Peter Hinterdorfer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8417922/publications.pdf

Version: 2024-02-01

232 papers

10,719 citations

26630 56 h-index 95 g-index

244 all docs

244 docs citations

times ranked

244

9886 citing authors

#	Article	IF	CITATIONS
1	Detection and localization of single molecular recognition events using atomic force microscopy. Nature Methods, 2006, 3, 347-355.	19.0	963
2	A New, Simple Method for Linking of Antibodies to Atomic Force Microscopy Tips. Bioconjugate Chemistry, 2007, 18, 1176-1184.	3.6	242
3	Antibody recognition imaging by force microscopy. Nature Biotechnology, 1999, 17, 901-905.	17.5	241
4	Static and Dynamical Properties of Single Poly(Ethylene Glycol) Molecules Investigated by Force Spectroscopy. Single Molecules, 2000, 1, 123-128.	0.9	238
5	Ca++-dependent vesicle release from erythrocytes involves stomatin-specific lipid rafts, synexin (annexin VII), and sorcin. Blood, 2002, 99, 2569-2577.	1.4	220
6	Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. Biomaterials, 2008, 29, 1796-1806.	11.4	219
7	Simultaneous Height and Adhesion Imaging of Antibody-Antigen Interactions by Atomic Force Microscopy. Biophysical Journal, 1998, 75, 2220-2228.	0.5	198
8	Simple test system for single molecule recognition force microscopy. Analytica Chimica Acta, 2003, 479, 59-75.	5.4	192
9	Higher Dispersion Efficacy of Functionalized Carbon Nanotubes in Chemical and Biological Environments. ACS Nano, 2010, 4, 2615-2626.	14.6	189
10	Molecular Recognition Imaging and Force Spectroscopy of Single Biomolecules. Accounts of Chemical Research, 2006, 39, 29-36.	15.6	181
11	Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. Journal of Cell Science, 2005, 118, 1587-1594.	2.0	177
12	Comparison of different aminofunctionalization strategies for attachment of single antibodies to AFM cantilevers. Ultramicroscopy, 2007, 107, 922-927.	1.9	172
13	Simultaneous Topography and Recognition Imaging Using Force Microscopy. Biophysical Journal, 2004, 87, 1981-1990.	0.5	169
14	Past, present and future of atomic force microscopy in life sciences and medicine. Journal of Molecular Recognition, 2007, 20, 418-431.	2.1	165
15	Multiple receptors involved in human rhinovirus attachment to live cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17778-17783.	7.1	159
16	Vesicles generated during storage of red cells are rich in the lipid raft marker stomatin. Transfusion, 2008, 48, 451-462.	1.6	152
17	Linking of Sensor Molecules with Amino Groups to Amino-Functionalized AFM Tips. Bioconjugate Chemistry, 2011, 22, 1239-1248.	3.6	145
18	Nano-Scale Dynamic Recognition Imaging on Vascular Endothelial Cells. Biophysical Journal, 2007, 93, L11-L13.	0.5	135

#	Article	IF	CITATIONS
19	Biomolecular force measurements and the atomic force microscope. Current Opinion in Biotechnology, 2002, 13, 47-51.	6.6	127
20	Localization of Single Avidin-Biotin Interactions Using Simultaneous Topography and Molecular Recognition Imaging. ChemPhysChem, 2005, 6, 897-900.	2.1	123
21	Influenza virus binds its host cell using multiple dynamic interactions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13626-13631.	7.1	119
22	Recognition Force Spectroscopy Studies of the NTA-His6 Bond. Single Molecules, 2000, 1, 59-65.	0.9	111
23	Interlaboratory round robin on cantilever calibration for AFM force spectroscopy. Ultramicroscopy, 2011, 111, 1659-1669.	1.9	110
24	Atomic Force Microscopy-Based Force Spectroscopy and Multiparametric Imaging of Biomolecular and Cellular Systems. Chemical Reviews, 2021, 121, 11701-11725.	47.7	109
25	Glass Surfaces Grafted with High-Density Poly(ethylene glycol) as Substrates for DNA Oligonucleotide Microarrays. Langmuir, 2006, 22, 277-285.	3.5	108
26	Desmocollin 3-mediated Binding Is Crucial for Keratinocyte Cohesion and Is Impaired in Pemphigus. Journal of Biological Chemistry, 2009, 284, 30556-30564.	3.4	108
27	A molecular switch between alternative conformational states in the complex of Ran and importin \hat{l}^21 . Nature Structural and Molecular Biology, 2003, 10, 553-557.	8.2	107
28	Single Molecule Studies of Antibody–Antigen Interaction Strength Versus Intra-molecular Antigen Stability. Journal of Molecular Biology, 2005, 347, 597-606.	4.2	106
29	Age determination of blood spots in forensic medicine by force spectroscopy. Forensic Science International, 2007, 170, 8-14.	2.2	105
30	Direct measurement of protein energy landscape roughness. EMBO Reports, 2005, 6, 482-486.	4.5	99
31	IgGs are made for walking on bacterial and viral surfaces. Nature Communications, 2014, 5, 4394.	12.8	97
32	The surface properties of nanocrystalline diamond and nanoparticulate diamond powder and their suitability as cell growth support surfaces. Biomaterials, 2008, 29, 4275-4284.	11.4	96
33	Higher Harmonic Atomic Force Microscopy: Imaging of Biological Membranes in Liquid. Physical Review Letters, 2007, 99, 046102.	7.8	93
34	Recent progress in AFM molecular recognition studies. Pflugers Archiv European Journal of Physiology, 2008, 456, 237-245.	2.8	92
35	Ligands on the string: single-molecule AFM studies on the interaction of antibodies and substrates with the Na+-glucose co-transporter SGLT1 in living cells. Journal of Cell Science, 2006, 119, 2960-2967.	2.0	91
36	The role of oxygen termination of nanocrystalline diamond on immobilisation of BMP-2 and subsequent bone formation. Biomaterials, 2008, 29, 2433-2442.	11.4	90

