regulates initiation of pluripotency exit before gastrulation. Development (Cambridge), 2020, 147, .	2.5	20
13	Guidelines and definitions for research on epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology, 2020, 21, 341-352.	37.0	1,195
14	ISM1 regulates NODAL signaling and asymmetric organ morphogenesis during development. Journal of Cell Biology, 2019, 218, 2388-2402.	5.2	19
15	Evolution of the avian digital pattern. Scientific Reports, 2019, 9, 8560.	3.3	8
16	Biomechanical regulation of EMT and epithelial morphogenesis in amniote epiblast. Physical Biology, 2019, 16, 041002.	1.8	6
17	Apolipoprotein E is an HIV-1-inducible inhibitor of viral production and infectivity in macrophages. PLoS Pathogens, 2018, 14, e1007372.	4.7	19
18	Epithelial-mesenchymal transition in haematopoietic stem cell development and homeostasis. Journal of Biochemistry, 2018, 164, 265-275.	1.7	9

#	Article	lF	CITATIONS
19	FANTOM5 CAGE profiles of human and mouse samples. Scientific Data, 2017, 4, 170112.	5.3	195
20	Systematic analysis of transcription start sites in avian development. PLoS Biology, 2017, 15, e2002887.	5.6	68
21	Morphogenesis: Eternal truth or ephemeral beauty. Developmental Dynamics, 2016, 245, 189-189.	1.8	0
22	The developmental basis of mesenchymal stem/stromal cells (MSCs). BMC Developmental Biology, 2015, 15, 44.	2.1	84
23	Epiblast morphogenesis before gastrulation. Developmental Biology, 2015, 401, 17-24.	2.0	56
24	Characterization of the finch embryo supports evolutionary conservation of the naive stage of development in amniotes. ELife, 2015, 4, e07178.	6.0	18
25	A promoter-level mammalian expression atlas. Nature, 2014, 507, 462-470.	27.8	1,838
26	Dayâ€1 chick development. Developmental Dynamics, 2014, 243, 357-367.	1.8	29
27	Five Transcription Factors and FGF Pathway Inhibition Efficiently Induce Erythroid Differentiation in the Epiblast. Stem Cell Reports, 2014, 2, 262-270.	4.8	8
28	A little winning streak: The reptilianâ€eye view of gastrulation in birds. Development Growth and Differentiation, 2013, 55, 52-59.	1.5	26
29	Epiblast integrity requires CLASP and Dystroglycan-mediated microtubule anchoring to the basal cortex. Journal of Cell Biology, 2013, 202, 637-651.	5.2	47
30	EMT in developmental morphogenesis. Cancer Letters, 2013, 341, 9-15.	7.2	163
31	Decoupling of amniote gastrulation and streak formation reveals a morphogenetic unity in vertebrate mesoderm induction. Development (Cambridge), 2013, 140, 2691-2696.	2.5	28
32	Manipulating the Avian Epiblast and Epiblast-Derived Stem Cells. Methods in Molecular Biology, 2013, 1074, 151-173.	0.9	14
33	Activin/TGF-beta signaling regulates Nanog expression in the epiblast during gastrulation. Mechanisms of Development, 2011, 128, 268-278.	1.7	30
34	Involvement of Dystroglycan in Epithelial-Mesenchymal Transition during Chick Gastrulation. Cells Tissues Organs, 2011, 193, 64-73.	2.3	39
35	Transcriptomic landscape of the primitive streak. Development (Cambridge), 2010, 137, 2863-2874.	2.5	47
36	Notch mediates Wnt and BMP signals in the early separation of smooth muscle progenitors and blood/endothelial common progenitors. Development (Cambridge), 2009, 136, 595-603.	2.5	53

Guojun Sheng

#	Article	IF	CITATIONS
37	An amicable separation: Chick's way of doing EMT. Cell Adhesion and Migration, 2009, 3, 160-163.	2.7	26
38	RhoA and microtubule dynamics control cell–basement membrane interaction in EMT during gastrulation. Nature Cell Biology, 2008, 10, 765-775.	10.3	253
39	Epithelial to mesenchymal transition during gastrulation: An embryological view. Development Growth and Differentiation, 2008, 50, 755-766.	1.5	141
40	Negative regulation of primitive hematopoiesis by the FGF signaling pathway. Blood, 2006, 108, 3335-3343.	1.4	66