Jiang Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8416510/publications.pdf

Version: 2024-02-01

193 papers

8,704 citations

53 h-index 81 g-index

206 all docs

206 docs citations

206 times ranked 5650 citing authors

#	Article	IF	CITATIONS
1	The silver-mediated annulation of arylcarbamic acids and nitrosoarenes toward phenazines. Tetrahedron Letters, 2022, 88, 153550.	1.4	1
2	Recent Progress in the Synthesis of 2-Benzofuran-1(3 <i>H</i>)-one. Chinese Journal of Organic Chemistry, 2022, 42, 1085.	1.3	3
3	The intramolecular reaction of acetophenone <i>N</i> tosylhydrazone and vinyl: Brønsted acid-promoted cationic cyclization toward polysubstituted indenes. Chemical Communications, 2021, 57, 1810-1813.	4.1	5
4	Recent advances in the Rh-catalyzed cascade arene Câ€"H bond activation/annulation toward diverse heterocyclic compounds. Organic and Biomolecular Chemistry, 2021, 19, 1705-1721.	2.8	37
5	Vinylene carbonate: beyond the ethyne surrogate in rhodium-catalyzed annulation with amidines toward 4-methylquinazolines. Chemical Communications, 2021, 57, 3929-3932.	4.1	38
6	Application of combined cyanide sources in cyanation reactions. Organic and Biomolecular Chemistry, 2021, 19, 8646-8655.	2.8	13
7	Photoredox-Catalyzed α-Aminomethyl Carboxylation of Styrenes with Sodium Glycinates: Synthesis of γ-Amino Acids and γ-Lactams. Organic Letters, 2021, 23, 2895-2899.	4.6	29
8	Cyanoalkylation/alkynylation of allylic alcohol through intramolecular radical 1,2-alkynyl migration. Organic and Biomolecular Chemistry, 2021, 19, 2416-2419.	2.8	8
9	Iridium-Catalyzed Redox-Neutral C2 and C3 Dual C–H Functionalization of Indoles with Nitrones toward 7 <i>H</i> Indolo[2,3- <i>C</i>]quinolines. Organic Letters, 2021, 23, 8229-8234.	4.6	9
10	Visible-Light Photoredox-Catalyzed Dicarbofunctionalization of Styrenes with Oxime Esters and CO sub>2/sub>: Multicomponent Reactions toward Cyanocarboxylic Acids and \hat{I}^3 -Keto Acids. Organic Letters, 2021, 23, 9654-9658.	4.6	15
11	Alkylarylation of N-allylbenzamides and N-allylanilines with simple ethers for the direct construction of ether substituted dihydroisoquinolinones and indolines. Organic and Biomolecular Chemistry, 2020, 18, 650-654.	2.8	6
12	Rhodium-catalyzed [4+1] annulation of sulfoxonium ylides: Sequential ortho-C H functionalization/carbonyl \hat{l}_{\pm} -amination toward polycyclic quinazolinones. Tetrahedron Letters, 2020, 61, 152441.	1.4	15
13	Iron-catalyzed radical cascade 6- <i>endo</i> cyclization of dienes towards fused nitrogen heterocycles initiated by an alkoxycarbonyl radical. Organic and Biomolecular Chemistry, 2020, 18, 7086-7089.	2.8	5
14	Rhodium-catalyzed Câ€"H activation/annulation of salicylaldehyde with 4-diazoisochroman-3-imines toward 5H,12H-isochromeno[3,4â€"b]chromen-12-one. Tetrahedron Letters, 2020, 61, 152387.	1.4	6
15	Rh(<scp>iii</scp>)-Catalyzed sequential <i>ortho</i> -Câ€"H oxidative arylation/cyclization of sulfoxonium ylides with quinones toward 2-hydroxy-dibenzo[<i>b,d</i>]pyran-6-ones. Chemical Communications, 2020, 56, 6688-6691.	4.1	35
16	Recent Progress in the Carboxylation/Cyclization Reactions Using Carbon Dioxide as the C1 Source. Chinese Journal of Organic Chemistry, 2020, 40, 2221.	1.3	25
17	Visible-Light-Driven Palladium-Catalyzed Oxy-Alkylation of 2-(1-Arylvinyl)anilines by Unactivated Alkyl Bromides and CO ₂ : Multicomponent Reactions toward 1,4-Dihydro-2 <i>H</i> -3,1-benzoxazin-2-ones. Organic Letters, 2019, 21, 6579-6583.	4.6	51
18	The Silver-Promoted Phosphonation/Alkynylation of Alkene Proceeding with Radical 1,2-Alkynyl Migration. Journal of Organic Chemistry, 2019, 84, 11177-11185.	3.2	17