#	Article	IF	Citations
37	Antibody Linking to Atomic Force Microscope Tips via Disulfide Bond Formation. Bioconjugate Chemistry, 2006, 17, 1473-1481.	3.6	87
38	Cohesin mediates DNA loop extrusion by a "swing and clamp―mechanism. Cell, 2021, 184, 5448-5464.e22.	28.9	87
39	Poly(Ethylene Glycol): An Ideal Spacer for Molecular Recognition Force Microscopy/Spectroscopy Single Molecules, 2000, 1, 99-103.	0.9	83
40	Directed Assembly of Au Nanoparticles onto Planar Surfaces via Multiple Hydrogen Bonds. Langmuir, 2005, 21, 8414-8421.	3.5	83
41	Heterobifunctional crosslinkers for tethering single ligand molecules to scanning probes. Analytica Chimica Acta, 2003, 497, 101-114.	5.4	82
42	Single-Molecule Imaging of Cell Surfaces Using Near-Field Nanoscopy. Accounts of Chemical Research, 2012, 45, 327-336.	15.6	80
43	Unraveling the Macromolecular Pathways of IgG Oligomerization and Complement Activation on Antigenic Surfaces. Nano Letters, 2019, 19, 4787-4796.	9.1	79
44	A DNA Nanostructure for the Functional Assembly of Chemical Groups with Tunable Stoichiometry and Defined Nanoscale Geometry. Angewandte Chemie - International Edition, 2009, 48, 525-527.	13.8	78
45	Functionalization of Probe Tips and Supports for Single-Molecule Recognition Force Microscopy. Topics in Current Chemistry, 2008, 285, 29-76.	4.0	75
46	Single HA2 Mutation Increases the Infectivity and Immunogenicity of a Live Attenuated H5N1 Intranasal Influenza Vaccine Candidate Lacking NS1. PLoS ONE, 2011, 6, e18577.	2.5	75
47	Atomic force microscopy in bionanotechnology. Nano Today, 2008, 3, 12-19.	11.9	74
48	Single Molecule Recognition of Protein Binding Epitopes in Brush Border Membranes by Force Microscopy. Biophysical Journal, 2002, 82, 2767-2774.	0.5	68
49	Recognition Imaging and Highly Ordered Molecular Templating of Bacterial S-Layer Nanoarrays Containing Affinity-Tags. Nano Letters, 2008, 8, 4312-4319.	9.1	66
50	Surface attachment of ligands and receptors for molecular recognition force microscopy. Colloids and Surfaces B: Biointerfaces, 2002, 23, 115-123.	5.0	64
51	Force-Sensitive Autoinhibition of the von Willebrand Factor Is Mediated by Interdomain Interactions. Biophysical Journal, 2015, 108, 2312-2321.	0.5	64
52	Single molecule microscopy of biomembranes (Review). Molecular Membrane Biology, 2000, 17, 17-29.	2.0	63
53	A combined optical and atomic force microscope for live cell investigations. Ultramicroscopy, 2006, 106, 645-651.	1.9	63
54	Probing Binding Pocket of Serotonin Transporter by Single Molecular Force Spectroscopy on Living Cells. Journal of Biological Chemistry, 2012, 287, 105-113.	3.4	63

