Giulio Pompilio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8417191/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Focus on the road to modelling cardiomyopathy in muscular dystrophy. Cardiovascular Research, 2022, 118, 1872-1884.	3.8	1
2	Impact of coronary calcification assessed by coronary CT angiography on treatment decision in patients with three-vessel CAD: insights from SYNTAX III trial. Interactive Cardiovascular and Thoracic Surgery, 2022, 34, 176-184.	1.1	5
3	The harder the climb the better the view: The impact of substrate stiffness on cardiomyocyte fate. Journal of Molecular and Cellular Cardiology, 2022, 166, 36-49.	1.9	7
4	Diagnostic concordance and discordance between angiography-based quantitative flow ratio and fractional flow reserve derived from computed tomography in complex coronary artery disease. Journal of Cardiovascular Computed Tomography, 2022, 16, 336-342.	1.3	5
5	Liraglutide preserves CD34+ stem cells from dysfunction Induced by high glucose exposure. Cardiovascular Diabetology, 2022, 21, 51.	6.8	7
6	GCN5 contributes to intracellular lipid accumulation in human primary cardiac stromal cells from patients affected by Arrhythmogenic cardiomyopathy. Journal of Cellular and Molecular Medicine, 2022, 26, 3687-3701.	3.6	3
7	Biologics and cardiac disease: challenges and opportunities. Trends in Pharmacological Sciences, 2022, 43, 894-905.	8.7	5
8	Insights into therapeutic products, preclinical research models, and clinical trials in cardiac regenerative and reparative medicine: where are we now and the way ahead. Current opinion paper of the ESC Working Group on Cardiovascular Regenerative and Reparative Medicine. Cardiovascular Research, 2021, 117, 1428-1433.	3.8	20
9	Very Long-term Outcome of Minimally Invasive Direct Coronary Artery Bypass. Annals of Thoracic Surgery, 2021, 111, 845-852.	1.3	5
10	Role of computed tomography in COVID-19. Journal of Cardiovascular Computed Tomography, 2021, 15, 27-36.	1.3	88
11	Diabetes Induces a Transcriptional Signature in Bone Marrow–Derived CD34+ Hematopoietic Stem Cells Predictive of Their Progeny Dysfunction. International Journal of Molecular Sciences, 2021, 22, 1423.	4.1	5
12	Soluble Receptor for Advanced Glycation End-products regulates age-associated Cardiac Fibrosis. International Journal of Biological Sciences, 2021, 17, 2399-2416.	6.4	14
13	Excess TGF-β1 Drives Cardiac Mesenchymal Stromal Cells to a Pro-Fibrotic Commitment in Arrhythmogenic Cardiomyopathy. International Journal of Molecular Sciences, 2021, 22, 2673.	4.1	17
14	Metabolic Signature of Arrhythmogenic Cardiomyopathy. Metabolites, 2021, 11, 195.	2.9	5
15	Presence of SARS-CoV-2 Nucleoprotein in Cardiac Tissues of Donors with Negative COVID-19 Molecular Tests. Diagnostics, 2021, 11, 731.	2.6	5
16	Cardiac Biomarkers and Autoantibodies in Endurance Athletes: Potential Similarities with Arrhythmogenic Cardiomyopathy Pathogenic Mechanisms. International Journal of Molecular Sciences, 2021, 22, 6500.	4.1	12
17	Doxorubicin induces an alarmin-like TLR4-dependent autocrine/paracrine action of Nucleophosmin in human cardiac mesenchymal progenitor cells. BMC Biology, 2021, 19, 124.	3.8	7
18	Percutaneous Coronary Revascularization. Journal of the American College of Cardiology, 2021, 78, 384-407.	2.8	16

#	Article	IF	CITATIONS
19	Oxidized LDLâ€dependent pathway as new pathogenic trigger in arrhythmogenic cardiomyopathy. EMBO Molecular Medicine, 2021, 13, e14365.	6.9	16
20	Multiomic Approaches to Uncover the Complexities of Dystrophin-Associated Cardiomyopathy. International Journal of Molecular Sciences, 2021, 22, 8954.	4.1	4
21	Endomyocardial Biopsy: The Forgotten Piece in the Arrhythmogenic Cardiomyopathy Puzzle. Journal of the American Heart Association, 2021, 10, e021370.	3.7	14
22	Son of a Lesser God: The Case of Cell Therapy for Refractory Angina. Frontiers in Cardiovascular Medicine, 2021, 8, 709795.	2.4	2
23	Neuropeptide Y promotes adipogenesis of human cardiac mesenchymal stromal cells in arrhythmogenic cardiomyopathy. International Journal of Cardiology, 2021, 342, 94-102.	1.7	10
24	Interpretability of coronary CT angiography performed with a novel whole-heart coverage high-definition CT scanner in 300 consecutive patients with coronary artery bypass grafts. Journal of Cardiovascular Computed Tomography, 2020, 14, 137-143.	1.3	24
25	Cyclophilin A/EMMPRIN Axis Is Involved in Pro-Fibrotic Processes Associated with Thoracic Aortic Aneurysm of Marfan Syndrome Patients. Cells, 2020, 9, 154.	4.1	11
26	Endothelial progenitors: When confusion may give rise to new understanding. International Journal of Cardiology, 2020, 318, 121-122.	1.7	3