#	Article	IF	CITATIONS
19	Rhodium-Catalyzed Reaction of Sulfoxonium Ylides and Anthranils toward Indoloindolones via a (4 +) Tj $ETQq1\ 1$	0.784314	rgBT /Overl
20	Synthesis of 4-cyanoethylated benzoxazines by visible-light-promoted radical oxycyanomethylation of olefinic amides with bromoacetonitrile. Tetrahedron Letters, 2019, 60, 150926.	1.4	7
21	Copper-catalyzed acylation of pyrazolones with aldehydes to afford 4-acylpyrazolones. Organic and Biomolecular Chemistry, 2019, 17, 7552-7557.	2.8	10
22	Copper-Catalyzed Cascade Denitrogenative Transannulation/Hydrolyzation of 3-Aminoindazoles toward 2,2-Disubstituted Indanones. Journal of Organic Chemistry, 2019, 84, 15669-15676.	3.2	12
23	Recent Advances in the Synthesis of Acridines and Phenazines. Synlett, 2019, 30, 2113-2122.	1.8	11
24	Rhodium-catalyzed Câ€"H activation/annulation of amidines with 4-diazoisochroman-3-imines toward isochromeno[3,4- <i>c</i>) isoquinolines. Organic and Biomolecular Chemistry, 2019, 17, 8417-8424.	2.8	24
25	Recent Advances in the Synthesis of Thiadiazoles. Synlett, 2019, 30, 2041-2050.	1.8	7
26	Oxidative tandem annulation of 1-(2-ethynylaryl)prop-2-en-1-ones catalyzed by cooperative iodine and TBHP. Chemical Communications, 2019, 55, 667-670.	4.1	23
27	The Reaction of o â€Aminoacetophenone N â€Tosylhydrazone and CO 2 toward 1,4â€Dihydroâ€2 H â€3,1â€benzoxazinâ€2â€ones. Advanced Synthesis and Catalysis, 2019, 361, 3538-3542.	4.3	17
28	Rhodium-Catalyzed Reaction of Azobenzenes and Nitrosoarenes toward Phenazines. Organic Letters, 2019, 21, 2565-2568.	4.6	20
29	Rhodium(III)-catalyzed direct C-7 sulfonamidation and amination of indolines with arylsulfonamides and trifluoroacetamide. Tetrahedron Letters, 2019, 60, 1349-1352.	1.4	10
30	Palladium/copper-catalyzed multicomponent reactions of propargylic amides, halohydrocarbons and CO ₂ toward functionalized oxazolidine-2,4-diones. Chemical Communications, 2019, 55, 13685-13688.	4.1	18
31	Copper-Mediated Direct Cyanation of Heteroarene and Arene C–H Bonds by the Combination of Ammonium and DMF. Organic Letters, 2019, 21, 9919-9923.	4.6	32
32	Recent Applications of α-Carbonyl Sulfoxonium Ylides in Rhodium- and Iridium-Catalyzed C–H Functionalizations. Synlett, 2019, 30, 21-29.	1.8	84
33	Rhodium-Catalyzed Relay Carbenoid Functionalization of Aromatic C–H Bonds toward Fused Heteroarenes. Organic Letters, 2018, 20, 1396-1399.	4.6	133
34	Metal-free oxidative decarbonylative alkylation of chromones using aliphatic aldehydes. Organic and Biomolecular Chemistry, 2018, 16, 3568-3571.	2.8	9
35	Site-specific hydroxyalkylation of chromones via alcohol mediated Minisci-type radical conjugate addition. Organic and Biomolecular Chemistry, 2018, 16, 1823-1827.	2.8	19
36	Palladium-catalyzed cyclizative carbonylation of azobenzenes toward 3H-Indazol-3-ones using formic acid as CO source. Tetrahedron Letters, 2018, 59, 1069-1072.	1.4	8