#	Article	IF	CITATIONS
55	Dynamic force microscopy imaging of native membranes. Ultramicroscopy, 2003, 97, 229-237.	1.9	62
56	Force spectroscopy of single cells using atomic force microscopy. Nature Reviews Methods Primers, 2021, $1, \dots$	21.2	61
57	Nanomechanical recognition measurements of individual DNA molecules reveal epigenetic methylation patterns. Nature Nanotechnology, 2010, 5, 788-791.	31.5	59
58	Following single antibody binding to purple membranes in real time. EMBO Reports, 2004, 5, 579-583.	4.5	57
59	Localization of the ergtoxin-1 receptors on the voltage sensing domain of hERG K+ channel by AFM recognition imaging. Pflugers Archiv European Journal of Physiology, 2008, 456, 247-254.	2.8	55
60	Simultaneous topography and recognition imaging: physical aspects and optimal imaging conditions. Nanotechnology, 2009, 20, 215103.	2.6	53
61	Hydrodynamic damping of a magnetically oscillated cantilever close to a surface. Ultramicroscopy, 2004, 100, 301-308.	1.9	52
62	Designing of dynamic polyethyleneimine (PEI) brushes on polyurethane (PU) ureteral stents to prevent infections. Acta Biomaterialia, 2015, 21, 44-54.	8.3	52
63	Self-Assembled Monolayers with Latent Aldehydes for Protein Immobilization. Bioconjugate Chemistry, 2007, 18, 247-253.	3.6	51
64	Single-molecule recognition force spectroscopy of transmembrane transporters on living cells. Nature Protocols, 2011, 6, 1443-1452.	12.0	50
65	Nanoscale DNA Tetrahedra Improve Biomolecular Recognition on Patterned Surfaces. Small, 2012, 8, 89-97.	10.0	50
66	Curli mediate bacterial adhesion to fibronectin via tensile multiple bonds. Scientific Reports, 2016, 6, 33909.	3.3	50
67	Imaging morphological details and pathological differences of red blood cells using tapping-mode AFM. Biological Chemistry, 2004, 385, 955-60.	2.5	49
68	High-Speed AFM Images of Thermal Motion Provide Stiffness Map of Interfacial Membrane Protein Moieties. Nano Letters, 2015, 15, 759-763.	9.1	49
69	Nanoscale Characteristics and Antimicrobial Properties of (SI-ATRP)-Seeded Polymer Brush Surfaces. ACS Applied Materials & Samp; Interfaces, 2019, 11, 29312-29319.	8.0	49
70	Membrane binding of \hat{l}^2 2-glycoprotein I can be described by a two-state reaction model: an atomic force microscopy and surface plasmon resonance study. Biochemical Journal, 2005, 389, 665-673.	3.7	48
71	High-Affinity Tags Fused to S-Layer Proteins Probed by Atomic Force Microscopy. Langmuir, 2008, 24, 1324-1329.	3.5	47
72	Quantitative sub-surface and non-contact imaging using scanning microwave microscopy. Nanotechnology, 2015, 26, 135701.	2.6	47

#	Article	IF	Citations
73	Targeted Delivery of siRNA into Breast Cancer Cells via Phage Fusion Proteins. Molecular Pharmaceutics, 2013, 10, 551-559.	4.6	46
74	Mutual A domain interactions in the force sensing protein von Willebrand factor. Journal of Structural Biology, 2017, 197, 57-64.	2.8	46
75	Free Energy of Membrane Protein Unfolding Derived from Single-Molecule Force Measurements. Biophysical Journal, 2007, 93, 930-937.	0.5	45
76	Communication between N terminus and loop2 tunes Orai activation. Journal of Biological Chemistry, 2018, 293, 1271-1285.	3.4	44
77	Identification of lectin receptors for conserved SARSâ€CoVâ€2 glycosylation sites. EMBO Journal, 2021, 40, e108375.	7.8	44
78	Mapping the Nucleotide Binding Site of Uncoupling Protein 1 Using Atomic Force Microscopy. Journal of the American Chemical Society, 2013, 135, 3640-3646.	13.7	41
79	Determination of CFTR densities in erythrocyte plasma membranes using recognition imaging. Nanotechnology, 2008, 19, 384017.	2.6	40
80	Dynamic force microscopy imaging of plasmid DNA and viral RNA. Biomaterials, 2007, 28, 2403-2411.	11.4	39
81	AFM functional imaging on vascular endothelial cells. Journal of Molecular Recognition, 2010, 23, 589-596.	2.1	39
82	Reduced number of CFTR molecules in erythrocyte plasma membrane of cystic fibrosis patients. Molecular Membrane Biology, 2006, 23, 317-323.	2.0	38
83	Atomic force microscopy-based antibody recognition imaging of proteins in the pathological deposits in Pseudoexfoliation Syndrome. Ultramicroscopy, 2011, 111, 1055-1061.	1.9	38
84	Painting with Biomolecules at the Nanoscale: Biofunctionalization with Tunable Surface Densities. Nano Letters, 2012, 12, 1983-1989.	9.1	38
85	Analysis of the cell surface layer ultrastructure of the oral pathogen Tannerella forsythia. Archives of Microbiology, 2012, 194, 525-539.	2.2	37
86	Cell surface localised Hsp70 is a cancer specific regulator of clathrinâ€independent endocytosis. FEBS Letters, 2015, 589, 2747-2753.	2.8	37
87	Calibrated complex impedance of CHO cells and <i>E</i> . <i>coli</i> bacteria at GHz frequencies using scanning microwave microscopy. Nanotechnology, 2016, 27, 135702.	2.6	36
88	Inhibition of mitochondrial UCP1 and UCP3 by purine nucleotides and phosphate. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 664-672.	2.6	36
89	Weak Fragment Crystallizable (Fc) Domain Interactions Drive the Dynamic Assembly of IgG Oligomers upon Antigen Recognition. ACS Nano, 2020, 14, 2739-2750.	14.6	36
90	Monitoring RNA Release from Human Rhinovirus by Dynamic Force Microscopy. Journal of Virology, 2004, 78, 3203-3209.	3.4	35

