Tsutomu Kawasaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8416040/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of Rice NADPH Oxidase by Binding of Rac GTPase to Its N-Terminal Extension. Plant Cell, 2008, 19, 4022-4034.	6.6	415
2	Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 230-235.	7.1	325
3	Down-Regulation of Metallothionein, a Reactive Oxygen Scavenger, by the Small GTPase OsRac1 in Rice. Plant Physiology, 2004, 135, 1447-1456.	4.8	306
4	The heterotrimeric G protein subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13307-13312.	7.1	254
5	An OsCEBiP/OsCERK1-OsRacCEF1-OsRac1 Module Is an Essential Early Component of Chitin-Induced Rice Immunity. Cell Host and Microbe, 2013, 13, 465-476.	11.0	227
6	A Receptor-like Cytoplasmic Kinase Targeted by a Plant Pathogen Effector Is Directly Phosphorylated by the Chitin Receptor and Mediates Rice Immunity. Cell Host and Microbe, 2013, 13, 347-357.	11.0	221
7	Lesion mimic mutants of rice with alterations in early signaling events of defense. Plant Journal, 1999, 17, 535-545.	5.7	206
8	The <i>Arabidopsis</i> <scp>CERK</scp> 1â€associated kinase <scp>PBL</scp> 27 connects chitin perception to <scp>MAPK</scp> activation. EMBO Journal, 2016, 35, 2468-2483.	7.8	202
9	Sekiguchi Lesion Gene Encodes a Cytochrome P450 Monooxygenase That Catalyzes Conversion of Tryptamine to Serotonin in Rice. Journal of Biological Chemistry, 2010, 285, 11308-11313.	3.4	197
10	RACK1 Functions in Rice Innate Immunity by Interacting with the Rac1 Immune Complex Â. Plant Cell, 2008, 20, 2265-2279.	6.6	183
11	A Sphingolipid Elicitor-Inducible Mitogen-Activated Protein Kinase Is Regulated by the Small GTPase OsRac1 and Heterotrimeric G-Protein in Rice Â. Plant Physiology, 2005, 138, 1644-1652.	4.8	177
12	The Hop/Sti1-Hsp90 Chaperone Complex Facilitates the Maturation and Transport of a PAMP Receptor in Rice Innate Immunity. Cell Host and Microbe, 2010, 7, 185-196.	11.0	164
13	Rice SPK, a Calmodulin-Like Domain Protein Kinase, Is Required for Storage Product Accumulation during Seed Development. Plant Cell, 2002, 14, 619-628.	6.6	154
14	Selective regulation of the chitinâ€induced defense response by the <scp>A</scp> rabidopsis receptorâ€ike cytoplasmic kinase <scp>PBL</scp> 27. Plant Journal, 2014, 79, 56-66.	5.7	149
15	RAR1 and HSP90 Form a Complex with Rac/Rop GTPase and Function in Innate-Immune Responses in Rice. Plant Cell, 2008, 19, 4035-4045.	6.6	141
16	Activation of a Rac GTPase by the NLR Family Disease Resistance Protein Pit Plays a Critical Role in Rice Innate Immunity. Cell Host and Microbe, 2010, 7, 362-375.	11.0	138
17	Structure of the N-terminal Regulatory Domain of a Plant NADPH Oxidase and Its Functional Implications. Journal of Biological Chemistry, 2010, 285, 1435-1445.	3.4	129
18	Bacterial effector modulation of host E3 ligase activity suppresses PAMP-triggered immunity in rice. Nature Communications, 2014, 5, 5430.	12.8	114

Тѕитоми Каwasaki

#	Article	IF	CITATIONS
19	Analysis of the Rac/Rop Small GTPase Family in Rice: Expression, Subcellular Localization and Role in Disease Resistance. Plant and Cell Physiology, 2010, 51, 585-595.	3.1	113
20	Starch Branching Enzymes from Immature Rice Seeds. Journal of Biochemistry, 1992, 112, 643-651.	1.7	101
21	A duplicated pair of Arabidopsis RING-finger E3 ligases contribute to the RPM1- and RPS2-mediated hypersensitive response. Plant Journal, 2005, 44, 258-270.	5.7	96
22	The gene encoding a calcium-dependent protein kinase located near the sbe1 gene encoding starch branching enzyme I is specifically expressed in developing rice seeds. Gene, 1993, 129, 183-189.	2.2	87
23	Conservation of Chitin-Induced MAPK Signaling Pathways in Rice and Arabidopsis. Plant and Cell Physiology, 2017, 58, 993-1002.	3.1	83
24	Constitutive activation of a CCâ€NB‣RR protein alters morphogenesis through the cytokinin pathway in Arabidopsis. Plant Journal, 2008, 55, 14-27.	5.7	82
25	Proteomics of Rac GTPase Signaling Reveals Its Predominant Role in Elicitor-Induced Defense Response of Cultured Rice Cells. Plant Physiology, 2006, 140, 734-745.	4.8	79
26	Proteome Analysis of Detergent-Resistant Membranes (DRMs) Associated with OsRac1-Mediated Innate Immunity in Rice. Plant and Cell Physiology, 2009, 50, 1191-1200.	3.1	79
27	The bHLH Rac Immunity1 (RAI1) Is Activated by OsRac1 via OsMAPK3 and OsMAPK6 in Rice Immunity. Plant and Cell Physiology, 2012, 53, 740-754.	3.1	73
28	Proteome Analysis of Programmed Cell Death and Defense Signaling Using the Rice Lesion Mimic Mutant cdr2. Molecular Plant-Microbe Interactions, 2005, 18, 52-59.	2.6	70
29	Chitin receptor-mediated activation of MAP kinases and ROS production in rice and Arabidopsis. Plant Signaling and Behavior, 2017, 12, e1361076.	2.4	65
30	Genomic Organization of 251 kDa Acetyl-CoA Carboxylase Genes in Arabidopsis: Tandem Gene Duplication has Made Two Differentially Expressed Isozymes. Plant and Cell Physiology, 1995, 36, 779-787.	3.1	59
31	Hyperphosphorylation of a Mitochondrial Protein, Prohibitin, Is Induced by Calyculin A in a Rice Lesion-Mimic Mutant cdr1 Â. Plant Physiology, 2003, 132, 1861-1869.	4.8	59
32	Rice Pti1a Negatively Regulates RAR1-Dependent Defense Responses. Plant Cell, 2007, 19, 2940-2951.	6.6	58
33	Molecular analysis of the gene encoding a rice starch branching enzyme. Molecular Genetics and Genomics, 1993, 237-237, 10-16.	2.4	57
34	cDNA sequence and expression of a phosphoenolpyruvate carboxylase gene from soybean. Plant Molecular Biology, 1992, 20, 743-747.	3.9	46
35	Isolation and Characterization of Starch Mutants in Rice. Journal of Applied Glycoscience (1999), 2003, 50, 225-230.	0.7	44
36	SWAP70 functions as a Rac/Rop guanine nucleotideâ€exchange factor in rice. Plant Journal, 2012, 70, 389-397.	5.7	42