27	Differences in Mitochondrial Membrane Potential Identify Distinct Populations of Human Cardiac Mesenchymal Progenitor Cells. International Journal of Molecular Sciences, 2020, 21, 7467.	4.1	9
28	"Betwixt Mine Eye and Heart a League Is Took― The Progress of Induced Pluripotent Stem-Cell-Based Models of Dystrophin-Associated Cardiomyopathy. International Journal of Molecular Sciences, 2020, 21, 6997.	4.1	5
29	The ESC Working Group on Cardiovascular Regenerative and Reparative Medicine. European Heart Journal, 2020, 41, 2721-2723.	2.2	0
30	Diagnostic Yield of Electroanatomic Voltage Mapping in Guiding Endomyocardial Biopsies. Circulation, 2020, 142, 1249-1260.	1.6	61
31	Human Cell Modeling for Cardiovascular Diseases. International Journal of Molecular Sciences, 2020, 21, 6388.	4.1	12
32	Characteristics of Patients With Arrhythmogenic Left Ventricular Cardiomyopathy. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e009005.	4.8	29
33	Safety and feasibility evaluation of planning and execution of surgical revascularisation solely based on coronary CTA and FFR _{CT} in patients with complex coronary artery disease: study protocol of the FASTTRACK CABG study. BMJ Open, 2020, 10, e038152.	1.9	24
34	Differential Role of Circulating microRNAs to Track Progression and Pre-Symptomatic Stage of Chronic Heart Failure: A Pilot Study. Biomedicines, 2020, 8, 597.	3.2	19
35	Circulating MicroRNAs as Potential Predictors of Anthracycline-Induced Troponin Elevation in Breast Cancer Patients: Diverging Effects of Doxorubicin and Epirubicin. Journal of Clinical Medicine, 2020, 9, 1418.	2.4	27
36	Graft patency and progression of coronary artery disease after CABG assessed by angiography-derived fractional flow reserve. International Journal of Cardiology, 2020, 316, 19-25.	1.7	7

#	Article	IF	CITATIONS
37	Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease. Cell Stem Cell, 2020, 26, 862-879.e11.	11.1	337
38	First reorganization in Europe of a regional cardiac surgery system to deal with the coronavirus-2019 pandemic. European Journal of Cardio-thoracic Surgery, 2020, 58, 25-29.	1.4	8
39	Clinical and Molecular Data Define a Diagnosis of Arrhythmogenic Cardiomyopathy in a Carrier of a Brugada-Syndrome-Associated PKP2 Mutation. Genes, 2020, 11, 571.	2.4	3
40	When Good Guys Turn Bad: Bone Marrow's and Hematopoietic Stem Cells' Role in the Pathobiology of Diabetic Complications. International Journal of Molecular Sciences, 2020, 21, 3864.	4.1	14
41	Human Cardiac Mesenchymal Stromal Cells From Right and Left Ventricles Display Differences in Number, Function, and Transcriptomic Profile. Frontiers in Physiology, 2020, 11, 604.	2.8	5
42	Generation of the Becker muscular dystrophy patient derived induced pluripotent stem cell line carrying the DMD splicing mutation c.1705-8 T>C Stem Cell Research, 2020, 45, 101819.	0.7	2
43	Fibrosis in Arrhythmogenic Cardiomyopathy: The Phantom Thread in the Fibro-Adipose Tissue. Frontiers in Physiology, 2020, 11, 279.	2.8	15
44	Cyclophilin A inhibition as potential treatment of human aortic valve calcification. Pharmacological Research, 2020, 158, 104888.	7.1	3
45	Long-term secondary cardiovascular prevention programme in patients subjected to coronary artery bypass surgery. European Journal of Preventive Cardiology, 2020, , .	1.8	2
46	New Strategies to Enhance Myocardial Regeneration: Expectations and Challenges from Preclinical Evidence. Current Stem Cell Research and Therapy, 2020, 15, 696-710.	1.3	6
47	The SYNTAX score on its way out or … towards artificial intelligence: part I. EuroIntervention, 2020, 16, 44-59.	3.2	26
48	The SYNTAX score on its way out or … towards artificial intelligence: part II. EuroIntervention, 2020, 16, 60-75.	3.2	18
49	The usefulness of cardiac CT integrated with FFRCT for planning myocardial revascularization in complex coronary artery disease: a lesson from SYNTAX studies. Cardiovascular Diagnosis and Therapy, 2020, 10, 2036-2047.	1.7	2
50	Sensitive and quantitative method to evaluate DNA methylation of the positive regulatory domains (PRDI, PRDII) and cAMP response element (CRE) in human endothelial nitric oxide synthase promoter. Nitric Oxide - Biology and Chemistry, 2019, 92, 41-48.	2.7	0
51	Calcium as a Key Player in Arrhythmogenic Cardiomyopathy: Adhesion Disorder or Intracellular Alteration?. International Journal of Molecular Sciences, 2019, 20, 3986.	4.1	29
52	Establishment of a Duchenne muscular dystrophy patient-derived induced pluripotent stem cell line carrying a deletion of exons 51–53 of the dystrophin gene (CCMi003-A). Stem Cell Research, 2019, 40, 101544.	0.7	4
53	Soluble EMMPRIN levels discriminate aortic ectasia in Marfan syndrome patients. Theranostics, 2019, 9, 2224-2234.	10.0	9