#	Article	IF	Citations
91	Structure and distribution of the Bacillus thuringiensis Cry4Ba toxin in lipid membranes. Ultramicroscopy, 2005, 105, 115-124.	1.9	34
92	Single Molecular Recognition Force Spectroscopy Study of a Luteinizing Hormone-Releasing Hormone Analogue as a Carcinoma Target Drug. Journal of Physical Chemistry B, 2012, 116, 13331-13337.	2.6	34
93	Applications of biosensing atomic force microscopy in monitoring drug and nanoparticle delivery. Expert Opinion on Drug Delivery, 2014, 11, 1237-1253.	5.0	34
94	Oriented Binding of the His6-Tagged Carboxyl-Tail of the L-type Ca2+ Channel $\hat{l}\pm 1$ -Subunit to a New NTA-Functionalized Self-Assembled Monolayer. Langmuir, 2004, 20, 5885-5890.	3.5	33
95	Single-Molecule AFM Characterization of Individual Chemically Tagged DNA Tetrahedra. ACS Nano, 2011, 5, 7048-7054.	14.6	33
96	Substrate Specificity of Sugar Transport by Rabbit SGLT1: Single-Molecule Atomic Force Microscopy versus Transport Studiesâ€. Biochemistry, 2007, 46, 2797-2804.	2.5	32
97	Detection of metal binding sites on functional S-layer nanoarrays using single molecule force spectroscopy. Journal of Structural Biology, 2009, 168, 217-222.	2.8	32
98	Detecting Protein Aggregates on Untreated Human Tissue Samples byÂAtomic Force Microscopy Recognition Imaging. Biophysical Journal, 2010, 99, 1660-1667.	0.5	32
99	Simultaneous AFM topography and recognition imaging at the plasma membrane of mammalian cells. Seminars in Cell and Developmental Biology, 2018, 73, 45-56.	5.0	32
100	Direct Discrimination between Models of Protein Activation by Single-Molecule Force Measurements. Biophysical Journal, 2004, 87, 2630-2634.	0.5	31
101	Fabrication of Highly Ordered Gold Nanoparticle Arrays Templated by Crystalline Lattices of Bacterial Sâ€Layer Protein. ChemPhysChem, 2008, 9, 2317-2320.	2.1	31
102	Molecular Recognition Studies Using the Atomic Force Microscope. Methods in Cell Biology, 2002, 68, 115-139.	1.1	30
103	Visualization of Single Receptor Molecules Bound to Human Rhinovirus under Physiological Conditions. Structure, 2005, 13, 1247-1253.	3.3	30
104	Covalent Immobilization of Single Proteins on Mica for Molecular Recognition Force Microscopy. ChemPhysChem, 2003, 4, 1367-1371.	2.1	29
105	Atomic force microscopy imaging and single molecule recognition force spectroscopy of coat proteins on the surface of <i>Bacillus subtilis</i> spore. Journal of Molecular Recognition, 2007, 20, 483-489.	2.1	29
106	Characterization of Enhanced Monovalent and Bivalent Thrombin DNA Aptamer Binding Using Single Molecule Force Spectroscopy. Biophysical Journal, 2011, 101, 1781-1787.	0.5	29
107	Nanoscale Organization of Human GnRH-R on Human Bladder Cancer Cells. Analytical Chemistry, 2014, 86, 2458-2464.	6. 5	29
108	Nanopharmacological Force Sensing to Reveal Allosteric Coupling in Transporter Binding Sites. Angewandte Chemie - International Edition, 2016, 55, 1719-1722.	13.8	29

