Ben L Phillips

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8416545/publications.pdf

Version: 2024-02-01

142 papers 9,443 citations

41344 49 h-index 91 g-index

153 all docs

153 docs citations

times ranked

153

7850 citing authors

#	Article	IF	CITATIONS
1	Slow and steady wins the race: Spatial and stochastic processes and the failure of suppression gene drives. Molecular Ecology, 2022, 31, 4451-4464.	3.9	9
2	Rapid evolution in predatorâ€free conservation havens and its effects on endangered species recovery. Conservation Biology, 2021, 35, 383-385.	4.7	22
3	No behavioral syndromes or sexâ€specific personality differences in the southern rainforest sunskink (<i>Lampropholis similis</i>). Ethology, 2021, 127, 102-108.	1.1	4
4	No outbreeding depression in a trial of targeted gene flow in an endangered Australian marsupial. Conservation Genetics, 2021, 22, 23-33.	1.5	6
5	Energetic scaling across different host densities and its consequences for pathogen proliferation. Functional Ecology, 2021, 35, 475-484.	3.6	7
6	Effects of learning and adaptation on population viability. Conservation Biology, 2021, 35, 1245-1255.	4.7	6
7	Trophic cascade driven by behavioral fineâ€ŧuning as naÃ⁻ve prey rapidly adjust to a novel predator. Ecology, 2021, 102, e03363.	3.2	15
8	Novel Predators can Elicit Rapid Shifts in Prey Demographics and Behavior. Bulletin of the Ecological Society of America, 2021, 102, e01921.	0.2	0
9	Identifying the most effective behavioural assays and predator cues for quantifying anti-predator responses in mammals: a systematic review protocol. Environmental Evidence, 2021, 10, .	2.7	4
10	Increased rates of dispersal of free-ranging cane toads (Rhinella marina) during their global invasion. Scientific Reports, 2021, 11, 23574.	3.3	9
11	Time since fire is an over-simplified measure of habitat suitability for the New Holland mouse. Journal of Mammalogy, 2020, 101, 476-486.	1.3	2
12	Using Biophysical Models to Improve Survey Efficiency for Cryptic Ectotherms. Journal of Wildlife Management, 2020, 84, 1185-1195.	1.8	9
13	Training fails to elicit behavioral change in a marsupial suffering evolutionary loss of antipredator behaviors. Journal of Mammalogy, 2020, 101, 1108-1116.	1.3	8
14	Evolution Transforms Pushed Waves into Pulled Waves. American Naturalist, 2020, 195, E87-E99.	2.1	20
15	Targeted gene flow and rapid adaptation in an endangered marsupial. Conservation Biology, 2019, 33, 112-121.	4.7	31
16	Heritability of climate-relevant traits in a rainforest skink. Heredity, 2019, 122, 41-52.	2.6	30
17	Forecasting species range dynamics with processâ€explicit models: matching methods to applications. Ecology Letters, 2019, 22, 1940-1956.	6.4	144
18	Bias averted: personality may not influence trappability. Behavioral Ecology and Sociobiology, 2019, 73, 1.	1.4	15

#	Article	IF	Citations
19	May the (selective) force be with you: Spatial sorting and natural selection exert opposing forces on limb length in an invasive amphibian. Journal of Evolutionary Biology, 2019, 32, 994-1001.	1.7	25
20	Accounting for detectability and abundance in survey design for a declining species. Diversity and Distributions, 2019, 25, 1655-1665.	4.1	14
21	The Potential for Rapid Evolution under Anthropogenic Climate Change. Current Biology, 2019, 29, R996-R1007.	3.9	78
22	Bangers and cash: Baiting efficiency in a heterogeneous population. Wildlife Society Bulletin, 2019, 43, 669-677.	1.6	5
23	The onâ€ground feasibility of a waterless barrier to stop the spread of invasive cane toads in Western Australia. Conservation Science and Practice, 2019, 1, e74.	2.0	8
24	Can pathogens optimize both transmission and dispersal by exploiting sexual dimorphism in their hosts?Â. Biology Letters, 2019, 15, 20190180.	2.3	7
25	Whispers on the wind: male cane toads modify mate searching and amplexus tactics based on calls from other males. Animal Behaviour, 2019, 153, 131-136.	1.9	2
26	Spatial sorting as the spatial analogue of natural selection. Theoretical Ecology, 2019, 12, 155-163.	1.0	56
27	Clipping the Tail Fin Enables Cohort Identification of Small Anuran Tadpoles. Copeia, 2019, 107, 71.	1.3	4
28	Infection in patchy populations: Contrasting pathogen invasion success and dispersal at varying times since host colonization. Evolution Letters, 2019, 3, 555-566.	3.3	16
29	How many and when? Optimising targeted gene flow for a step change in the environment. Ecology Letters, 2019, 22, 447-457.	6.4	14
30	Anywhere but here: local conditions motivate dispersal in <i>Daphnia</i> . PeerJ, 2019, 7, e6599.	2.0	2
31	Invasion history alters the behavioural consequences of immune system activation in cane toads. Journal of Animal Ecology, 2018, 87, 716-726.	2.8	10
32	Behavioural responses of an Australian colubrid snake (Dendrelaphis punctulatus) to a novel toxic prey item (the Cane Toad Rhinella marina). Biological Invasions, 2018, 20, 2507-2516.	2.4	2
33	The impact of parasites during range expansion of an invasive gecko. Parasitology, 2018, 145, 1400-1409.	1.5	16
34	Adjusting to climate: Acclimation, adaptation and developmental plasticity in physiological traits of a tropical rainforest lizard. Integrative Zoology, 2018, 13, 411-427.	2.6	41
35	Not such silly sausages: Evidence suggests northern quolls exhibit aversion to toads after training with toad sausages. Austral Ecology, 2018, 43, 592-601.	1.5	26
36	Out of the frying pan: Reintroduction of toadâ€smart northern quolls to southern Kakadu National Park. Austral Ecology, 2018, 43, 139-149.	1.5	43