54 G-CSF for Extensive STEMI. Circulation Research, 2019, 125, 295-306.

4.5 18

#	Article	IF	CITATIONS
55	Cyclophilin A in Arrhythmogenic Cardiomyopathy Cardiac Remodeling. International Journal of Molecular Sciences, 2019, 20, 2403.	4.1	4
56	MiRNA profiling revealed enhanced susceptibility to oxidative stress of endothelial cells from bicuspid aortic valve. Journal of Molecular and Cellular Cardiology, 2019, 131, 146-154.	1.9	14
57	Abnormal DNA Methylation Induced by Hyperglycemia Reduces CXCR4 Gene Expression in CD34+Stem Cells. Journal of the American Heart Association, 2019, 8, e010012.	3.7	26
58	Unchain My Heart: Integrins at the Basis of iPSC Cardiomyocyte Differentiation. Stem Cells International, 2019, 2019, 1-20.	2.5	20
59	Response by Pompilio et al to Letter Regarding Article, "G-CSF for Extensive STEMI: Results From the STEM-AMI OUTCOME CMR Substudy†Circulation Research, 2019, 125, e38-e39.	4.5	Ο
60	Fibrosis Rescue Improves Cardiac Function in Dystrophin-Deficient Mice and Duchenne Patient–Specific Cardiomyocytes by Immunoproteasome Modulation. American Journal of Pathology, 2019, 189, 339-353.	3.8	27
61	Plasmatic and chamber-specific modulation of cardiac microRNAs in an acute model of DOX-induced cardiotoxicity. Biomedicine and Pharmacotherapy, 2019, 110, 1-8.	5.6	25
62	Arrhythmogenic cardiomyopathy: what blood can reveal?. Heart Rhythm, 2019, 16, 470-477.	0.7	14
63	486-P: Hyperglycemia Promotes Epigenetic Priming of RELA/p65 Gene in Cord Blood-Derived CD34+ Stem Cells and Their Differentiation into Proinflammatory CD16 Myeloid Cell Population. Diabetes, 2019, 68,	0.6	0
64	Generation of induced pluripotent stem cells from a Becker muscular dystrophy patient carrying a deletion of exons 45-55 of the dystrophin gene (CCMi002BMD-A-9 â^†45-55). Stem Cell Research, 2018, 28, 21-24.	0.7	8
65	Isolation and Characterization of Cardiac Mesenchymal Stromal Cells from Endomyocardial Bioptic Samples of Arrhythmogenic Cardiomyopathy Patients. Journal of Visualized Experiments, 2018, , .	0.3	24
66	Cell therapy for heart disease after 15 years: Unmet expectations. Pharmacological Research, 2018, 127, 77-91.	7.1	53
67	Preferential myofibroblast differentiation of cardiac mesenchymal progenitor cells in the presence of atrial fibrillation. Translational Research, 2018, 192, 54-67.	5.0	16
68	Phase-contrast microtomography: are the tracers necessary for stem cell tracking in infarcted hearts?. Biomedical Physics and Engineering Express, 2018, 4, 055008.	1.2	2
69	Cardiac fibrosis in regenerative medicine: destroy to rebuild. Journal of Thoracic Disease, 2018, 10, S2376-S2389.	1.4	15
70	Linking cell function with perfusion: insights from the transcatheter delivery of bone marrow-derived CD133+ cells in ischemic refractory cardiomyopathy trial (RECARDIO). Stem Cell Research and Therapy, 2018, 9, 235.	5.5	14
71	May cellular lipids and oxidative stress play a role in arrhythmogenic cardiomyopathy pathogenesis? A lipidomic study in cardiac mesenchymal stromal cells. Atherosclerosis, 2018, 275, e156.	0.8	0
72	A Specific Circulating MicroRNA Cluster Is Associated to Late Differential Cardiac Response to Doxorubicin-Induced Cardiotoxicity <i>In Vivo</i> . Disease Markers, 2018, 2018, 1-9.	1.3	21

#	Article	IF	CITATIONS
73	Integrin ανβ5 in vitro inhibition limits pro-fibrotic response in cardiac fibroblasts of spontaneously hypertensive rats. Journal of Translational Medicine, 2018, 16, 352.	4.4	24
74	Dystrophin Cardiomyopathies: Clinical Management, Molecular Pathogenesis and Evolution towards Precision Medicine. Journal of Clinical Medicine, 2018, 7, 291.	2.4	24
75	Coronary computed tomography angiography for heart team decision-making in multivessel coronary artery disease. European Heart Journal, 2018, 39, 3689-3698.	2.2	140
76	Derivation of human induced pluripotent stem cell line EURACi004-A from skin fibroblasts of a patient with Arrhythmogenic Cardiomyopathy carrying the heterozygous PKP2 mutation c.2569_3018del50. Stem Cell Research, 2018, 32, 78-82.	0.7	2
77	Generation of the Rubinstein-Taybi syndrome type 2 patient-derived induced pluripotent stem cell line (IAli001-A) carrying the EP300 exon 23 stop mutation c.3829A >â€T, p.(Lys1277*). Stem Cell Research, 201 30, 175-179.	&) . 7	4