#	Article	IF	CITATIONS
37	Synthesis of Aromatic Sulfonamides through a Copper-Catalyzed Coupling of Aryldiazonium Tetrafluoroborates, DABCO·(SO ₂) ₂ , and <i>N</i> -Chloroamines. Organic Letters, 2018, 20, 1167-1170.	4.6	66
38	Rhâ€Catalyzed Annulation of <i>ortho</i> â€Câ^'H Bonds of 2â€Arylimidazoles with 1,4,2â€Dioxazolâ€5â€ones toward 5â€Arylimidazo[1,2â€ <i>c</i>) quinazolines. Advanced Synthesis and Catalysis, 2018, 360, 1111-1115.	4.3	30
39	Radical rearrangement of <i>N</i> -sulfonyl- <i>N</i> -aryl propynamides: proceeding with homolytic N–SO ₂ bond cleavage and 6- <i>endo-dig</i> cyclization toward 3-sulfonyl-2(1 <i>H</i>)-quinolinones. Organic Chemistry Frontiers, 2018, 5, 958-961.	4.5	12
40	Palladium-catalyzed CO-free cyclizative carbonylation of 2-benzylpyridines leading to pyridoisoquinolinones. Organic Chemistry Frontiers, 2018, 5, 962-966.	4.5	23
41	Rh(III)-catalyzed [4 + 1]-annulation of azobenzenes with α- carbonyl sulfoxonium ylides toward 3-acyl-(2H)-indazoles. Tetrahedron Letters, 2018, 59, 2284-2287.	1.4	36
42	Generation of sulfonated 1-isoindolinones through a multicomponent reaction with the insertion of sulfur dioxide. Chemical Communications, 2018, 54, 3891-3894.	4.1	57
43	Rh(<scp>iii</scp>)-Catalyzed dual C–H functionalization of 3-(1 <i>H</i> indol-3-yl)-3-oxopropanenitriles with sulfoxonium ylides or diazo compounds toward polysubstituted carbazoles. Organic and Biomolecular Chemistry, 2018, 16, 8715-8718.	2.8	22
44	Benzylic C(sp ³)â€"H bond sulfonylation of 4-methylphenols with the insertion of sulfur dioxide under photocatalysis. Chemical Communications, 2018, 54, 11172-11175.	4.1	60
45	Cp*Rh(iii)-catalyzed annulation of N-methoxybenzamide with 1,4,2-bisoxazol-5-one toward 2-aryl quinazolin-4(3H)-one derivatives. Organic Chemistry Frontiers, 2018, 5, 2880-2884.	4.5	20
46	Photocatalytic Reaction of Potassium Alkyltrifluoroborates and Sulfur Dioxide with Alkenes. Organic Letters, 2018, 20, 3605-3608.	4.6	67
47	Rhodium-Catalyzed Annulation of 2-Arylimidazoles and α-Aroyl Sulfoxonium Ylides toward 5-Arylimidazo[2,1-a]isoquinolines. Synthesis, 2018, 50, 3487-3492.	2.3	39
48	Copper-catalyzed radical Heck type cyclization: a three-component reaction of DABCO·(SO ₂) ₂ , aryldiazonium tetrafluoroborates and dienes toward sulfonated benzo- seven-membered nitrogen heterocycles. Organic Chemistry Frontiers, 2018, 5, 2547-2551.	4.5	44
49	1,2-Diarylation of alkenes with aryldiazonium salts and arenes enabled by visible light photoredox catalysis. Chemical Communications, 2018, 54, 8745-8748.	4.1	60
50	Recent advances in the sulfonylation of alkenes with the insertion of sulfur dioxide <i>via</i> radical reactions. Chemical Communications, 2018, 54, 10405-10414.	4.1	184
51	C–H bond sulfonylation of anilines with the insertion of sulfur dioxide under metal-free conditions. Chemical Communications, 2018, 54, 7459-7462.	4.1	53
52	The n-dig-Cyclization (n = 5, 6) of Alkynes Involving Fixation of CO2. Synlett, 2018, 29, 1814-1822.	1.8	5
53	Carbon annulation of ortho-vinylanilines with dimethyl sulfoxide to access 4-aryl quinolines. Organic and Biomolecular Chemistry, 2017, 15, 1334-1337.	2.8	39
54	Palladium-Catalyzed Arylcarboxylation of Propargylic Alcohols with CO ₂ and Aryl Halides: Access to Functionalized α-Alkylidene Cyclic Carbonates. Organic Letters, 2017, 19, 1088-1091.	4.6	59

#	Article	lF	CITATIONS
55	Functionalization of Cyclohexane Derivatives via Oxidative Radical Pathway. Chinese Journal of Chemistry, 2017, 35, 289-298.	4.9	15
56	The dearomative annulation between N-2-pyridylamidine and CO ₂ toward pyrido[1,2-a]-1,3,5-triazin-4-ones. Organic and Biomolecular Chemistry, 2017, 15, 4064-4067.	2.8	9
57	1,2-Arylalkylation of N-(arylsulfonyl)acrylamides using aliphatic aldehydes as the alkyl source. Organic and Biomolecular Chemistry, 2017, 15, 5476-5479.	2.8	17
58	Rh(<scp>iii</scp>)-Catalyzed bilateral cyclization of aldehydes with nitrosos toward unsymmetrical acridines proceeding with C–H functionalization enabled by a transient directing group. Chemical Communications, 2017, 53, 6263-6266.	4.1	49
59	Multicomponent reactions (MCRs) of arylmethyl bromides, arylamidines and elemental sulfur toward unsymmetric 3,5-diaryl 1,2,4-thiadiazoles. Tetrahedron Letters, 2017, 58, 2571-2573.	1.4	20
60	Copper-mediated intramolecular aza-Wacker-type cyclization of 2-alkenylanilines toward 3-aryl indoles. Tetrahedron Letters, 2017, 58, 445-448.	1.4	25
61	Aqueous MCRs of quaternary ammoniums, N-substituted formamides and sodium disulfide towards aryl thioamides. Organic Chemistry Frontiers, 2017, 4, 413-416.	4.5	21
62	Copper-Catalyzed Arylsulfonylation and Cyclizative Carbonation of <i>N</i> -(Arylsulfonyl)acrylamides Involving Desulfonative Arrangement toward Sulfonated Oxindoles. Organic Letters, 2017, 19, 5844-5847.	4.6	91
63	Palladium-catalyzed annulation of 2-(aryldiazenyl) aniline with dimethyl sulfoxide to access N-aryl-1H-benzo[d]imidazol-1-amine. Tetrahedron Letters, 2017, 58, 3875-3878.	1.4	16
64	Palladiumâ€Catalyzed [5+1] Annulation of 2â€(1â€Arylvinyl) Anilines and αâ€Diazocarbonyl Compounds toward Multiâ€functionalized Quinolines. Advanced Synthesis and Catalysis, 2017, 359, 3725-3728.	4.3	29
65	The Baseâ€Promoted Annulation of 2â€Hydrazinyl Pyridine and CO ₂ toward Triazolones. Advanced Synthesis and Catalysis, 2017, 359, 3855-3859.	4.3	14
66	Iridium-catalyzed annulation between 1,2-diarylethanone and 3-aminopropanol toward site-specific 2,3-diaryl pyridines. Tetrahedron Letters, 2017, 58, 3398-3400.	1.4	9
67	Copper-catalyzed radical 1,2-cyclization of indoles with arylsulfonyl hydrazides: access to 2-thiolated 3H-pyrrolo[1,2-a]indoles. Organic Chemistry Frontiers, 2017, 4, 2153-2155.	4.5	32
68	Palladium-Catalyzed Multicomponent Reactions of <i>o</i> -Alkynylanilines, Aryl Iodides, and CO ₂ toward 3,3-Diaryl 2,4-Quinolinediones. Organic Letters, 2017, 19, 4319-4322.	4.6	34
69	Base-promoted formal [4 + 1+1] annulation of aldehyde, N -benzyl amidine and DMSO toward 2,4,6-triaryl pyrimidines. Tetrahedron Letters, 2017, 58, 4783-4785.	1.4	28
70	Palladium-Catalyzed Safe Cyanation of Aryl lodides with Hexamethylenetetramine. Journal of Organic Chemistry, 2017, 82, 12888-12891.	3.2	11
71	Synthesis of 2-Amino-3-hydroxy-3 <i>H</i> -indoles via Palladium-Catalyzed One-Pot Reaction of Isonitriles, Oxygen, and <i>N</i> -Tosylhydrazones Derived from 2-Acylanilines. Journal of Organic Chemistry, 2017, 82, 8267-8272.	3.2	13
72	The Construction of X–CN (X=N, S, O) Bonds. Advanced Synthesis and Catalysis, 2017, 359, 26-38.	4.3	63

