
Xiaomin Dou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8417968/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced hydrolytic removal of tylosin in wastewater using polymer-based solid acid catalysts converted from polystyrene. Journal of Environmental Sciences, 2023, 126, 287-296.	6.1	2
2	Reverse Osmosis Membrane Combined with Ultrasonic Cleaning for Flue Gas Desulfurization Wastewater Treatment. Water (Switzerland), 2022, 14, 875.	2.7	5
3	Valorization of disposable COVID-19 mask through the thermo-chemical process. Chemical Engineering Journal, 2021, 405, 126658.	12.7	192
4	Iron ore modified with alkaline earth metals for the chemical looping combustion of municipal solid waste derived syngas. Journal of Cleaner Production, 2021, 282, 124467.	9.3	18
5	Degradation of benzophenone-4 by peroxymonosulfate activated with microwave synthesized well-distributed CuBi2O4 microspheres: Theoretical calculation of degradation mechanism. Applied Catalysis B: Environmental, 2021, 290, 120048.	20.2	66
6	The competing role of moisture in adsorption of gaseous benzene on microporous carbon. Separation and Purification Technology, 2021, 277, 119487.	7.9	18
7	TEMPO-oxidized cellulose nanofibers/polyacrylamide hybrid hydrogel with intrinsic self-recovery and shape memory properties. Cellulose, 2021, 28, 1469-1488.	4.9	65
8	Brilliant red X-3B uptake by a novel polycyclodextrin-modified magnetic cationic hydrogel: Performance, kinetics and mechanism. Journal of Environmental Sciences, 2020, 89, 264-276.	6.1	8
9	Thermal decomposition of struvite pellet by microwave radiation and recycling of its product to remove ammonium and phosphate from urine. Environmental Research, 2020, 188, 109774.	7.5	9
10	Engineering the Photocatalytic Behaviors of g/C ₃ N ₄ â€Based Metalâ€Free Materials for Degradation of a Representative Antibiotic. Advanced Functional Materials, 2020, 30, 2002353.	14.9	132
11	Metal-organic framework as a photocatalyst: Progress in modulation strategies and environmental/energy applications. Progress in Energy and Combustion Science, 2020, 81, 100870.	31.2	156
12	Conversion of biochar to sulfonated solid acid catalysts for spiramycin hydrolysis: Insights into the sulfonation process. Environmental Research, 2020, 188, 109887.	7.5	13
13	The interactive roles of space velocity and particle size in a microporous carbon bed system in controlling adsorptive removal of gaseous benzene under ambient conditions. Chemical Engineering Journal, 2020, 401, 126010.	12.7	26
14	Nitrate removal from aqueous solutions by magnetic cationic hydrogel: Effect of electrostatic adsorption and mechanism. Journal of Environmental Sciences, 2020, 91, 177-188.	6.1	27
15	Enhanced hydrolysis of streptomycin from production wastewater using CaO/MgO solid base catalysts. Chemical Engineering Journal, 2019, 355, 586-593.	12.7	33
16	Effectively remediating spiramycin from production wastewater through hydrolyzing its functional groups using solid superacid TiO2/SO4. Environmental Research, 2019, 175, 393-401.	7.5	18
17	Rapid thermal-acid hydrolysis of spiramycin by silicotungstic acid under microwave irradiation. Environmental Pollution, 2019, 249, 36-44.	7.5	10
18	Carbamazepine removal from water by carbon dot-modified magnetic carbon nanotubes. Environmental Research, 2019, 169, 434-444.	7.5	111

XIAOMIN DOU

#	Article	IF	CITATIONS
19	Characterization methods of zerovalent iron for water treatment and remediation. Water Research, 2019, 148, 70-85.	11.3	99
20	Optimizing the modification of wood waste biochar via metal oxides to remove and recover phosphate from human urine. Environmental Geochemistry and Health, 2019, 41, 1767-1776.	3.4	36
21	Fabrication of spherical biochar by a two-step thermal process from waste potato peel. Science of the Total Environment, 2018, 626, 478-485.	8.0	35
22	Identification of Fe and Zr oxide phases in an iron-zirconium binary oxide and arsenate complexes adsorbed onto their surfaces. Journal of Hazardous Materials, 2018, 353, 340-347.	12.4	26
23	Recovery of ammonium and phosphate from urine as value-added fertilizer using wood waste biochar loaded with magnesium oxides. Journal of Cleaner Production, 2018, 187, 205-214.	9.3	174
24	Abundance and distribution of antibiotic resistance genes in a full-scale anaerobic–aerobic system alternately treating ribostamycin, spiramycin and paromomycin production wastewater. Environmental Geochemistry and Health, 2017, 39, 1595-1605.	3.4	18
25	The stability and removal of water-dispersed CdSe/CdS core-shell quantum dots from water. Chemosphere, 2017, 185, 926-933.	8.2	11
26	A property-performance correlation and mass transfer study of As(ν) adsorption on three mesoporous aluminas. RSC Advances, 2016, 6, 80630-80639.	3.6	6
27	Performance and mass transfer of aqueous fluoride removal by a magnetic alumina aerogel. RSC Advances, 2016, 6, 112988-112999.	3.6	29
28	Removal of antimonate and antimonite from water by schwertmannite granules. Desalination and Water Treatment, 2016, 57, 25639-25652.	1.0	12
29	Effects of Surface Iron Hydroxyl Group Site Densities on Arsenate Adsorption by Iron Oxide Nanocomposites. Nanoscience and Nanotechnology Letters, 2016, 8, 1020-1027.	0.4	11
30	Granular ferric hydroxide adsorbent for phosphate removal: demonstration preparation and field study. Water Science and Technology, 2015, 72, 2179-2186.	2.5	20
31	Synthesis of graphene oxide/schwertmannite nanocomposites and their application in Sb(V) adsorption from water. Chemical Engineering Journal, 2015, 270, 205-214.	12.7	98
32	Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions. Journal of Environmental Management, 2015, 151, 443-449.	7.8	92
33	Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: A review. Journal of Membrane Science, 2015, 486, 71-88.	8.2	263
34	Antimonate removal from water using hierarchical macro-/mesoporous amorphous alumina. Chemical Engineering Journal, 2015, 264, 617-624.	12.7	37
35	Natural and synthesised iron-rich amendments for As and Pb immobilisation in agricultural soil. Chemistry and Ecology, 2014, 30, 267-279.	1.6	30
36	Antimonate and antimonite adsorption by a polyvinyl alcohol-stabilized granular adsorbent containing nanoscale zero-valent iron. Chemical Engineering Journal, 2014, 247, 250-257.	12.7	130