78	The arrhythmogenic cardiomyopathy-specific coding and non-coding transcriptome in human cardiac stromal cells. BMC Genomics, 2018, 19, 491.	2.8	21
79	Precise Therapy for Thoracic Aortic Aneurysm in Marfan Syndrome: A Puzzle Nearing Its Solution. Progress in Cardiovascular Diseases, 2018, 61, 328-335.	3.1	15
80	HDAC Inhibition Improves the Sarcoendoplasmic Reticulum Ca2+-ATPase Activity in Cardiac Myocytes. International Journal of Molecular Sciences, 2018, 19, 419.	4.1	21
81	miR-34a Promotes Vascular Smooth Muscle Cell Calcification by Downregulating SIRT1 (Sirtuin 1) and Axl (AXL Receptor Tyrosine Kinase). Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2079-2090.	2.4	93
82	Abstract 200: Engineering Evolution: Tetraploidization of Human Cardiac Stem Cells to Enhance Functional Activity. Circulation Research, 2018, 123, .	4.5	0
83	Arrhythmogenic Cardiomyopathy: the Guilty Party in Adipogenesis. Journal of Cardiovascular Translational Research, 2017, 10, 446-454.	2.4	21
84	Doxorubicin upregulates CXCR4 via miR-200c/ZEB1-dependent mechanism in human cardiac mesenchymal progenitor cells. Cell Death and Disease, 2017, 8, e3020-e3020.	6.3	33
85	Non-oxidizable HMGB1 induces cardiac fibroblasts migration via CXCR4 in a CXCL12-independent manner and worsens tissue remodeling after myocardial infarction. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2693-2704.	3.8	35
86	Age-dependent increase of oxidative stress regulates microRNA-29 family preserving cardiac health. Scientific Reports, 2017, 7, 16839.	3.3	57
87	Derivation of the Duchenne muscular dystrophy patient-derived induced pluripotent stem cell line lacking DMD exons 49 and 50 (CCMi001DMD-A-3, â^† 49, â^† 50). Stem Cell Research, 2017, 25, 128-131.	0.7	9
88	MiR-320a as a Potential Novel Circulating Biomarker of Arrhythmogenic CardioMyopathy. Scientific Reports, 2017, 7, 4802.	3.3	39
89	Cell models of arrhythmogenic cardiomyopathy: advances and opportunities. DMM Disease Models and Mechanisms, 2017, 10, 823-835.	2.4	29
90	Vascular smooth muscle cells in Marfan syndrome aneurysm: the broken bricks in the aortic wall. Cellular and Molecular Life Sciences, 2017, 74, 267-277.	5.4	41

#	Article	IF	CITATIONS
91	Sildenafil attenuates hypoxic pulmonary remodelling by inhibiting bone marrow progenitor cells. Journal of Cellular and Molecular Medicine, 2017, 21, 871-880.	3.6	13
92	Exploring digenic inheritance in arrhythmogenic cardiomyopathy. BMC Medical Genetics, 2017, 18, 145.	2.1	14
93	Cell Therapy for Refractory Angina: A Reappraisal. Stem Cells International, 2017, 2017, 1-11.	2.5	7
94	Global position paper on cardiovascular regenerative medicine. European Heart Journal, 2017, 38, 2532-2546.	2.2	133
95	Young at Heart: Pioneering Approaches to Model Nonischaemic Cardiomyopathy with Induced Pluripotent Stem Cells. Stem Cells International, 2016, 2016, 1-15.	2.5	6
96	Higher cardiogenic potential of iPSCs derived from cardiac versus skin stromal cells. Frontiers in Bioscience - Landmark, 2016, 21, 719-743.	3.0	13
97	Mechanisms of Cancer-related Cardiomyopathy6/Protection against chemotherapy cardiotoxicity by the human amniotic fluid stem cell secretome: a new tool for future paracrine therapy68Hyperlipidaemia reduces mortality in breast, prostate, lung and bowel cancer69DNA-repair in cardiomyocytes is critical for maintaining cardiac function. Cardiovascular Research, 2016, 111,	3.8	1
98	SIAPS 15. Elevated LDL and oxidative stress contribute to Arrhythmogenic Cardiomyopathy phenotypic manifestation. Atherosclerosis, 2016, 252, e227-e228.	0.8	0
99	Endothelial progenitor cells in ageing. Mechanisms of Ageing and Development, 2016, 159, 1-3.	4.6	14
100	Power Is Nothing Without Control. Circulation Research, 2016, 119, 988-991.	4.5	5
101	The human amniotic fluid stem cell secretome effectively counteracts doxorubicin-induced cardiotoxicity. Scientific Reports, 2016, 6, 29994.	3.3	52
102	Cyclophilin A modulates bone marrow-derived CD117+ cells and enhances ischemia-induced angiogenesis via the SDF-1/CXCR4 axis. International Journal of Cardiology, 2016, 212, 324-335.	1.7	22
103	Cardiac mesenchymal stromal cells are a source of adipocytes in arrhythmogenic cardiomyopathy. European Heart Journal, 2016, 37, 1835-1846.	2.2	83