#	Article	IF	CITATIONS
73	Copper-mediated annulation of 2-(1-arylvinyl) anilines and aryl nitrosos towards 2,3-diaryl-2H-indazoles. Organic Chemistry Frontiers, 2017, 4, 22-25.	4.5	16
74	Formal $[3+2]$ Reaction of $\hat{i}\pm,\hat{i}\pm$ -Diaryl Allylic Alcohols with <i>sec</i> -Alcohols: Proceeding with Sequential Radical Addition/Migration toward 2,3-Dihydrofurans Bearing Quaternary Carbon Centers. Journal of Organic Chemistry, 2016, 81, 4399-4405.	3.2	35
75	Radical N-arylation/alkylation of sulfoximines. Tetrahedron Letters, 2016, 57, 2372-2374.	1.4	45
76	Copper-catalyzed N-thioetherification of sulfoximines using disulfides. Chemical Communications, 2016, 52, 11908-11911.	4.1	33
77	Multicomponent Coupling Reactions of Two $\langle i \rangle N \langle i \rangle$ -Tosyl Hydrazones and Elemental Sulfur: Selective Denitrogenation Pathway toward Unsymmetric 2,5-Disubstituted 1,3,4-Thiadiazoles. Organic Letters, 2016, 18, 5268-5271.	4.6	46
78	Iron-catalyzed arylmethylation of sulfonyl acrylamides. Tetrahedron Letters, 2016, 57, 4109-4112.	1.4	18
79	Rhodium-Catalyzed Annulation of Primary Benzylamine with α-Diazo Ketone toward Isoquinoline. Journal of Organic Chemistry, 2016, 81, 8009-8013.	3.2	46
80	Iron-Mediated Annulation between Methylene Ketones and Diethanolamines: A Sustainable and Scalable Procedure toward $\langle i \rangle N \langle i \rangle - (2-Hydroxyethyl)$ Pyrroles. Journal of Organic Chemistry, 2016, 81, 9389-9395.	3.2	7
81	Catalyst- and oxidant-free coupling of disulfides with H-phosphine oxide: construction of P–S bond leading to thiophosphinates. Tetrahedron Letters, 2016, 57, 4702-4704.	1.4	11
82	Palladiumâ€Catalyzed Multiâ€Component Reactions of <i>N</i> â€Tosylhydrazones, 2â€Iodoanilines and CO ₂ towards 4â€Arylâ€2â€Quinolinones. Chemistry - A European Journal, 2016, 22, 18729-18732.	3.3	59
83	Iron-Catalyzed Cyclization of Nitrones with Geminal-Substituted Vinyl Acetates: A Direct [4 + 2] Assembly Strategy Leading to 2,4-Disubstituted Quinolines. Journal of Organic Chemistry, 2016, 81, 10825-10831.	3.2	30
84	Peroxide: A Novel Methylating Reagent. Synthesis, 2016, 48, 329-339.	2.3	22
85	TBAI-Catalyzed Reaction between <i>N</i> -Tosylhydrazones and Sulfur: AÂProcedure toward 1,2,3-Thiadiazole. Journal of Organic Chemistry, 2016, 81, 271-275.	3.2	70
86	Cu-Catalyzed Multicomponent Reaction of Styrenes, Perfluoroalkyl Halide, Alcohol, and <i>tert</i> -Butyl Hydroperoxide: One-Pot Synthesis of (<i>Z</i>)- 12 -Alkoxyperfluoroalkenone. Journal of Organic Chemistry, 2016, 81, 3103-3111.	3.2	18
87	Cyanoacetic Acid as a Masked Electrophile: Transitionâ€Metalâ€Free Cyanomethylation of Amines and Carboxylic Acids. Chemistry - A European Journal, 2015, 21, 18333-18337.	3.3	17
88	Silver-Mediated <i>N</i> -Trifluoromethylation of Sulfoximines. Organic Letters, 2015, 17, 3166-3169.	4.6	90
89	Copper-catalyzed oxidative C(sp ³)â€"H/Nâ€"H coupling of sulfoximines and amides with simple alkanes via a radical process. Chemical Communications, 2015, 51, 5902-5905.	4.1	90
90	Iodine-catalyzed ammoxidation of methyl arenes. Chemical Communications, 2015, 51, 5085-5088.	4.1	41