#	Article	IF	CITATIONS
37	Using connectivity to identify climatic drivers of local adaptation. Ecology Letters, 2018, 21, 207-216.	6.4	15
38	Exploring mechanisms and origins of reduced dispersal in island Komodo dragons. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181829.	2.6	18
39	Taste overshadows less salient cues to elicit food aversion in endangered marsupial. Applied Animal Behaviour Science, 2018, 209, 83-87.	1.9	4
40	The perils of paradise: an endangered species conserved on an island loses antipredator behaviours within 13 generations. Biology Letters, 2018, 14, 20180222.	2.3	78
41	New Weapons in the Toad Toolkit: A Review of Methods to Control and Mitigate the Biodiversity Impacts of Invasive Cane Toads (<i>Rhinella Marina</i>). Quarterly Review of Biology, 2017, 92, 123-149.	0.1	74
42	Vertical (arboreality) and horizontal (dispersal) movement increase the resilience of vertebrates to climatic instability. Global Ecology and Biogeography, 2017, 26, 787-798.	5. 8	40
43	Living on the Edge: Parasite Prevalence Changes Dramatically across a Range Edge in an Invasive Gecko. American Naturalist, 2017, 189, 178-183.	2.1	19
44	Cost and feasibility of a barrier to halt the spread of invasive cane toads in arid <scp>A</scp> ustralia: incorporating expert knowledge into modelâ€based decisionâ€making. Journal of Applied Ecology, 2017, 54, 216-224.	4.0	20
45	Thermoregulatory behaviour explains countergradient variation in the upper thermal limit of a rainforest skink. Oikos, 2017, 126, 748-757.	2.7	32
46	Going feral: Time and propagule pressure determine range expansion of Asian house geckos into natural environments. Austral Ecology, 2017, 42, 165-175.	1.5	14
47	Get smart: native mammal develops toad-smart behavior in response to a toxic invader. Behavioral Ecology, 2017, 28, 854-858.	2.2	23
48	Peripheral Isolates as Sources of Adaptive Diversity under Climate Change. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	35
49	Heat hardening in a tropical lizard: geographic variation explained by the predictability and variance in environmental temperatures. Functional Ecology, 2016, 30, 1161-1168.	3.6	71
50	Behaviour on Invasion Fronts, and the Behaviour of Invasion Fronts., 2016,, 82-95.		2
51	After the games are over: lifeâ€history tradeâ€offs drive dispersal attenuation following range expansion. Ecology and Evolution, 2016, 6, 6425-6434.	1.9	21
52	Targeted gene flow for conservation. Conservation Biology, 2016, 30, 259-267.	4.7	69
53	Intraspecific variation in climateâ€relevant traits in a tropical rainforest lizard. Diversity and Distributions, 2016, 22, 1000-1012.	4.1	36
54	The genetic backburn: using rapid evolution to halt invasions. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20153037.	2.6	15