104	Methylation profiling by bisulfite sequencing analysis of the mtDNA Non-Coding Region in replicative and senescent Endothelial Cells. Mitochondrion, 2016, 27, 40-47.	3.4	51
105	system in modelling muscular dystrophy cardiac disease with induced pluripotent stem cells.512An emerging role of T lymphocytes in cardiac regenerative processes in heart failure due to dilated cardiomyopathy513Canonical wnt signaling reverses the †aged/senescent' human endogenous cardiac stem cell phenotype514Hippo signalling modulates survival of human induced pluripotent stem	3.8	0
106	cell-derived cardiomyocytes5. Cardiovascular Research, 2016, 111, S92-S116. An International Survey on Taking Up a Career in Cardiovascular Research: Opportunities and Biases toward Would-Be Physician-Scientists. PLoS ONE, 2015, 10, e0131900.	2.5	2
107	Full GMP-Compliant Validation of Bone Marrow-Derived Human CD133 ^{+} Cells as Advanced Therapy Medicinal Product for Refractory Ischemic Cardiomyopathy. BioMed Research International, 2015, 2015, 1-10.	1.9	6
108	Peptidyl-prolyl isomerases: a full cast of critical actors in cardiovascular diseases. Cardiovascular Research, 2015, 106, 353-364.	3.8	43

#	Article	IF	CITATIONS
109	Bone Good to the Heart. Circulation Research, 2015, 116, 16-18.	4.5	2
110	Characterization of the Pall Celeris system as a point-of-care device for therapeutic angiogenesis. Cytotherapy, 2015, 17, 1302-1313.	0.7	29
111	The mitochondrial IncRNA ASncmtRNA-2 is induced in aging and replicative senescence in Endothelial Cells. Journal of Molecular and Cellular Cardiology, 2015, 81, 62-70.	1.9	133
112	c-kit+ cells: the tell-tale heart of cardiac regeneration?. Cellular and Molecular Life Sciences, 2015, 72, 1725-1740.	5.4	19
113	MicroRNA-34a Induces Vascular Smooth Muscle Cells Senescence by SIRT1 Downregulation and Promotes the Expression of Age-Associated Pro-inflammatory Secretory Factors. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 1304-1311.	3.6	101
114	MicroRNAs in Cardiac Regeneration. , 2015, , 917-942.		1
115	Granulocyte-colony stimulating factor for large anterior ST-elevation myocardial infarction: Rationale and design of the prospective randomized phase III STEM-AMI OUTCOME trial. American Heart Journal, 2015, 170, 652-658.e7.	2.7	9
116	Novel Application of 3-Dimensional Real-Time Cardiac Imaging to Guide Stem Cell-Based Therapy. Canadian Journal of Cardiology, 2015, 31, 1073.e13-1073.e15.	1.7	3
117	Acetylation mediates Cx43 reduction caused by electrical stimulation. Journal of Molecular and Cellular Cardiology, 2015, 87, 54-64.	1.9	15
118	Bone Marrow Cell Therapy for Ischemic Heart Disease. Circulation Research, 2015, 117, 490-493.	4.5	11
119	microRNAs: Promising Biomarkers and Therapeutic Targets of Acute Myocardial Ischemia. Current Vascular Pharmacology, 2015, 13, 305-315.	1.7	22
120	The Receptor for Advanced Glycation End-Products (RAGE) Is Only Present in Mammals, and Belongs to a Family of Cell Adhesion Molecules (CAMs). PLoS ONE, 2014, 9, e86903.	2.5	115
121	Syngeneic Cardiac and Bone Marrow Stromal Cells Display Tissue-Specific microRNA Signatures and microRNA Subsets Restricted to Diverse Differentiation Processes. PLoS ONE, 2014, 9, e107269.	2.5	6
122	Influence of Egr-1 in Cardiac Tissue-Derived Mesenchymal Stem Cells in Response to Glucose Variations. BioMed Research International, 2014, 2014, 1-11.	1.9	13
123	The CD133 ⁺ Cell as Advanced Medicinal Product for Myocardial and Limb Ischemia. Stem Cells and Development, 2014, 23, 2403-2421.	2.1	25
124	G-CSF treatment for STEMI: final 3-year follow-up of the randomised placebo-controlled STEM-AMI trial. Heart, 2014, 100, 574-581.	2.9	18
125	microRNAs and Cardiac Cell Fate. Cells, 2014, 3, 802-823.	4.1	38
126	Identification of Kita (c-Kit) positive cells in the heart of adult zebrafish. International Journal of Cardiology, 2014, 175, 204-205.	1.7	3

#	Article	IF	CITATIONS
127	The mitochondrial genome in aging and senescence. Ageing Research Reviews, 2014, 18, 1-15.	10.9	63
128	Doxorubicin and Trastuzumab Regimen Induces Biventricular Failure in Mice. Journal of the American Society of Echocardiography, 2014, 27, 568-579.	2.8	61
129	The Histone Acetylase Activator Pentadecylidenemalonate 1b Rescues Proliferation and Differentiation in the Human Cardiac Mesenchymal Cells of Type 2 Diabetic Patients. Diabetes, 2014, 63, 2132-2147.	0.6	66