#	Article	IF	CITATIONS
91	Copper-Catalyzed N-Cyanation of Sulfoximines by AIBN. Journal of Organic Chemistry, 2015, 80, 2822-2826.	3.2	64
92	Rhodium-catalyzed hydroarylation of alkynes via tetrazole-directed C–H activation. Organic and Biomolecular Chemistry, 2015, 13, 2901-2904.	2.8	21
93	Cs ₂ CO ₃ -Promoted Carboxylation of <i>N</i> -Tosylhydrazones with Carbon Dioxide toward î±-Arylacrylic Acids. Journal of Organic Chemistry, 2015, 80, 2855-2860.	3.2	24
94	Diethylene Glycol Serving as Ethyne Equivalent: A Sustainable Approach toward 2,3-Disubstituted Furan. Organic Letters, 2015, 17, 3643-3645.	4.6	33
95	Rh-catalyzed sequential oxidative C–H activation/annulation with geminal-substituted vinyl acetates to access isoquinolines. Chemical Communications, 2015, 51, 13327-13329.	4.1	85
96	Copper(I)â€Catalyzed Desulfinative Carboxylation of Sodium Sulfinates using Carbon Dioxide. Advanced Synthesis and Catalysis, 2015, 357, 2022-2026.	4.3	30
97	Rhodium-catalyzed annulation between 2-arylimidazo[1,2-a]pyridines and alkynes leading to pyrido[1,2-a]benzimidazole derivatives. Organic and Biomolecular Chemistry, 2015, 13, 5354-5357.	2.8	38
98	Radical 1,2-aryl migration in $\hat{l}_{\pm},\hat{l}_{\pm}$ -diaryl allylic alcohols toward \hat{l}^2 -silyl ketones. Organic and Biomolecular Chemistry, 2015, 13, 10299-10302.	2.8	44
99	The N-silylation of sulfoximines. Organic and Biomolecular Chemistry, 2015, 13, 10600-10603.	2.8	13
100	Cu-based carbene involved in a radical process: a new crossover reaction to construct \hat{l}^3 -peroxy esters and 1,4-dicarbonyl compounds. Chemical Communications, 2015, 51, 14728-14731.	4.1	62
101	Metal-Free Coupling of 2-Vinylphenols and Carboxylic Acids: An Access to 3-Acyloxy-2,3-dihydrobenzofurans. Journal of Organic Chemistry, 2015, 80, 10734-10741.	3.2	19
102	Copper-catalyzed N-methylation/ethylation of sulfoximines. Organic and Biomolecular Chemistry, 2015, 13, 9934-9937.	2.8	35
103	3-Aza π-allyl palladium derived from imino migration in palladium-carbene: MCRs toward multiple substituted indole skeleton. Chemical Communications, 2015, 51, 14781-14784.	4.1	18
104	Bu4NI-catalyzed direct \hat{l}_{\pm} -oxyacylation of diarylethanones with acyl peroxides. Organic and Biomolecular Chemistry, 2015, 13, 9751-9754.	2.8	24
105	Palladium-catalyzed three-component reaction of N-tosyl hydrazones, isonitriles and amines leading to amidines. Chemical Communications, 2015, 51, 16645-16647.	4.1	45
106	Radical N-cyanation of sulfoximine through acetonitrile CCN cleavage. Tetrahedron Letters, 2015, 56, 7056-7058.	1.4	22
107	Radical–Polar Crossover Reactions: Oxidative Coupling of 1,3-Dioxolanes with Electron-Deficient Alkenes and Vinylarenes Based on a Radical Addition and Kornblum–DeLaMare Rearrangement. Organic Letters, 2014, 16, 6350-6353.	4.6	52
108	BF ₃ ·Et ₂ O-Catalyzed Formal [3 + 2] Reaction of Aziridinofullerenes with Carbonyl Compounds. Journal of Organic Chemistry, 2014, 79, 1487-1492.	3.2	24