#	Article	IF	Citations
109	HDL particles incorporate into lipid bilayers – a combined AFM and single molecule fluorescence microscopy study. Scientific Reports, 2017, 7, 15886.	3.3	29
110	Identification of novel insulin mimetic drugs by quantitative total internal reflection fluorescence (<scp>TIRF</scp>) microscopy. British Journal of Pharmacology, 2014, 171, 5237-5251.	5.4	28
111	Probing drug-cell interactions. Nano Today, 2006, 1, 18-25.	11.9	27
112	Unbinding Molecular Recognition Force Maps of Localized Single Receptor Molecules by Atomic Force Microscopy. ChemPhysChem, 2008, 9, 590-599.	2.1	27
113	Characterization of Curli A Production on Living Bacterial Surfaces byÂScanning Probe Microscopy. Biophysical Journal, 2012, 103, 1666-1671.	0.5	25
114	Second harmonic atomic force microscopy imaging of live and fixed mammalian cells. Ultramicroscopy, 2009, 109, 1056-1060.	1.9	24
115	Characterizing the effect of polymyxin <scp>B</scp> antibiotics to lipopolysaccharide on <scp><i>EscherichiaÂcoli</i></scp> surface using atomic force microscopy. Journal of Molecular Recognition, 2017, 30, e2605.	2.1	24
116	High-frequency electromagnetic dynamics properties of THP1 cells using scanning microwave microscopy. Ultramicroscopy, 2011, 111, 1625-1629.	1.9	23
117	Atomic-Force-Microscopy Imaging and Molecular-Recognition-Force Microscopy of Recrystallized Heterotetramers Comprising an S-Layer-Streptavidin Fusion Protein. ChemBioChem, 2006, 7, 588-591.	2.6	22
118	Three Surface Subdomains Form the Vestibule of the Na+/Glucose Cotransporter SGLT1. Journal of Biological Chemistry, 2007, 282, 25222-25230.	3.4	22
119	Molecular recognition imaging using tuning fork-based transverse dynamic force microscopy. Ultramicroscopy, 2010, 110, 605-611.	1.9	21
120	Nanosensing of Fcl^3 receptors on macrophages. Analytical and Bioanalytical Chemistry, 2011, 399, 2359-2367.	3.7	20
121	Binding Strength and Dynamics of Invariant Natural Killer Cell T Cell Receptor/CD1d-Glycosphingolipid Interaction on Living Cells by Single Molecule Force Spectroscopy. Journal of Biological Chemistry, 2011, 286, 15973-15979.	3.4	20
122	Nanopatterning of Biomolecules with Microscale Beads. ChemPhysChem, 2005, 6, 900-903.	2.1	19
123	Increased imaging speed and force sensitivity for bio-applications with small cantilevers using a conventional AFM setup. Micron, 2012, 43, 1399-1407.	2.2	19
124	Activation induced morphological changes and integrin \hat{l} ±IIb \hat{l} 23 activity of living platelets. Methods, 2013, 60, 179-185.	3.8	18
125	Dithio-Phospholipids for Biospecific Immobilization of Proteins on Gold Surfaces. Single Molecules, 2002, 3, 119-125.	0.9	17
126	Atomic Force Microscopyâ€Derived Nanoscale Chip for the Detection of Human Pathogenic Viruses. Small, 2008, 4, 847-854.	10.0	17

#	Article	IF	CITATIONS
127	Forces and Dynamics of Glucose and Inhibitor Binding to Sodium Glucose Co-transporter SGLT1 Studied by Single Molecule Force Spectroscopy. Journal of Biological Chemistry, 2014, 289, 21673-21683.	3.4	17
128	3D multiphoton lithography using biocompatible polymers with specific mechanical properties. Nanoscale Advances, 2020, 2, 2422-2428.	4.6	17
129	Control of Ligand-Binding Specificity Using Photocleavable Linkers in AFM Force Spectroscopy. Nano Letters, 2020, 20, 4038-4042.	9.1	17
130	Singleâ€Molecule Analysis of the Recognition Forces Underlying Nucleo ytoplasmic Transport. Angewandte Chemie - International Edition, 2013, 52, 10356-10359.	13.8	16
131	Characterizing the Sâ€layer structure and antiâ€Sâ€layer antibody recognition on intact <i>Tannerella forsythia</i> cells by scanning probe microscopy and small angle Xâ€ray scattering. Journal of Molecular Recognition, 2013, 26, 542-549.	2.1	16
132	Lipoteichoic acid mediates binding of a Lactobacillus S-layer protein. Glycobiology, 2018, 28, 148-158.	2.5	16
133	Determination of the Kinetic On- and Off-Rate of Single Virus–Cell Interactions. Methods in Molecular Biology, 2011, 736, 197-210.	0.9	16
134	Quasi-crystalline Arrangement of Human Rhinovirus 2 on Model Cell Membranes. Single Molecules, 2001, 2, 99-103.	0.9	15
135	Detection of corneodesmosin on the surface of stratum corneum using atomic force microscopy. Experimental Dermatology, 2010, 19, 1014-1019.	2.9	15
136	Molecular Recognition Force Spectroscopy: A New Tool to Tailor Targeted Nanoparticles. Small, 2011, 7, 1236-1241.	10.0	15
137	Nano-characterization of two closely related melanoma cell lines with different metastatic potential. European Biophysics Journal, 2015, 44, 49-55.	2.2	15
138	Combined Recognition Imaging and Force Spectroscopy: A New Mode for Mapping and Studying Interaction Sites at Low Lateral Density. Science of Advanced Materials, 2017, 9, 128-134.	0.7	15
139	Identification of the Human Rhinovirus Serotype 1A Binding Site on the Murine Low-Density Lipoprotein Receptor by Using Human-Mouse Receptor Chimeras. Journal of Virology, 2004, 78, 6766-6774.	3.4	14
140	Dynamic force microscopy for imaging of viruses under physiological conditions. Biological Procedures Online, 2004, 6, 120-128.	2.9	14
141	Single Molecule Force Microscopy on Cells and Biological Membranes. Current Nanoscience, 2007, 3, 49-56.	1.2	14
142	SLC5 and SLC2 Transporters in Epitheliaâ€"Cellular Role and Molecular Mechanisms. Current Topics in Membranes, 2012, 70, 29-76.	0.9	14
143	Ultra-Sensitive and Label-Free Probing of Binding Affinity Using Recognition Imaging. Nano Letters, 2019, 19, 612-617.	9.1	14
144	Detection and characterization of single biomolecules at surfaces. Reviews in Molecular Biotechnology, 2001, 82, 25-35.	2.8	13