130	Emerging Treatment Options for Refractory Angina Pectoris: Ranolazine, Shock Wave Treatment, and Cell-Based Therapies. Reviews in Cardiovascular Medicine, 2014, 15, 31-37.	1.4	2
131	Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. International Journal of Cardiology, 2013, 167, 531-536.	1.7	214
132	Cyclophilin A: a key player for human disease. Cell Death and Disease, 2013, 4, e888-e888.	6.3	334
133	When Stemness Meets Engineering: Towards "Niche―Control of Stem Cell Functions for Enhanced Cardiovascular Regeneration. , 2013, , 457-473.		0
134	Ex vivo acidic preconditioning enhances bone marrow ckit+ cell therapeutic potential via increased CXCR4 expression. European Heart Journal, 2013, 34, 2007-2016.	2.2	15
135	Transcriptional Profiling of Hmgb1-Induced Myocardial Repair Identifies a Key Role for Notch Signaling. Molecular Therapy, 2013, 21, 1841-1851.	8.2	22
136	c-kit–Positive Cardiac Progenitor Cells. Circulation Research, 2013, 112, 1202-1204.	4.5	14
137	Hypoxia/Reoxygenation Cardiac Injury and Regeneration in Zebrafish Adult Heart. PLoS ONE, 2013, 8, e53748.	2.5	68
138	Diagnostic Potential of Plasmatic MicroRNA Signatures in Stable and Unstable Angina. PLoS ONE, 2013, 8, e80345.	2.5	118
139	MicroRNAs and myocardial infarction. Current Opinion in Cardiology, 2012, 27, 228-235.	1.8	34
140	Patient profile modulates cardiac c-kit+ progenitor cell availability and amplification potential. Translational Research, 2012, 160, 363-373.	5.0	25
141	Human chorionic villus mesenchymal stromal cells reveal strong endothelial conversion properties. Differentiation, 2012, 83, 260-270.	1.9	26
142	In Vitro Epigenetic Reprogramming of Human Cardiac Mesenchymal Stromal Cells into Functionally Competent Cardiovascular Precursors. PLoS ONE, 2012, 7, e51694.	2.5	30
143	Heart valve engineering: decellularized aortic homograft seeded with human cardiac stromal cells. Journal of Heart Valve Disease, 2012, 21, 125-34.	0.5	24
144	Histone Deacetylase Inhibition Enhances Self Renewal and Cardioprotection by Human Cord Blood-Derived CD34+ Cells. PLoS ONE, 2011, 6, e22158.	2.5	21

#	Article	IF	CITATIONS
145	Endothelial and cardiac progenitors: Boosting, conditioning and (re)programming for cardiovascular repair. , 2011, 129, 50-61.		26
146	Human epicardium-derived cells fuse with high efficiency with skeletal myotubes and differentiate toward the skeletal muscle phenotype: a comparison study with stromal and endothelial cells. Molecular Biology of the Cell, 2011, 22, 581-592.	2.1	5
147	G-CSF administration in acute myocardial infarction: what is the best timing?. Cardiovascular Research, 2011, 91, 180-180.	3.8	1
148	Letter by D'Alessandra et al Regarding Article, "Circulating MicroRNA-208b and MicroRNA-499 Reflect Myocardial Damage in Cardiovascular Disease― Circulation: Cardiovascular Genetics, 2011, 4, e7; author reply e8.	5.1	8
149	Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin. Cardiovascular Research, 2011, 89, 650-660.	3.8	114
150	Determinants of pericardial drainage for cardiac tamponade following cardiac surgery. European Journal of Cardio-thoracic Surgery, 2011, 39, e107-e113.	1.4	23
151	C-kit+ cardiac progenitors exhibit mesenchymal markers and preferential cardiovascular commitment. Cardiovascular Research, 2011, 89, 362-373.	3.8	77
152	Cardiac Stem Cells: Tales, Mysteries and Promises in Heart Generation and Regeneration. , 2011, , 265-286.		1
153	HMCB1 Attenuates Cardiac Remodelling in the Failing Heart via Enhanced Cardiac Regeneration and miR-206-Mediated Inhibition of TIMP-3. PLoS ONE, 2011, 6, e19845.	2.5	105
154	Endothelial Progenitor Cells from Cord Blood: Magic Bullets Against Ischemia?. , 2011, , 205-213.		0
155	GMPâ€based CD133 ⁺ cells isolation maintains progenitor angiogenic properties and enhances standardization in cardiovascular cell therapy. Journal of Cellular and Molecular Medicine, 2010, 14, 1619-1634.	3.6	16
156	Granulocyte colonyâ€stimulating factor attenuates left ventricular remodelling after acute anterior STEMI: results of the singleâ€blind, randomized, placeboâ€controlled multicentre STem cEll Mobilization in Acute Myocardial Infarction (STEMâ€AMI) Trial. European Journal of Heart Failure, 2010, 12, 1111-1121.	7.1	48
157	Wednesday, 1 September 2010. European Heart Journal, 2010, 31, 873-1071.	2.2	4