#	Article	IF	CITATIONS
109	The Benzoyl Peroxide Promoted Dual C–C Bond Formation via Dual C–H Bond Cleavage: α-Phenanthridinylation of Ether by Isocyanide. Organic Letters, 2014, 16, 2088-2091.	4.6	123
110	Copper-catalyzed oxidative cyclization of chalcone and benzylic amine leading to 2,5-diaryl oxazoles via carbon–carbon double bond cleavage. Tetrahedron, 2014, 70, 1149-1153.	1.9	17
111	Copper-mediated C3-cyanation of indoles by the combination of amine and ammonium. Chemical Communications, 2014, 50, 2315.	4.1	47
112	BF ₃ ·Et ₂ O- or DMAP-Catalyzed Double Nucleophilic Substitution Reaction of Aziridinofullerenes with Sulfamides or Amidines. Journal of Organic Chemistry, 2014, 79, 11744-11749.	3.2	18
113	TBHP-promoted sequential radical silylation and aromatisation of aryl isonitriles with silanes. Chemical Communications, 2014, 50, 10864-10867.	4.1	66
114	The benzoyl peroxide-promoted functionalization of simple alkanes with 2-aryl phenyl isonitrile. Chemical Communications, 2014, 50, 9179.	4.1	90
115	A copper-mediated oxidative N-cyanation reaction. Chemical Communications, 2014, 50, 8412.	4.1	46
116	The Bu4NI-catalyzed alfa-acyloxylation of ketones with benzylic alcohols. Chemical Communications, 2014, 50, 6240.	4.1	82
117	Di- <i>tert</i> -butyl Peroxide-Promoted α-Alkylation of α-Amino Carbonyl Compounds by Simple Alkanes. Journal of Organic Chemistry, 2014, 79, 9847-9853.	3.2	63
118	The carbomethylation of arylacrylamides leading to 3-ethyl-3-substituted indolin-2-one by cascade radical addition/cyclization. Chemical Communications, 2014, 50, 3865.	4.1	103
119	Diâ€ <i>tert</i> Butyl Peroxideâ€Promoted Sequential Methylation and Intramolecular Aromatization of Isonitriles. Advanced Synthesis and Catalysis, 2014, 356, 3341-3346.	4.3	63
120	TBHP-promoted sequential carboxamidation and aromatisation of aryl isonitriles with formamides. Organic and Biomolecular Chemistry, 2014, 12, 9257-9263.	2.8	23
121	Copper-catalyzed cyanation of disulfides by azobisisobutyronitrile leading to thiocyanates. Chemical Communications, 2014, 50, 12139-12141.	4.1	70
122	Rhodium-Catalyzed Direct Annulation of Aldehydes with Alkynes Leading to Indenones: Proceeding through <i>in Situ</i> Directing Group Formation and Removal. Organic Letters, 2013, 15, 4754-4757.	4.6	102
123	Base-Promoted Formal Arylation of Benzo[d]oxazoles with Acyl Chloride. Journal of Organic Chemistry, 2013, 78, 12076-12081.	3.2	35
124	Copper―and Silverâ€Mediated Cyanation of Aryl lodides Using DDQ as Cyanide Source. Chinese Journal of Chemistry, 2013, 31, 449-452.	4.9	17
125	The ammonium-promoted formylation of indoles by DMSO and H2O. Organic and Biomolecular Chemistry, 2013, 11, 7092.	2.8	86
126	Palladium-Catalyzed Cyanation of Aryl Halides with CuSCN. Journal of Organic Chemistry, 2013, 78, 2710-2714.	3.2	77

#	Article	IF	CITATIONS
127	The palladium-catalyzed tandem decarboxylation, carbonâ€"carbon triple bond oxidation and decarbonylative arylation of the benzoxazole Câ€"H bond. RSC Advances, 2013, 3, 9193.	3.6	11
128	Facile Synthesis of Pyrido[2,1-a]isoindoles via Iron-Mediated 2-Arylpyridine C-H Bond Cleavage. Synlett, 2013, 24, e4-e4.	1.8	0
129	Facile Synthesis of Pyrido[2,1-a]isoindoles via Iron-Mediated 2-Arylpyridine C-H Bond Cleavage. Synlett, 2013, 24, 847-850.	1.8	17
130	Copper-Catalyzed Cyanation of Arylboronic Acids Using DDQ as Cyanide Source. Synlett, 2012, 23, 2247-2250.	1.8	21
131	Recent Advances in Transition-Metal-Catalyzed Esterification. Synlett, 2012, 23, 357-366.	1.8	16
132	Transition-Metal-Catalyzed Synthesis of Aromatic Ketones via Direct C-H Bond Activation. Synthesis, 2012, 44, 677-685.	2.3	48
133	Copper(II)-catalyzed <i>ortho</i> -Benzoxylation of 2-Arylpyridines with Sodium Carboxylates. Chemistry Letters, 2012, 41, 600-602.	1.3	26
134	The palladium-catalyzed desulfitative cyanation of arenesulfonyl chlorides and sodium sulfinates. Chemical Communications, 2012, 48, 449-451.	4.1	71
135	The Copperâ€Catalyzed Câ€3â€Formylation of Indole CH Bonds using Tertiary Amines and Molecular Oxygen. Advanced Synthesis and Catalysis, 2012, 354, 2438-2442.	4.3	93
136	Direct arylation of benzoxazole C–H bonds with iodobenzene diacetates. Tetrahedron Letters, 2012, 53, 4588-4590.	1.4	34
137	Copper-mediated methylthiolation of aryl halides with DMSO. Chemical Communications, 2011, 47, 5304.	4.1	126
138	Palladium-catalyzed desulfitative C-arylation of a benzo[d]oxazole C–H bond with arene sulfonyl chlorides. Chemical Communications, 2011, 47, 11522.	4.1	102
139	The palladium-catalyzed cyanation of indole C–H bonds with the combination of NH4HCO3 and DMSO as a safe cyanide source. Chemical Communications, 2011, 47, 6725.	4.1	238
140	Copper(ii)-catalyzed ortho-functionalization of 2-arylpyridines with acyl chlorides. Chemical Communications, 2011, 47, 3978.	4.1	102
141	Copper-Mediated Cyanation of Aryl Halide with the Combined Cyanide Source. Organic Letters, 2011, 13, 5004-5007.	4.6	163
142	The Application of Trialkoxysilane as Transmetallation Reagent in Organic Synthesis. Current Organic Chemistry, 2011, 15, 2816-2829.	1.6	7
143	Rhodium or Palladiumâ€Catalyzed Cascade Aryl Addition/ Intramolecular Lactonization of Phthalaldehyde with Potassium Organotrifluoroborates to Access 3â€Arylphthalides. Advanced Synthesis and Catalysis, 2011, 353, 320-324.	4.3	19
144	Copper(I)â€Mediated Cyanation of Boronic Acids. Advanced Synthesis and Catalysis, 2011, 353, 291-294.	4.3	68

