
Justin G A Whitehill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8415917/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The U-Box/ARM E3 Ligase PUB13 Regulates Cell Death, Defense, and Flowering Time in Arabidopsis Â. Plant Physiology, 2012, 159, 239-250.	4.8	129
2	Progress and gaps in understanding mechanisms of ash tree resistance to emerald ash borer, a model for woodâ€boring insects that kill angiosperms. New Phytologist, 2016, 209, 63-79.	7.3	74
3	Interspecific Comparison of Constitutive Ash Phloem Phenolic Chemistry Reveals Compounds Unique to Manchurian Ash, a Species Resistant to Emerald Ash Borer. Journal of Chemical Ecology, 2012, 38, 499-511.	1.8	66
4	Distinguishing Defensive Characteristics in the Phloem of Ash Species Resistant and Susceptible to Emerald Ash Borer. Journal of Chemical Ecology, 2011, 37, 450-459.	1.8	62
5	Effects of water availability on emerald ash borer larval performance and phloem phenolics of Manchurian and black ash. Plant, Cell and Environment, 2014, 37, 1009-1021.	5.7	41
6	Decreased emergence of emerald ash borer from ash treated with methyl jasmonate is associated with induction of general defense traits and the toxic phenolic compound verbascoside. Oecologia, 2014, 176, 1047-1059.	2.0	35
7	Interspecific Proteomic Comparisons Reveal Ash Phloem Genes Potentially Involved in Constitutive Resistance to the Emerald Ash Borer. PLoS ONE, 2011, 6, e24863.	2.5	34
8	Histology and cell wall biochemistry of stone cells in the physical defence of conifers against insects. Plant, Cell and Environment, 2016, 39, 1646-1661.	5.7	33
9	Functions of stone cells and oleoresin terpenes in the conifer defense syndrome. New Phytologist, 2019, 221, 1503-1517.	7.3	30
10	Reserves Accumulated in Non-Photosynthetic Organs during the Previous Growing Season Drive Plant Defenses and Growth in Aspen in the Subsequent Growing Season. Journal of Chemical Ecology, 2014, 40, 21-30.	1.8	24
11	<i>Ips pini</i> (Curculionidae: Scolytinae) Is a Vector of the Fungal Pathogen, <i>Sphaeropsis sapinea</i> (Coelomycetes), to Austrian Pines, <i>Pinus nigra</i> (Pinaceae). Environmental Entomology, 2007, 36, 114-120.	1.4	23
12	Differential Response in Foliar Chemistry of Three Ash Species to Emerald Ash Borer Adult Feeding. Journal of Chemical Ecology, 2011, 37, 29-39.	1.8	22
13	The Pseudomonas syringae pv. tomato Type III Effector HopM1 Suppresses Arabidopsis Defenses Independent of Suppressing Salicylic Acid Signaling and of Targeting AtMIN7. PLoS ONE, 2013, 8, e82032.	2.5	22
14	Function of Sitka spruce stone cells as a physical defence against white pine weevil. Plant, Cell and Environment, 2016, 39, 2545-2556.	5.7	21
15	A molecular and genomic reference system for conifer defence against insects. Plant, Cell and Environment, 2019, 42, 2844-2859.	5.7	17
16	Spruce gigaâ€genomes: structurally similar yet distinctive with differentially expanding gene families and rapidly evolving genes. Plant Journal, 2022, 111, 1469-1485.	5.7	17
17	Feeding by emerald ash borer larvae induces systemic changes in black ash foliar chemistry. Phytochemistry, 2011, 72, 1990-1998.	2.9	13
18	Nutritional attributes of ash (Fraxinus spp.) outer bark and phloem and their relationships to resistance against the emerald ash borer. Tree Physiology, 2012, 32, 1522-1532.	3.1	10

JUSTIN G A WHITEHILL

#	Article	IF	CITATIONS
19	Gymnosperm glandular trichomes: expanded dimensions of the conifer terpenoid defense system. Scientific Reports, 2020, 10, 12464.	3.3	8
20	Constitutive and insectâ€induced transcriptomes of weevilâ€resistant and susceptible Sitka spruce. Plant-Environment Interactions, 2021, 2, 137-147.	1.5	7
21	Histology of resin vesicles and oleoresin terpene composition of conifer seeds. Canadian Journal of Forest Research, 2018, 48, 1073-1084.	1.7	5
22	The genome of the forest insect pest <i>Pissodes strobi</i> reveals genome expansion and evidence of a <i>Wolbachia</i> endosymbiont. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	4