158	Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. European Heart Journal, 2010, 31, 2765-2773.	2.2	709
159	Altered SDF-1-mediated differentiation of bone marrow-derived endothelial progenitor cells in diabetes mellitus. Journal of Cellular and Molecular Medicine, 2009, 13, 3405-3414.	3.6	36
160	Endothelial progenitor cells and cardiovascular homeostasis: Clinical implications. International Journal of Cardiology, 2009, 131, 156-167.	1.7	55
161	Regenerative Therapy in Peripheral Artery Disease. Cardiovascular Therapeutics, 2009, 27, 289-304.	2.5	38
162	HMGB1-stimulated human primary cardiac fibroblasts exert a paracrine action on human and murine cardiac stem cells. Journal of Molecular and Cellular Cardiology, 2008, 44, 683-693.	1.9	97

#	Article	IF	CITATIONS
163	MicroRNA-210 Modulates Endothelial Cell Response to Hypoxia and Inhibits the Receptor Tyrosine Kinase Ligand Ephrin-A3. Journal of Biological Chemistry, 2008, 283, 15878-15883.	3.4	786
164	Direct Minimally Invasive Intramyocardial Injection of Bone Marrow-Derived AC133+ Stem Cells in Patients with Refractory Ischemia: Preliminary Results. Thoracic and Cardiovascular Surgeon, 2008, 56, 71-76.	1.0	61
165	Therapeutic Angiogenesis With Intramuscular NV1FGF Improves Amputation-free Survival in Patients With Critical Limb Ischemia. Molecular Therapy, 2008, 16, 972-978.	8.2	294
166	Multiple Effects of High Mobility Group Box Protein 1 in Skeletal Muscle Regeneration. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2377-2383.	2.4	95
167	Identification of Myocardial and Vascular Precursor Cells in Human and Mouse Epicardium. Circulation Research, 2007, 101, 1255-1265.	4.5	216
168	Endovascular treatment of a post-traumatic tibial pseudoaneurysm and arteriovenous fistula: Case report and review of the literature. Journal of Vascular Surgery, 2007, 45, 1076-1079.	1.1	67
169	Abstract 466: Valproic Acid Enhances Human Cord Blood CD34 + Cell Differentiation Toward The Endothelial Phenotype. Circulation, 2007, 116, .	1.6	1
170	Left Common Carotid Artery as Inflow Site in Coronary Artery Bypass Grafting. Annals of Thoracic Surgery, 2006, 82, 2298-2300.	1.3	3
171	Abdominal Aortic Aneurysm Repair in Octogenarians: Outcomes and Predictors. European Journal of Vascular and Endovascular Surgery, 2006, 31, 464-469.	1.5	13
172	Extended right pneumonectomy with partial left atrial resection for primary leiomyosarcoma of the mediastinum. Journal of Thoracic and Cardiovascular Surgery, 2005, 129, 694-695.	0.8	12
173	Electrophysiological properties of mouse bone marrow c-kit cells co-cultured onto neonatal cardiac myocytes. Cardiovascular Research, 2005, 66, 482-492.	3.8	41
174	Exogenous High-Mobility Group Box 1 Protein Induces Myocardial Regeneration After Infarction via Enhanced Cardiac C-Kit ⁺ Cell Proliferation and Differentiation. Circulation Research, 2005, 97, e73-83.	4.5	256
175	An unusual case of large left ventricular aneurysm: Complementary role of echocardiography and multidetector computed tomography in surgical planning. European Journal of Radiology Extra, 2005, 54, 51-54.	0.1	5
176	Invited commentary. Annals of Thoracic Surgery, 2005, 80, 1351-1352.	1.3	0
177	Long-lasting improvement of myocardial perfusion and chronic refractory angina after autologous intramyocardial PBSC transplantation. Cytotherapy, 2005, 7, 494-496.	0.7	6
178	Hypoxia Inhibits Myogenic Differentiation through Accelerated MyoD Degradation. Journal of Biological Chemistry, 2004, 279, 16332-16338.	3.4	130
179	Autologous Peripheral Blood Stem Cell Transplantation for Myocardial Regeneration: A Novel Strategy for Cell Collection and Surgical Injection. Annals of Thoracic Surgery, 2004, 78, 1808-1812.	1.3	73
180	Six-year monitoring of the donor-specific immune response to cryopreserved aortic allograft valves: Implications with valve dysfunction. Annals of Thoracic Surgery, 2004, 78, 557-563.	1.3	27

#	Article	IF	CITATIONS
181	Endothelial progenitor cells: a potential versatile tool for the treatment of ischemic cardiomyopathies — a clinician's point of view. International Journal of Cardiology, 2004, 95, S34-S37.	1.7	3
182	Current perceptions of cardiovascular gene therapy. American Journal of Cardiology, 2003, 92, 18-23.	1.6	125