Тѕитоми Каwasaki

#	Article	IF	CITATIONS
37	Clinical course of 2019 novel coronavirus disease (COVID-19) in individuals present during the outbreak on the Diamond Princess cruise ship. Journal of Infection and Chemotherapy, 2020, 26, 865-869.	1.7	42
38	The Crystal Structure of the Plant Small GTPase OsRac1 Reveals Its Mode of Binding to NADPH Oxidase. Journal of Biological Chemistry, 2014, 289, 28569-28578.	3.4	35
39	Arabidopsis ubiquitin ligase PUB12 interacts with and negatively regulates Chitin Elicitor Receptor Kinase 1 (CERK1). PLoS ONE, 2017, 12, e0188886.	2.5	30
40	Suppression of Rice Immunity by <i>Xanthomonas oryzae</i> Type III Effector Xoo2875. Bioscience, Biotechnology and Biochemistry, 2013, 77, 796-801.	1.3	28
41	Receptor-like cytoplasmic kinases are pivotal components in pattern recognition receptor-mediated signaling in plant immunity. Plant Signaling and Behavior, 2013, 8, e25662.	2.4	28
42	RNA maturation of the rice SPK gene may involve trans-splicing. Plant Journal, 1999, 18, 625-632.	5.7	22
43	BCL2L2 is a probable target for novel 14q11.2 amplification detected in a non-small cell lung cancer cell line. Cancer Science, 2007, 98, 1070-1077.	3.9	22
44	Importance of Fluorescein Angiographic Study in Evaluating Early Retinal Changes in Takayasu Disease. Japanese Journal of Ophthalmology, 1999, 43, 546-552.	1.9	21
45	Cooperative regulation of PBI1 and MAPKs controls WRKY45 transcription factor in rice immunity. Nature Communications, 2022, 13, 2397.	12.8	20
46	In vivo monitoring of plant small GTPase activation using a Förster resonance energy transfer biosensor. Plant Methods, 2018, 14, 56.	4.3	16
47	Function of Arabidopsis SWAP70 GEF in immune response. Plant Signaling and Behavior, 2012, 7, 465-468.	2.4	11
48	Elasticity of the pronator teres muscle in youth baseball players with elbow injuries: evaluation using ultrasound strain elastography. Journal of Shoulder and Elbow Surgery, 2018, 27, 1642-1649.	2.6	11
49	Chitin-Triggered MAPK Activation and ROS Generation in Rice Suspension-Cultured Cells. Methods in Molecular Biology, 2017, 1578, 309-316.	0.9	8
50	OsDRE2 contributes to chitin-triggered response through its interaction with OsRLCK185. Bioscience, Biotechnology and Biochemistry, 2019, 83, 281-290.	1.3	7
51	Novel assays to monitor gene expression and protein-protein interactions in rice using the bioluminescent protein, NanoLuc. Plant Biotechnology, 2021, 38, 89-99.	1.0	7
52	Plant-specific DUF1110 protein from <i>Oryza sativa</i> : expression, purification and crystallization. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 480-484.	0.8	6
53	Treatment of asthma in smokers: A questionnaire survey in Japanese clinical practice. Respiratory Investigation, 2019, 57, 126-132.	1.8	6
54	Pathogen- and plant-derived peptides trigger plant immunity. Peptides, 2021, 144, 170611.	2.4	6

#	Article	IF	CITATIONS
55	ROP/RAC GTPases. , 0, , 64-99.		4
56	Purification, crystallization and preliminary X-ray crystallographic analysis of a rice Rac/Rop GTPase, OsRac1. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 113-115.	0.8	3
57	PRR Cross-Talk Jump Starts Plant Immunity. Cell Host and Microbe, 2019, 26, 707-709.	11.0	2
58	Identification of TAL and iTAL effectors in Japanese strain T7133 of Xanthomonas oryzae pv. oryzae. Journal of General Plant Pathology, 2021, 87, 354-360.	1.0	2
59	Programmed Cell Death in Plants Plant Biotechnology, 1999, 16, 49-53.	1.0	1
60	ROP/RAC GTPases. , 0, , 64-99.		1
61	Pathogen Recognition and Immune Signaling. , 2018, , 361-374.		0
62	Apple Immunity: Unidirectional Ubiquitination between Two Ubiquitin E3 Ligases Regulates the Immune Response in Apple Fruits. Plant and Cell Physiology, 2019, 60, 2127-2128.	3.1	0