Wilfrido Gómez-Flores

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/841533/publications.pdf

Version: 2024-02-01

687335 642715 33 947 13 h-index citations papers

g-index 37 37 37 1078 docs citations times ranked citing authors all docs

23

#	Article	IF	Citations
1	Improving the Classification Performance of Dendrite Morphological Neurons. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 4659-4673.	11.3	4
2	Smooth dendrite morphological neurons. Neural Networks, 2021, 136, 40-53.	5.9	12
3	A survey of cluster validity indices for automatic data clustering using differential evolution. , 2021, , .		8
4	An evolutionary many-objective approach to multiview clustering using feature and relational data. Applied Soft Computing Journal, 2021, 108, 107425.	7.2	14
5	Semantic Segmentation of Mammograms Using Pre-Trained Deep Neural Networks. , 2021, , .		1
6	Automatic adjustment of the pulse-coupled neural network hyperparameters based on differential evolution and cluster validity index for image segmentation. Applied Soft Computing Journal, 2020, 97, 105547.	7.2	7
7	Assessment of the invariance and discriminant power of morphological features under geometric transformations for breast tumor classification. Computer Methods and Programs in Biomedicine, 2020, 185, 105173.	4.7	18
8	A comparative study of pre-trained convolutional neural networks for semantic segmentation of breast tumors in ultrasound. Computers in Biology and Medicine, 2020, 126, 104036.	7.0	50
9	Towards Dendrite Spherical Neurons for Pattern Classification. Lecture Notes in Computer Science, 2020, , 14-24.	1.3	3
10	Predicting the BI-RADS Lexicon for Mammographie Masses Using Hybrid Neural Models. , 2020, , .		2
11	Many-view clustering. , 2019, , .		4
12	Detection of Huanglongbing disease based on intensity-invariant texture analysis of images in the visible spectrum. Computers and Electronics in Agriculture, 2019, 162, 825-835.	7.7	21
13	Texture Analysis Based on Auto-Mutual Information for Classifying Breast Lesions with Ultrasound. Ultrasound in Medicine and Biology, 2019, 45, 2213-2225.	1.5	8
14	A Performance Evaluation of Machine Learning Techniques for Breast Ultrasound Classification. , 2019, , .		9
15	Modeling of Shape Attributes of the BI-RADS Lexicon for Breast Lesions Based on Multi-class Classification. IFMBE Proceedings, 2019, , 327-333.	0.3	2
16	A computer-aided diagnosis system for breast ultrasound based on weighted BI-RADS classes. Computer Methods and Programs in Biomedicine, 2018, 153, 33-40.	4.7	28
17	A contrast enhancement method for improving the segmentation of breast lesions on ultrasonography. Computers in Biology and Medicine, 2017, 80, 14-23.	7.0	14
18	Automatic construction of the complete architecture of a radial basis function network using differential evolution. , 2017 , , .		1

#	Article	IF	Citations
19	BUSAT: A MATLAB Toolbox for Breast Ultrasound Image Analysis. Lecture Notes in Computer Science, 2017, , 268-277.	1.3	6
20	Evolutionary Clustering Using Multi-prototype Representation and Connectivity Criterion. Lecture Notes in Computer Science, 2017, , 63-73.	1.3	0
21	New Fully Automated Method for Segmentation of Breast Lesions on Ultrasound Based on Texture Analysis. Ultrasound in Medicine and Biology, 2016, 42, 1637-1650.	1.5	31
22	Automatic clustering using nature-inspired metaheuristics: A survey. Applied Soft Computing Journal, 2016, 41, 192-213.	7.2	174
23	Evolutionary pulse-coupled neural network for segmenting breast lesions on ultrasonography. Neurocomputing, 2016, 175, 877-887.	5.9	16
24	Analysis of the impact of digital watermarking on computer-aided diagnosis in medical imaging. Computers in Biology and Medicine, 2016, 68, 37-48.	7.0	26
25	Construction of Mixed Covering Arrays Using a Combination of Simulated Annealing and Variable Neighborhood Search. Electronic Notes in Discrete Mathematics, 2015, 47, 109-116.	0.4	1
26	Improving classification performance of breast lesions on ultrasonography. Pattern Recognition, 2015, 48, 1125-1136.	8.1	90
27	Breast Ultrasound Despeckling Using Anisotropic Diffusion Guided by Texture Descriptors. Ultrasound in Medicine and Biology, 2014, 40, 2609-2621.	1.5	41
28	Evolutionary Approach for Construction of the RBF Network Architecture. , 2014, , .		1
29	Analysis of Co-Occurrence Texture Statistics as a Function of Gray-Level Quantization for Classifying Breast Ultrasound. IEEE Transactions on Medical Imaging, 2012, 31, 1889-1899.	8.9	204
30	Bone quality analysis using X-ray microtomography and microfluorescence. Applied Radiation and Isotopes, 2012, 70, 1272-1276.	1.5	9
31	On the selection of surrogate models in evolutionary optimization algorithms. , $2011,\ldots$		50
32	Computerized lesion segmentation of breast ultrasound based on markerâ€controlled watershed transformation. Medical Physics, 2010, 37, 82-95.	3.0	92
33	Detection of AAC compression using MDCT-based features and supervised learning. Journal of Experimental and Theoretical Artificial Intelligence, 0, , 1-18.	2.8	0