#	Article	IF	CITATIONS
55	Virgins in the vanguard: low reproductive frequency in invasion-front cane toads. Biological Journal of the Linnean Society, 2015, 116, 743-747.	1.6	52
56	Stress and immunity at the invasion front: a comparison across cane toad (<i>Rhinella marina</i> populations. Biological Journal of the Linnean Society, 2015, 116, 748-760.	1.6	46
57	Evolutionary processes make invasion speed difficult to predict. Biological Invasions, 2015, 17, 1949-1960.	2.4	46
58	Identifying the time scale of synchronous movement: a study on tropical snakes. Movement Ecology, 2015, 3, 12.	2.8	2
59	Chemoreception and mating behaviour of a tropical Australian skink. Acta Ethologica, 2015, 18, 283-293.	0.9	7
60	The capacity of refugia for conservation planning under climate change. Frontiers in Ecology and the Environment, 2015, 13, 106-112.	4.0	229
61	Spatial Sorting Unlikely to Promote Maladaptive Hybridization: Response to Lowe, Muhlfeld, and Allendorf. Trends in Ecology and Evolution, 2015, 30, 564-565.	8.7	1
62	Directional dispersal has not evolved during the cane toad invasion. Functional Ecology, 2015, 29, 830-838.	3.6	11
63	Invader immunology: invasion history alters immune system function in cane toads (<i>Rhinella) Tj ETQq1 1 0.78</i>	34314 rgBT 6.4	- Qyerlock 1
64	Unwelcome and unpredictable: the sorry saga of cane toads in Australia., 2014, , 83-104.		3
65	Stability of the wMel Wolbachia Infection following Invasion into Aedes aegypti Populations. PLoS Neglected Tropical Diseases, 2014, 8, e3115.	3.0	261
66	Do evolutionary constraints on thermal performance manifest at different organizational scales?. Journal of Evolutionary Biology, 2014, 27, 2687-2694.	1.7	34
67	Characteristics of climate change refugia for Australian biodiversity. Austral Ecology, 2014, 39, 887-897.	1.5	85
68	The straight and narrow path: the evolution of straight-line dispersal at a cane toad invasion front. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141385.	2.6	81
69	Behavioural responses of reptile predators to invasive cane toads in tropical Australia. Austral Ecology, 2014, 39, 448-454.	1.5	17
70	Asplenium bird's nest ferns in rainforest canopies are climate-contingent refuges for frogs. Global Ecology and Conservation, 2014, 2, 37-46.	2.1	30
71	Stepping inside the niche: microclimate data are critical for accurate assessment of species' vulnerability to climate change. Biology Letters, 2014, 10, 20140576.	2.3	52
72	After the crash: How do predators adjust following the invasion of a novel toxic prey type?. Austral Ecology, 2014, 39, 190-197.	1.5	24

#	Article	IF	Citations
73	Evolution of dispersal and life history interact to drive accelerating spread of an invasive species. Ecology Letters, 2013, 16, 1079-1087.	6.4	172
74	Rapid shifts in dispersal behavior on an expanding range edge. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13452-13456.	7.1	121
75	Do pathogens become more virulent as they spread? Evidence from the amphibian declines in Central America. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131290.	2.6	42
76	Identifying optimal barriers to halt the invasion of cane toads <i><scp>R</scp>hinella marina</i> in arid <scp>A</scp> ustralia. Journal of Applied Ecology, 2013, 50, 129-137.	4.0	49
77	Road transect surveys do not reveal any consistent effects of a toxic invasive species on tropical reptiles. Biological Invasions, 2013, 15, 1005-1015.	2.4	10
78	Improved spatial estimates of climate predict patchier species distributions. Diversity and Distributions, 2013, 19, 1106-1113.	4.1	36
79	Increasing arboreality with altitude: a novel biogeographic dimension. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131581.	2.6	99
80	Cane toads lack physiological enhancements for dispersal at the invasive front in Northern Australia. Biology Open, 2012, 1, 37-42.	1.2	14
81	There Is No Evidence for a Temporal Link between Pathogen Arrival and Frog Extinctions in North-Eastern Australia. PLoS ONE, 2012, 7, e52502.	2.5	8
82	Risky movement increases the rate of range expansion. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1194-1202.	2.6	42
83	Reduced investment in immune function in invasion-front populations of the cane toad (Rhinella) Tj ETQq $1\ 1\ 0.7$	784314 rg	BT Qverlock
84	Range shift promotes the formation of stable range edges. Journal of Biogeography, 2012, 39, 153-161.	3.0	37
85	Do dingoes suppress the activity of feral cats in northern Australia?. Austral Ecology, 2012, 37, 134-139.	1.5	74
86	The role of behavioural variation in the invasion of new areas. , 2012, , 190-200.		19
87	Fire History from Life-History: Determining the Fire Regime that a Plant Community Is Adapted Using Life-Histories. PLoS ONE, 2012, 7, e31544.	2.5	5
88	The ecological impact of invasive cane toads on tropical snakes: Field data do not support laboratory-based predictions. Ecology, 2011, 92, 422-431.	3.2	55
89	Adaptation or preadaptation: why are keelback snakes (Tropidonophis mairii) less vulnerable to invasive cane toads (Bufo marinus) than are other Australian snakes?. Evolutionary Ecology, 2011, 25, 13-24.	1.2	34
90	An evolutionary process that assembles phenotypes through space rather than through time. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5708-5711.	7.1	455