#	Article	IF	Citations
145	Nanoscale characteristics of antibacterial cationic polymeric brushes and single bacterium interactions probed by force microscopy. RSC Advances, 2016, 6, 17092-17099.	3.6	13
146	Static and Dynamical Properties of Single Poly(Ethylene Glycol) Molecules Investigated by Force Spectroscopy. Single Molecules, 2000, 1, 123-128.	0.9	13
147	C-terminal Loop 13 of Na+/Glucose Cotransporter 1 Contains Both Stereospecific and Non-stereospecific Sugar Interaction Sites. Journal of Biological Chemistry, 2009, 284, 983-991.	3.4	12
148	Chemical Tags Mediate the Orthogonal Selfâ€Assembly of DNA Duplexes into Supramolecular Structures. Small, 2010, 6, 1732-1735.	10.0	12
149	Influence of Surface Morphology on the Antimicrobial Effect of Transition Metal Oxides in Polymer Surface. Journal of Nanoscience and Nanotechnology, 2015, 15, 7853-7859.	0.9	12
150	Detailed Evidence for an Unparalleled Interaction Mode between Calmodulin and Orai Proteins. Angewandte Chemie - International Edition, 2017, 56, 15755-15759.	13.8	12
151	Interaction of von Willebrand factor domains with collagen investigated by single molecule force spectroscopy. Journal of Chemical Physics, 2018, 148, 123310.	3.0	12
152	Correlations Between AFM and SEM Imaging of Acid-Etched Tooth Enamel. Ultrastructural Pathology, 2008, 32, 1-4.	0.9	11
153	Topography and Recognition Imaging of Proteinâ€Patterned Surfaces Generated by AFM Nanolithography. ChemPhysChem, 2009, 10, 1478-1481.	2.1	11
154	Green fluorescent protein $\hat{a}\in$ Tagged HCV non-enveloped capsid like particles: Development of a new tool for tracking HCV core uptake. Biochimie, 2009, 91, 903-915.	2.6	11
155	Two-Dimensional Kinetics of Inter-Connexin Interactions from Single-Molecule Force Spectroscopy. Journal of Molecular Biology, 2011, 412, 72-79.	4.2	11
156	AFM-Based Force Spectroscopy Guided by Recognition Imaging: A New Mode for Mapping and Studying Interaction Sites at Low Lateral Density. Methods and Protocols, 2019, 2, 6.	2.0	11
157	Accuracy Estimation in Force Spectroscopy Experiments. Japanese Journal of Applied Physics, 2007, 46, 5536.	1.5	10
158	pH-Dependent Deformations of the Energy Landscape of Avidin-like Proteins Investigated by Single Molecule Force Spectroscopy. Molecules, 2014, 19, 12531-12546.	3.8	10
159	Analysis of Membrane Protein Self-Association in Lipid Systems by Fluorescence Particle Counting:Â Application to the Dihydropyridine Receptorâ€. Biochemistry, 1997, 36, 4497-4504.	2.5	9
160	Stable, Nonâ€Destructive Immobilization of Native Nuclear Membranes to Microâ€Structured PDMS for Singleâ€Molecule Force Spectroscopy. ChemPhysChem, 2009, 10, 1553-1558.	2.1	9
161	A biophysical glance at the outer surface of the membrane transporter SGLT1. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1-18.	2.6	9
162	Modification of the loops in the ligand-binding site turns avidin into a steroid-binding protein. BMC Biotechnology, $2011,11,64.$	3.3	9