#	Article	IF	CITATIONS
145	Rhodium or palladium-catalyzed cascade aryl addition/intramolecular lactonization of phthalaldehydonitrile to access 3-aryl and 3-alkenyl phthalides. Tetrahedron, 2011, 67, 4879-4886.	1.9	17
146	Palladium/NHC-catalyzed tandem benzylic oxidation/oxidative esterification of benzylic alcohols with phenols. Tetrahedron, 2011, 67, 5878-5882.	1.9	27
147	Copper-catalyzed halogenation of arylboronic acids. Tetrahedron Letters, 2011, 52, 1993-1995.	1.4	39
148	Palladium/NHC-catalyzed oxidative esterification of aldehydes with phenols. Tetrahedron Letters, 2011, 52, 2480-2483.	1.4	50
149	Iron-Mediated Cyanation of Methoxybenzene, Indole, and 2-Arylpyridine C-H Bonds. Synlett, 2011, 2011, 2991-2994.	1.8	5
150	Water works: an efficient palladium-catalyzed cross-coupling reaction between boronic acids and bromoacetate with aminophosphine ligand. Tetrahedron, 2010, 66, 8238-8241.	1.9	19
151	Rhodiumâ€Catalyzed Cascade Reaction: Aryl Addition/Intramolecular Esterification to Access 3â€Aryl and 3â€Alkenyl Phthalides. Angewandte Chemie - International Edition, 2010, 49, 3671-3674.	13.8	46
152	Palladium-catalyzed reduction of alkynes employing HSiEt3: stereoselective synthesis of trans- and cis-alkenes. Tetrahedron, 2010, 66, 1399-1403.	1.9	85
153	Chelation-assisted palladium-catalyzed acyloxylation of benzyl sp3 C–H bonds using PhI(OAc)2 as oxidant. Tetrahedron Letters, 2010, 51, 3317-3319.	1.4	42
154	Copper(II)-Catalyzed Esterification of Arenecarboxylic Acids with Aryl- and Vinyl-Substituted Trimethoxysilanes. Synthesis, 2010, 2010, 2005-2010.	2.3	9
155	Cu(OTf) ₂ -Mediated Chan-Lam Reaction of Carboxylic Acids to Access Phenolic Esters. Journal of Organic Chemistry, 2010, 75, 7472-7474.	3.2	89
156	Copper-Catalyzed Thiolation of the Di- or Trimethoxybenzene Arene Câ^'H Bond with Disulfides. Journal of Organic Chemistry, 2010, 75, 6732-6735.	3.2	223
157	Copper-Catalyzed Sequential Alkyl/Aryl or Vinyl Esterification of Dicarboxylic Acid Anhydrides with Alkoxysilanes. Journal of Organic Chemistry, 2010, 75, 5379-5381.	3.2	20
158	Palladium-Catalyzed Cascade Aryl Addition/Intramolecular Lactonization of Phthalaldehyde To Access 3-Aryl- and Alkenylphthalides. Journal of Organic Chemistry, 2010, 75, 6043-6045.	3.2	35
159	Copper(II)-Catalyzed Ortho-Acyloxylation of the 2-Arylpyridines sp ² Câ^'H Bonds with Anhydrides, Using O ₂ as Terminal Oxidant. Journal of Organic Chemistry, 2010, 75, 2415-2418.	3.2	106
160	The Use of Hydroxylamine Hydrochloride in the Chan-Lam Reaction: A Simple Access to Symmetric Diarylamines. Synlett, 2009, 2009, 3198-3200.	1.8	3
161	Palladium-Catalyzed Mizoroki-Heck-Type Reaction of Aryl Trimethoxysilanes. Synlett, 2009, 2009, 2198-2200.	1.8	6
162	Rhodium–copper–TBAF-catalyzed hydroarylation of alkynes with aryl Trimethoxysilanes. Tetrahedron Letters, 2009, 50, 1714-1716.	1.4	20