#	Article	IF	CITATIONS
91	Reply to Lee: Spatial sorting, assortative mating, and natural selection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, .	7.1	9
92	Establishment Success of Introduced Amphibians Increases in the Presence of Congeneric Species. American Naturalist, 2011, 177, 382-388.	2.1	45
93	Locomotor performance in an invasive species: cane toads from the invasion front have greater endurance, but not speed, compared to conspecifics from a long-colonised area. Oecologia, 2010, 162, 343-348.	2.0	125
94	Predator behaviour and morphology mediates the impact of an invasive species: cane toads and death adders in Australia. Animal Conservation, 2010, 13, 53-59.	2.9	90
95	An invasive species imposes selection on life-history traits of a native frog. Biological Journal of the Linnean Society, 2010, 100, 329-336.	1.6	16
96	Tradeâ€offs and the evolution of lifeâ€histories during range expansion. Ecology Letters, 2010, 13, 1210-1220.	6.4	355
97	The frog filter: amphibian introduction bias driven by taxonomy, body size and biogeography. Global Ecology and Biogeography, 2010, 19, 496-503.	5. 8	44
98	Evolutionarily accelerated invasions: the rate of dispersal evolves upwards during the range advance of cane toads. Journal of Evolutionary Biology, 2010, 23, 2595-2601.	1.7	164
99	Adjusting to a toxic invader: native Australian frogs learn not to prey on cane toads. Behavioral Ecology, 2010, 21, 966-971.	2.2	56
100	Turgid female toads give males the slip: a new mechanism of female mate choice in the Anura. Biology Letters, 2010, 6, 322-324.	2.3	17
101	Parasites and pathogens lag behind their host during periods of host range advance. Ecology, 2010, 91, 872-881.	3. 2	182
102	Lifeâ€history evolution in rangeâ€shifting populations. Ecology, 2010, 91, 1617-1627.	3.2	342
103	Comparisons through time and space suggest rapid evolution of dispersal behaviour in an invasive species. Wildlife Research, 2009, 36, 23.	1.4	127
104	Fatal attraction: adaptations to prey on native frogs imperil snakes after invasion of toxic toads. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2813-2818.	2.6	28
105	The evolution of growth rates on an expanding range edge. Biology Letters, 2009, 5, 802-804.	2.3	137
106	The evolution of an â€~intelligent' dispersal strategy: biased, correlated random walks in patchy landscapes. Oikos, 2009, 118, 309-319.	2.7	86
107	Sublethal costs associated with the consumption of toxic prey by snakes. Austral Ecology, 2009, 34, 179-184.	1.5	21
108	Identification and dynamics of a cryptic suture zone in tropical rainforest. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1235-1244.	2.6	141