#	Article	IF	CITATIONS
163	Nanomapping of CD1d–glycolipid complexes on THP1 cells by using simultaneous topography and recognition imaging. Journal of Molecular Recognition, 2013, 26, 408-414.	2.1	9
164	Nanomechanical mechanisms of Lyme disease spirochete motility enhancement in extracellular matrix. Communications Biology, 2021, 4, 268.	4.4	9
165	Effects of Viscoelastic Cantilever - Sample Interaction on Laser Beam Deflection in MAC Mode MRFM. Single Molecules, 2000, 1, 165-170.	0.9	8
166	Receptor Arrays for the Selective and Efficient Capturing of Viral Particles. Bioconjugate Chemistry, 2009, 20, 466-475.	3.6	8
167	Examination of Native and Carbamide Peroxide-bleached Human Tooth Enamel by Atomic Force Microscopy. Ultrastructural Pathology, 2009, 33, 189-196.	0.9	8
168	Mapping Short Affinity Tags on Bacterial S‣ayer with an Antibody. ChemPhysChem, 2010, 11, 2323-2326.	2.1	8
169	Force-Induced Lysozyme—HyHEL5 Antibody Dissociation and Its Analysis by Means of a Cooperative Binding Model. Biophysical Journal, 2010, 99, 323-332.	0.5	8
170	Single molecular dissection of the ligand binding property of epidermal growth factor receptor. Analyst, The, 2013, 138, 5325.	3.5	8
171	Genetic characterization of an adapted pandemic 2009 H1N1 influenza virus that reveals improved replication rates in human lung epithelial cells. Virology, 2016, 492, 118-129.	2.4	8
172	Contributions of the Hydrophobic Helix 2 of the Bordetella pertussis CyaA-hemolysin to Membrane Permeabilization. Protein and Peptide Letters, 2018, 25, 236-243.	0.9	8
173	Normal and Pathological Erythrocytes Studied by Atomic Force Microscopy. Methods in Molecular Biology, 2011, 736, 223-241.	0.9	7
174	Time-resolved chloroquine-induced relaxation of supercoiled plasmid DNA. Analytical and Bioanalytical Chemistry, 2012, 402, 373-380.	3.7	7
175	Singleâ€Molecule Analysis of the Recognition Forces Underlying Nucleoâ€Cytoplasmic Transport. Angewandte Chemie, 2013, 125, 10546-10549.	2.0	7
176	Topologyâ€Selective Chromatography Reveals Plasmid Supercoiling Shifts during Fermentation and Allows Rapid and Efficient Preparation of Topoisomers. Angewandte Chemie - International Edition, 2012, 51, 267-270.	13.8	6
177	Single molecule binding dynamics measured with atomic force microscopy. Ultramicroscopy, 2014, 140, 32-36.	1.9	6
178	Atomic Force Microscopy as a Tool to Assess the Specificity of Targeted Nanoparticles in Biological Models of High Complexity. Advanced Healthcare Materials, 2017, 6, 1700597.	7.6	6
179	Two Ligand Binding Sites in Serotonin Transporter Revealed by Nanopharmacological Force Sensing. Methods in Molecular Biology, 2018, 1814, 19-33.	0.9	6
180	Monitoring of glass derivatization with pulsed force mode atomic force microscopy. Microscopy Research and Technique, 2004, 65, 246-251.	2.2	5

#	Article	IF	Citations
181	Selective binding of nanoparticles on surfaces and into polymeric matrices via directed hydrogen bonding interactions. Polymers for Advanced Technologies, 2006, 17, 754-757.	3.2	5
182	Kinetics of bioconjugate nanoparticle label binding in a sandwich-type immunoassay. Analytical and Bioanalytical Chemistry, 2014, 406, 493-503.	3.7	5
183	Single molecule force spectroscopy data and BD- and MD simulations on the blood protein von Willebrand factor. Data in Brief, 2016, 8, 1080-1087.	1.0	5
184	Probing the Energy Landscape of Protein-Binding Reactions by Dynamic Force Spectroscopy. , 2009, , 407-447.		5
185	Single-Molecule AFM Studies of Substrate Transport by Using the Sodium-Glucose Cotransporter SGLT1. Journal of the Korean Physical Society, 2008, 52, 1336-1340.	0.7	5
186	Atomic Force Microscopy Studies of Human Rhinovirus. Methods in Enzymology, 2010, 475, 515-539.	1.0	4
187	Atomic Force Microscopy Functional Imaging on Vascular Endothelial Cells. Methods in Molecular Biology, 2012, 931, 331-344.	0.9	4
188	Functional AFM Imaging of Cellular Membranes Using Functionalized Tips. Methods in Molecular Biology, 2013, 950, 359-371.	0.9	4
189	Investigating the binding behaviour of two avidinâ€based testosterone binders using molecular recognition force spectroscopy. Journal of Molecular Recognition, 2014, 27, 92-97.	2.1	4
190	Allosterically Linked Binding Sites in Serotonin Transporter Revealed by Single Molecule Force Spectroscopy. Frontiers in Molecular Biosciences, 2020, 7, 99.	3.5	4
191	Atomic Force Microscopy in Nanomedicine. Nanoscience and Technology, 2006, , 1-26.	1.5	3
192	Nanopharmacological Force Sensing to Reveal Allosteric Coupling in Transporter Binding Sites. Angewandte Chemie, 2016, 128, 1751-1754.	2.0	3
193	Sensing the Ultrastructure of Bacterial Surfaces and Their Molecular Binding Forces Using AFM. Methods in Molecular Biology, 2018, 1814, 363-372.	0.9	3
194	Localizing Binding Sites on Bioconjugated Hydrogenâ€Bonded Organic Semiconductors at the Nanoscale. ChemPhysChem, 2020, 21, 659-666.	2.1	3
195	Nanoscopic Approach to Study the Early Stages of Epithelial to Mesenchymal Transition (EMT) of Human Retinal Pigment Epithelial (RPE) Cells In Vitro. Life, 2020, 10, 128.	2.4	3
196	Molecular Recognition Force Microscopy. , 2005, , 283-312.		3
197	Molecular Recognition Force Microscopy: From Molecular Bonds to Complex Energy Landscapes. , 2010, , 763-785.		3
198	Photopicking: In Situ Approach for Siteâ€Specific Attachment of Single Multiprotein Nanoparticles to Atomic Force Microscopy Tips. Advanced Functional Materials, 2017, 27, 1604506.	14.9	2