XIAOMIN DOU

#	Article	IF	CITATIONS
37	Fluoride adsorption on an Fe–Al–Ce trimetal hydrous oxide: Characterization of adsorption sites and adsorbed fluorine complex species. Chemical Engineering Journal, 2013, 223, 364-370.	12.7	107
38	Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils. Journal of Colloid and Interface Science, 2013, 406, 217-224.	9.4	110
39	Arsenate adsorption on three types of granular schwertmannite. Water Research, 2013, 47, 2938-2948.	11.3	126
40	Antimony(V) removal from water by iron-zirconium bimetal oxide: Performance and mechanism. Journal of Environmental Sciences, 2012, 24, 1197-1203.	6.1	98
41	Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 2012, 118, 536-544.	9.6	988
42	Remediating fluoride from water using hydrous zirconium oxide. Chemical Engineering Journal, 2012, 198-199, 236-245.	12.7	266
43	Granulation of Fe–Al–Ce trimetal hydroxide as a fluoride adsorbent using the extrusion method. Chemical Engineering Journal, 2012, 185-186, 211-218.	12.7	84
44	Performance of granular zirconium–iron oxide in the removal of fluoride from drinking water. Water Research, 2011, 45, 3571-3578.	11.3	172
45	A novel application of H2O2–Fe(II) process for arsenate removal from synthetic acid mine drainage (AMD) water. Chemosphere, 2011, 85, 1115-1121.	8.2	29
46	Performance and mechanism of simultaneous removal of chromium and arsenate by Fe(II) from contaminated groundwater. Separation and Purification Technology, 2011, 80, 179-185.	7.9	42
47	Binding mechanisms and QSAR modeling of aromatic pollutant biosorption on Penicillium oxalicum biomass. Chemical Engineering Journal, 2011, 166, 624-630.	12.7	19
48	Arsenate adsorption on an Fe–Ce bimetal oxide adsorbent: EXAFS study and surface complexation modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 379, 109-115.	4.7	29
49	Optimization of a Fe–Al–Ce nano-adsorbent granulation process that used spray coating in a fluidized bed for fluoride removal from drinking water. Powder Technology, 2011, 206, 291-296.	4.2	56
50	Granulation of Fe–Al–Ce hydroxide nano-adsorbent by immobilization in porous polyvinyl alcohol for fluoride removal in drinking water. Powder Technology, 2011, 209, 92-97.	4.2	43
51	Removal of arsenate from water by using an Fe–Ce oxide adsorbent: Effects of coexistent fluoride and phosphate. Journal of Hazardous Materials, 2010, 179, 208-214.	12.4	38
52	Arsenate removal from water by zero-valent iron/activated carbon galvanic couples. Journal of Hazardous Materials, 2010, 182, 108-114.	12.4	105
53	Removal of arsenic by a granular Fe–Ce oxide adsorbent: Fabrication conditions and performance. Chemical Engineering Journal, 2010, 162, 164-170.	12.7	41
54	Granulation of Fe–Al–Ce nano-adsorbent for fluoride removal from drinking water by spray coating on sand in a fluidized bed. Powder Technology, 2009, 193, 59-64.	4.2	107

XIAOMIN DOU

#	Article	IF	CITATIONS
55	The Roles of the Surface Charge and Hydroxyl Group on a Feâ^'Alâ^'Ce Adsorbent in Fluoride Adsorption. Industrial & Engineering Chemistry Research, 2009, 48, 4530-4534.	3.7	48
56	Spray Coating of Adsorbent with Polymer Latex on Sand Particles for Fluoride Removal in Drinking Water. Industrial & Engineering Chemistry Research, 2008, 47, 4697-4702.	3.7	21
57	Fluoride removal performance of a novel Fe–Al–Ce trimetal oxide adsorbent. Chemosphere, 2007, 69, 1758-1764.	8.2	272
58	Study on the pore surface fractal dimension and surface acid–base properties of natural particles around Guanting reservoir. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 307, 16-27.	4.7	30
59	Decolorization of reactive brilliant red X-3B by heterogeneous photo-Fenton reaction using an Fe–Ce bimetal catalyst. Catalysis Today, 2007, 126, 387-393.	4.4	54
60	Occurrence of Arsenic in Groundwater in the Suburbs of Beijing and its Removal Using an Iron-Cerium Bimetal Oxide Adsorbent. Water Quality Research Journal of Canada, 2006, 41, 140-146.	2.7	13
61	Arsenate Adsorption on an Feâ^'Ce Bimetal Oxide Adsorbent:Â Role of Surface Properties. Environmental Science & Technology, 2005, 39, 7246-7253.	10.0	476