#	Article	IF	Citations
109	Does desiccation risk drive the distribution of juvenile cane toads (<i>Bufo marinus</i>) in tropical Australia?. Journal of Tropical Ecology, 2009, 25, 193-200.	1.1	25
110	Abiotic and biotic influences on the dispersal behavior of metamorph cane toads (<i>Bufo) Tj ETQq0 0 0 rgBT /Ov</i>	erlock 10 ⁻ 1.2	Tf ₃₅ 0 702 Td
111	Modelling species distributions without using species distributions: the cane toad in Australia under current and future climates. Ecography, 2008, 31, 423-434.	4.5	305
112	Tails of enticement: caudal luring by an ambushâ€foraging snake (<i>Acanthophis praelongus</i> ,) Tj ETQq0 0 0 r	rgBT /Over	lock 10 Tf 50
113	The spatial ecology of cane toads (<i>Bufo marinus</i>) in tropical Australia: Why do metamorph toads stay near the water?. Austral Ecology, 2008, 33, 630-640.	1.5	51
114	A native dasyurid predator (common planigale, <i>Planigale maculata</i>) rapidly learns to avoid a toxic invader. Austral Ecology, 2008, 33, 821-829.	1.5	94
115	Reid's Paradox Revisited: The Evolution of Dispersal Kernels during Range Expansion. American Naturalist, 2008, 172, S34-S48.	2.1	213
116	A Toad More Traveled: The Heterogeneous Invasion Dynamics of Cane Toads in Australia. American Naturalist, 2008, 171, E134-E148.	2.1	216
117	The toad ahead: challenges of modelling the range and spread of an invasive species. Wildlife Research, 2008, 35, 222.	1.4	51
118	The cane toad's (Chaunus [Bufo] marinus) increasing ability to invade Australia is revealed by a dynamically updated range model. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1413-1419.	2.6	227
119	When Dinner Is Dangerous: Toxic Frogs Elicit Speciesâ€Specific Responses from a Generalist Snake Predator. American Naturalist, 2007, 170, 936-942.	2.1	22
120	Invasion, stress, and spinal arthritis in cane toads. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17698-17700.	7.1	84
121	Rapid expansion of the cane toad (Bufo marinus) invasion front in tropical Australia. Austral Ecology, 2007, 32, 169-176.	1.5	190
122	Do invasive cane toads (<i>Chaunus marinus</i>) compete with Australian frogs (<i>Cyclorana) Tj ETQq0 0 0 rgB</i>	T /Qverloc	k 10 Tf 50 22
123	Spatial and temporal variation in the morphology (and thus, predicted impact) of an invasive species in Australia. Ecography, 2006, 29, 205-212.	4. 5	24
124	Toad on the road: Use of roads as dispersal corridors by cane toads (Bufo marinus) at an invasion front in tropical Australia. Biological Conservation, 2006, 133, 88-94.	4.1	148
125	Toxic tucker: the potential impact of Cane Toads on Australian reptiles. Pacific Conservation Biology, 2006, 12, 40.	1.0	75
126	Allometry and selection in a novel predator-prey system: Australian snakes and the invading cane toad. Oikos, 2006, 112, 122-130.	2.7	56

#	Article	IF	CITATIONS
127	Effects of an invasive anuran [the cane toad (Bufo marinus)] on the invertebrate fauna of a tropical Australian floodplain. Animal Conservation, 2006, 9, 431-438.	2.9	61
128	Invasion and the evolution of speed in toads. Nature, 2006, 439, 803-803.	27.8	742
129	An invasive species induces rapid adaptive change in a native predator: cane toads and black snakes in Australia. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1545-1550.	2.6	195
130	The morphology, and hence impact, of an invasive species (the cane toad, Bufo marinus): changes with time since colonisation. Animal Conservation, 2005, 8, 407-413.	2.9	60
131	WHEN VICARS MEET: A NARROW CONTACT ZONE BETWEEN MORPHOLOGICALLY CRYPTIC PHYLOGEOGRAPHIC LINEAGES OF THE RAINFOREST SKINK, CARLIA RUBRIGULARIS. Evolution; International Journal of Organic Evolution, 2004, 58, 1536.	2.3	4
132	Mechanisms and consequences of sexual conflict in garter snakes (Thamnophis sirtalis, Colubridae). Behavioral Ecology, 2004, 15, 654-660.	2.2	49
133	Adapting to an invasive species: Toxic cane toads induce morphological change in Australian snakes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17150-17155.	7.1	238
134	Single copy nuclear DNA markers characterized for comparative phylogeography in Australian wet tropics rainforest skinks. Molecular Ecology Notes, 2004, 4, 185-187.	1.7	47
135	WHEN VICARS MEET: A NARROW CONTACT ZONE BETWEEN MORPHOLOGICALLY CRYPTIC PHYLOGEOGRAPHIC LINEAGES OF THE RAINFOREST SKINK, CARLIA RUBRIGULARIS. Evolution; International Journal of Organic Evolution, 2004, 58, 1536-1548.	2.3	98
136	Species-isolating mechanisms in a mating system with male mate choice (garter snakes, Thamnophis) Tj ETQq0 () 0 rgBT /C)verlock 10 T
137	The lexicon of love: what cues cause size-assortative courtship by male garter snakes?. Behavioral Ecology and Sociobiology, 2003, 53, 234-237.	1.4	39
138	Assessing the Potential Impact of Cane Toads on Australian Snakes. Conservation Biology, 2003, 17, 1738-1747.	4.7	173
139	Behavioral shifts associated with reproduction in garter snakes. Behavioral Ecology, 2003, 14, 251-256.	2.2	35
140	Benefits of female mimicry in snakes. Nature, 2001, 414, 267-267.	27.8	82
141	Selection on a single trait does not recapitulate the evolution of life-history traits seen during an invasion. Peer Community in Evolutionary Biology, 0, , 100096.	0.0	0
142	Estimating the benefit of quarantine: eradicating invasive cane toads from islands. NeoBiota, 0, 60, 117-136.	1.0	7