183	Myoendothelial Differentiation of Human Umbilical Cord Blood–Derived Stem Cells in Ischemic Limb Tissues. Circulation Research, 2003, 93, e51-62.	4.5	176
184	1978 Role of SDF-1 in endothelial differentiation of hematopoietic stem cells. European Heart Journal, 2003, 24, 365.	2.2	0
185	Intimal-type primary sarcoma of the thoracic aorta: an unusual case presenting with left arm embolization. European Journal of Cardio-thoracic Surgery, 2002, 21, 574-576.	1.4	18
186	Different Effects of High and Low Shear Stress on Platelet-Derived Growth Factor Isoform Release by Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 405-411.	2.4	61
187	Lack of Association Between Serum Immunoreactivity andChlamydia pneumoniaeDetection in the Human Aortic Wall. Circulation, 2002, 106, 2647-2648.	1.6	28
188	Acute effects of 17β-estradiol on left internal mammary graft after coronary artery bypass grafting. Annals of Thoracic Surgery, 2002, 74, 695-699.	1.3	8
189	The human heart: from the heart surgeon's perspective. Vascular, 2001, 9, 313-318.	0.5	Ο
190	Efficacy of off-pump coronary artery bypass grafting in high-risk patients. Annals of Thoracic Surgery, 2001, 71, 1750-1751.	1.3	2
191	Comparison of endothelium-dependent vasoactivity of internal mammary arteries from hypertensive, hypercholesterolemic, and diabetic patients. Annals of Thoracic Surgery, 2001, 72, 1290-1297.	1.3	26
192	Determinants of Early and Late Outcome after Surgery for Type A Aortic Dissection. World Journal of Surgery, 2001, 25, 1500-1506.	1.6	31
193	Adult cardiac surgery outcomes: role of the pump type. European Journal of Cardio-thoracic Surgery, 2000, 18, 575-582.	1.4	29
194	Minimally invasive direct coronary artery bypass grafting: midterm results and quality of life. Annals of Thoracic Surgery, 2000, 70, 456-460.	1.3	23
195	Protectant Activity of Defibrotide in Cardioplegia Followed by IschernialReperfusion Injury in the Isolated Rat Heart. Journal of Cardiac Surgery, 1999, 14, 334-341.	0.7	4
196	Nonembolic Predictors of Stroke Risk in Coronary Artery Bypass Patients. World Journal of Surgery, 1999, 23, 657-663.	1.6	4
197	Quick, simple clamping technique in descending thoracic aortic aneurysm repair. Annals of Thoracic Surgery, 1999, 67, 1038-1043.	1.3	55
198	Long-term survival after aortic valve replacement for native active infective endocarditis. Vascular, 1998, 6, 126-132.	0.5	18

#	Article	IF	CITATIONS
199	Endothelial-Dependent Dynamic and Antithrombotic Properties of Porcine Aortic and Pulmonary Valves. Annals of Thoracic Surgery, 1998, 65, 986-992.	1.3	24
200	Effects of Warm Ischemia on Valve Endothelium. Annals of Thoracic Surgery, 1997, 63, 656-662.	1.3	5
201	Retention of endothelium-dependent properties in human mammary arteries after cryopreservation. Annals of Thoracic Surgery, 1996, 61, 667-673.	1.3	15
202	Revascularization of the circumflex artery with the pedicled right internal thoracic artery: Clinical functional and angiographic midterm results. Journal of Thoracic and Cardiovascular Surgery, 1995, 110, 1338-1343.	0.8	33
203	Ectopic Thyroid Tissue in the Ventricular Outflow Tract: Embryologic Implications. Cardiology, 1995, 86, 524-526.	1.4	24
204	False hydatic aneurysm of the thoracic aorta. Annals of Thoracic Surgery, 1995, 59, 524-525.	1.3	15
205	"Thinning-Down Phenomenon―and vasomotor adaptability of the inferior epigastric artery graft. Annals of Thoracic Surgery, 1995, 59, 1231-1233.	1.3	4
206	Prostacyclin production by different human grafts employed in coronary operations. Annals of Thoracic Surgery, 1994, 57, 1147-1150.	1.3	13
207	Intracardiac ectopic thyroid: Conservative surgical treatment. Annals of Thoracic Surgery, 1993, 55, 1249-1251.	1.3	8
208	Protectant Activity of Defibrotide in Cardioplegia Followed by IschernialReperfusion Injury in the Isolated Rat Heart. Echocardiography, 1985, 2, 334-341.	0.9	0
209	Refractory Angina Pectoris: Focus on Cell Therapy. , 0, , .		Ο
210	Altered SDF-1-mediated differentiation of bone marrow-derived endothelial progenitor cells in diabetes mellitus. Journal of Cellular and Molecular Medicine, 0, 13, 3405-3414.	3.6	41
211	Pressure Overload Activates DNA-Damage Response in Cardiac Stromal Cells: A Novel Mechanism Behind Heart Failure With Preserved Ejection Fraction?. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	1