#	Article	IF	CITATIONS
199	Biomedical Sensing with the Atomic Force Microscope. Springer Handbooks, 2017, , 809-844.	0.6	2
200	Molecular Recognition Force Spectroscopy for Probing Cell Targeted Nanoparticles In Vitro. Methods in Molecular Biology, 2019, 1886, 327-341.	0.9	2
201	Investigation of Bacterial Curli Production and Adhesion Using AFM. Methods in Molecular Biology, 2019, 1886, 221-231.	0.9	2
202	Catching Common Cold Virus with a Net: Pyridostatin Forms Filaments in Tris Buffer That Trap Virusesâ€"A Novel Antiviral Strategy?. Viruses, 2020, 12, 723.	3.3	2
203	Poly(Ethylene Glycol): An Ideal Spacer for Molecular Recognition Force Microscopy/Spectroscopy Single Molecules, 2000, 1, 99-103.	0.9	2
204	Recognition Imaging Using Atomic Force Microscopy. , 2009, , 525-554.		2
205	Molecular Recognition Force Microscopy: From Molecular Bonds to Complex Energy Landscapes. , 2011, , 355-387.		2
206	Molecular Recognition Force Microscopy: From Simple Bonds to Complex Energy Landscapes. , 2008, , 279-308.		2
207	Self-Assembled Growth of Highly Oriented Para- Sexiphenyl Thin Films Controlled by Elastic Strain. Materials Research Society Symposia Proceedings, 2001, 665, C5.24.1.	0.1	1
208	Signalverarbeitungsalgorithmen f $\tilde{A}^{1}/_{4}$ r ein Rasterkraftmikroskop, betrieben im TREC-Modus (Signal) Tj ETQq0 0 0 Messen, 2007, 74, 196-203.	rgBT /Ove 0.7	erlock 10 Tf 5 1
209	Molecular Recognition Force Spectroscopy. , 2011, , 3-46.		1
210	Quantitative measurement of electric properties on the nanometer scale using atomic force microscopy. , 2011, , .		1
211	Mutual a Domain Interactions in the Force Sensing Protein von Willebrand Factor (VWF). Biophysical Journal, 2016, 110, 496a.	0.5	1
212	Recognition Force Spectroscopy Studies of the NTA-His6 Bond., 2000, 1, 59.		1
213	Recognition Force Spectroscopy Studies of the NTA-His6 Bond. , 2000, 1, 59.		1
214	Recognition Force Spectroscopy Studies of the NTA-His6 Bond. Single Molecules, 2000, 1, 59-65.	0.9	1
215	Single-Molecule Studies on Cells and Membranes Using the Atomic Force Microscope. Nanoscience and Technology, 2007, , 101-125.	1.5	1
216	Molecular Recognition Force Microscopy. , 2004, , 475-494.		1

#	Article	IF	Citations
217	Editorial: The Linz Winter-Workshop: Past and Future. Single Molecules, 2002, 3, 181-181.	0.9	O
218	Digital signal processing in AFM topography and recognition imaging. , 2005, 5965, 134.		0
219	Dynamic Force Microscopy and Spectroscopy. Nanoscience and Technology, 2006, , 143-164.	1.5	O
220	A DNA Nanostructure for the Functional Assembly of Chemical Groups with Tunable Stoichiometry and Defined Nanoscale Geometry. Angewandte Chemie - International Edition, 2009, 48, 9016-9016.	13.8	0
221	High Speed Bio-AFM Reveals Motion of Membrane Proteins Driven by Hydrophobic Mismatch with nm Precision in Label-Free Fashion. Biophysical Journal, 2010, 99, 2017.	0.5	0
222	Exploring Carbon Nanotubes and Their Interaction with Cells Using Atomic Force Microscopy. , 2011, , 1-16.		0
223	Biomedical Sensing with the Atomic Force Microscope. , 2017, , 135-173.		0
224	Multiple Evidenz für einen ungewöhnlichen Wechselwirkungsmodus zwischen Calmodulin und Oraiâ€Proteinen. Angewandte Chemie, 2017, 129, 15962-15967.	2.0	0
225	Atomic Force Microscopy (AFM) for Topography and Recognition Imaging at Single-Molecule Level. , 2018, , 1-14.		0
226	Molecular Recognition Force Microscopy. , 2004, , 475-494.		0
227	Molecular Recognition Force Microscopy: From Simple Bonds to Complex Energy Landscapes. , 2007, , 767-790.		0
228	Single-Molecule Studies on Cells and Membranes Using the Atomic Force Microscope., 2010,, 479-503.		0
229	Atomic Force Microscopy in Nanomedicine. , 2010, , 713-738.		0
230	Nanoimaging, Molecular Interaction, and Nanotemplating of Human Rhinovirus. Nanoscience and Technology, 2011, , 589-643.	1.5	0
231	Topography and Recognition Imaging of Cells. , 2011, , 145-161.		0
232	Force Spectroscopy and Recognition Imaging of Cells from the Immune System. , 2012, , 49-75.		0