#	Article	IF	CITATIONS
163	Palladium-catalyzed cross-coupling reaction of aryl trimethoxysilanes with terminal alkynes. Tetrahedron Letters, 2009, 50, 530-532.	1.4	27
164	Ligand-free copper (\hat{l}^{TM}) -catalyzed Sonogashira-type coupling of arylboronic acids with terminal alkynes. Tetrahedron Letters, 2009, 50, 5044-5046.	1.4	46
165	Palladium-Catalyzed Acylation of sp ² Câ^'H bond: Direct Access to Ketones from Aldehydes. Organic Letters, 2009, 11, 3120-3123.	4.6	253
166	Rhodium-Catalyzed <i>ortho</i> -Benzoxylation of sp ² Câ^'H Bond. Organic Letters, 2009, 11, 3974-3977.	4.6	111
167	Chelation-Assisted Palladium-Catalyzed Cascade Bromination/Cyanation Reaction of 2-Arylpyridine and 1-Arylpyrazole Câ^'H Bonds. Journal of Organic Chemistry, 2009, 74, 9470-9474.	3.2	126
168	Copper-TBAF catalyzed arylation of amines and amides with aryl trimethoxysilane. Organic and Biomolecular Chemistry, 2009, 7, 869.	2.8	34
169	Chelation-Assisted Palladium-Catalyzed Direct Cyanation of 2-Arylpyridine Câ^'H Bonds. Organic Letters, 2009, 11, 4716-4719.	4.6	180
170	Cu(OAc) ₂ -Catalyzed <i>N</i> -Arylation of Sulfonamides with Arylboronic Acids or Trimethoxy(phenyl)silane. Synthetic Communications, 2009, 39, 2082-2092.	2.1	30
171	A Simple Access to Symmetric Diarylamines via Copper(II)-catalyzed Coupling of Aqueous Ammonia with Arylboronic Acids. Chemistry Letters, 2009, 38, 708-709.	1.3	20
172	One-pot synthesis of diaryl ketones from aldehydes via palladium-catalyzed reaction with aryl boronic acids. Tetrahedron Letters, 2008, 49, 1884-1888.	1.4	78
173	Phosphine-free rhodium-catalyzed hydroarylation of diaryl acetylenes with boronic acids. Tetrahedron Letters, 2008, 49, 5214-5216.	1.4	46
174	Cesium hydroxide-promoted aerobic oxidation of sec-aromatic alcohols. Tetrahedron Letters, 2008, 49, 5336-5338.	1.4	37
175	Palladium catalyzed ligand-free Suzuki cross-coupling reaction. Catalysis Communications, 2008, 9, 508-510.	3.3	52
176	Palladium chloride catalyzed Hiyama cross-coupling reaction using phenyltrimethoxysilane. Catalysis Communications, 2008, 9, 1685-1687.	3.3	19
177	Palladium-Catalyzed Aromatic Esterification of Aldehydes with Organoboronic Acids and Molecular Oxygen. Organic Letters, 2008, 10, 1537-1540.	4.6	76
178	Palladium-Catalyzed Addition of Arylboronic Acids to $\langle i \rangle N \langle i \rangle$ -Tosylarylimines. Synlett, 2008, 2008, 935-939.	1.8	6
179	Solvent-Free Synthesis of \hat{l}^2 -Hydroxy Esters and \hat{l}^2 -Amino Esters by Indium-Mediated Reformatsky Reaction. Synthesis, 2007, 2007, 3233-3239.	2.3	4
180	Palladiumâ€Catalyzed Kumada Reaction Employing Aminophosphine as Ligand. Synthetic Communications, 2007, 37, 3809-3814.	2.1	2

#	Article	IF	CITATIONS
181	The Palladium-Catalyzed Addition of Aryl- and Heteroarylboronic Acids to Aldehydes. Journal of Organic Chemistry, 2007, 72, 4102-4107.	3.2	99
182	Aminophosphine supported on Al2O3 as recoverable catalyst for the Suzuki coupling. Catalysis Communications, 2007, 8, 2150-2152.	3.3	12
183	Suzuki–Miyaura Coupling Reaction by PdII-Catalyzed Aromatic CH Bond Activation Directed by anN-Alkyl Acetamino Group. Angewandte Chemie - International Edition, 2007, 46, 5554-5558.	13.8	302
184	The use of calcium carbide in one-pot synthesis of symmetric diaryl ethynes. Chemical Communications, 2006, , 4826.	4.1	74
185	Copper―and Amineâ€Free Sonogashira Reaction ofN,Nâ€Disubstituted Propargylamine: Synthesis of Substituted Aryl Propargylamine. Synthetic Communications, 2006, 36, 2001-2007.	2.1	7
186	Palladium-catalysed alkynylation of 2- or 3-bromopyridine. Journal of Chemical Research, 2006, 2006, 781-782.	1.3	4
187	Palladium-Catalyzed Tandem Cyclization/Suzuki Coupling of 1,6-Enynes:  Reaction Scope and Mechanism. Journal of Organic Chemistry, 2005, 70, 1712-1717.	3.2	28
188	A Copper- and Amine-Free Sonogashira Reaction Employing Aminophosphines as Ligands. Journal of Organic Chemistry, 2004, 69, 5428-5432.	3.2	153
189	(S)-(–)-5,5′-Bis(diphenylphosphino)-2,2,2′,2′-tetramethyl-4,4′-bi-1,3-benzodioxole. Acta Crystallogra Section E: Structure Reports Online, 2004, 60, o2133-o2134.	phica 0.2	1
190	Palladium-Catalyzed Tandem Reaction of Yne-Propargylic Carbonates with Boronic Acids: A Simple Method for the Synthesis of Fused Aromatic Rings through Allene-Mediated Electrocyclization. Chemistry - A European Journal, 2004, 10, 5338-5344.	3.3	36
191	Formation, isolation and characterization of a new ruthenium complex in reaction of acetone masked terminal alkynone with transfer hydrogenation catalyst. Chinese Journal of Chemistry, 2004, 22, 1413-1416.	4.9	1
192	Palladium-catalyzed Suzuki–Miyaura reaction using aminophosphine as ligand. Tetrahedron Letters, 2003, 44, 7095-7098.	1.4	46
193	Copper-Mediated Direct Aromatic ortho-C–H Cyanation by AIBN. Synlett, 0, , .	1.8	2