
Wilson S Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8414164/publications.pdf Version: 2024-02-01

WILSON S MENC

#	Article	IF	CITATIONS
1	Localized PD-1 Blockade in a Mouse Model of Renal Cell Carcinoma. Frontiers in Drug Delivery, 2022, 2,	1.6	0
2	Immune Cells Activating Biotin-Decorated PLGA Protein Carrier. Molecular Pharmaceutics, 2022, 19, 2638-2650.	4.6	2
3	A drug delivery perspective on intratumoral-immunotherapy in renal cell carcinoma. Urologic Oncology: Seminars and Original Investigations, 2021, 39, 338-345.	1.6	2
4	Chemicallyâ€Induced Crossâ€Linking of Peptidic Fibrils for Scaffolding Polymeric Particles and Macrophages. Macromolecular Bioscience, 2021, 21, e2000350.	4.1	0
5	Arrest in the Progression of Type 1 Diabetes at the Mid-Stage of Insulitic Autoimmunity Using an Autoantigen-Decorated All-trans Retinoic Acid and Transforming Growth Factor Beta-1 Single Microparticle Formulation. Frontiers in Immunology, 2021, 12, 586220.	4.8	16
6	Protein aggregation and immunogenicity of biotherapeutics. International Journal of Pharmaceutics, 2020, 585, 119523.	5.2	64
7	Developing Biotherapeutics in the New Decade. Journal of Pharmaceutical Innovation, 2020, 15, 201-201.	2.4	0
8	Toward reducing biomaterial antigenic potential: a miniaturized Fc-binding domain for local deposition of antibodies. Biomaterials Science, 2019, 7, 760-772.	5.4	9
9	A genetically engineered Fc-binding amphiphilic polypeptide for congregating antibodies in vivo. Acta Biomaterialia, 2019, 88, 211-223.	8.3	14
10	Advances in immunotherapy of type I diabetes. Advanced Drug Delivery Reviews, 2019, 139, 83-91.	13.7	32
11	Surface modification of PLGA nanoparticles to deliver nitric oxide to inhibit Escherichia coli growth. Applied Surface Science, 2017, 401, 162-171.	6.1	11
12	Antimicrobial Activity of Nitric Oxide-Releasing Ti-6Al-4V Metal Oxide. Journal of Functional Biomaterials, 2017, 8, 20.	4.4	10
13	Principles of Nanomedicine. , 2017, , 39-66.		0
14	A Bioinformatics Practicum to Develop Student Understanding of Immunological Rejection of Protein Drugs. American Journal of Pharmaceutical Education, 2016, 80, 147.	2.1	2
15	Local retention of antibodies in vivo with an injectable film embedded with a fluorogen-activating protein. Journal of Controlled Release, 2016, 230, 1-12.	9.9	16
16	Promoting 3-D Aggregation of FACS Purified Thymic Epithelial Cells with EAK 16-II/EAKIIH6 Self-assembling Hydrogel. Journal of Visualized Experiments, 2016, , .	0.3	10
17	Reducing Escherichia coli growth on a composite biomaterial by a surface immobilized antimicrobial peptide. Materials Science and Engineering C, 2016, 65, 126-134.	7.3	16
18	Generation of antigen-specific Foxp3+ regulatory T-cells in vivo following administration of diabetes-reversing tolerogenic microspheres does not require provision of antigen in the formulation. Clinical Immunology, 2015, 160, 103-123.	3.2	58

WILSON S MENG

#	Article	IF	CITATIONS
19	Bioengineering mini functional thymic units with EAK16-II/EAKIIH6 self-assembling hydrogel. Clinical Immunology, 2015, 160, 82-89.	3.2	33
20	Nanotherapeutics for autoimmunity becomes mainstream. Clinical Immunology, 2015, 160, 1-2.	3.2	3
21	Predicting Hemagglutinin MHC-II Ligand Analogues in Anti-TNFα Biologics: Implications for Immunogenicity of Pharmaceutical Proteins. PLoS ONE, 2015, 10, e0135451.	2.5	3
22	Antibody-functionalized peptidic membranes for neutralization of allogeneic skin antigen-presenting cells. Acta Biomaterialia, 2014, 10, 4759-4767.	8.3	61
23	Recent In Vivo Evidences of Particle-Based Delivery of Small-Interfering RNA (siRNA) into Solid Tumors. Journal of Pharmaceutical Innovation, 2014, 9, 158-173.	2.4	85
24	Coassembly of amphiphilic peptide EAK16-II with histidinylated analogues and implications for functionalization of Î ² -sheet fibrils inÂvivo. Biomaterials, 2014, 35, 5196-5205.	11.4	69
25	Modeling the proton sponge hypothesis: examining proton sponge effectiveness for enhancing intracellular gene delivery through multiscale modeling. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 398-416.	3.5	111
26	Retaining Antibodies in Tumors with a Self-Assembling Injectable System. Molecular Pharmaceutics, 2013, 10, 1035-1044.	4.6	86
27	Engineering Fluorogen Activating Proteins into Self-Assembling Materials. Bioconjugate Chemistry, 2013, 24, 803-810.	3.6	25
28	A peptide-based material platform for displaying antibodies to engage T cells. Biomaterials, 2011, 32, 249-257.	11.4	47
29	Characterization of Nickel-Decorated PLGA Particles Anchored with a His-tagged Polycation. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 1307-1320.	3.5	6
30	Expansion of Foxp3-expressing regulatory T cells in vitro by dendritic cells modified with polymeric particles carrying a plasmid encoding interleukin-10. Biomaterials, 2008, 29, 1250-1261.	11.4	10
31	Secondary anchor substitutions in an HLA-A*0201-restricted T-cell epitope derived from Her-2/neu. Molecular Immunology, 2007, 44, 322-331.	2.2	7
32	Characterization of particles fabricated with poly(D,L-lactic-co-glycolic acid) and an ornithine–histidine peptide as carriers of oligodeoxynucleotide for delivery into primary dendritic cells. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 1389-1403.	3.5	9
33	Polymeric microspheres as stabilizing anchors for oligonucleotide delivery to dendritic cells. Biomaterials, 2005, 26, 6754-6761.	11.4	22
34	Activation of antigen-presenting cells by DNA delivery vectors. Expert Opinion on Biological Therapy, 2005, 5, 1019-1028.	3.1	16
35	Gene delivery to dendritic cells facilitated by a tumor necrosis factor alpha-competing peptide. Molecular Immunology, 2004, 41, 741-749.	2.2	27
36	A cationic peptide consists of ornithine and histidine repeats augments gene transfer in dendritic cells. Molecular Immunology, 2003, 40, 483-490.	2.2	23

WILSON S MENG

#	Article	IF	CITATIONS
37	Rational design of peptide-based tumor vaccines. Pharmaceutical Research, 2002, 19, 926-932.	3.5	8
38	T Cell Responses to HLA-A*0201-Restricted Peptides Derived from Human α Fetoprotein. Journal of Immunology, 2001, 166, 5300-5308.	0.8	131
39	Experimental evidence for the presence of a water network at the peptide–MHC interface. Immunology Letters, 2000, 70, 139-141.	2.5	3
40	Water dynamics at the binding interface of four different HLA-A2–peptide complexes. International Immunology, 2000, 12, 949-957.	4.0	24
41	Fine specificity analysis of an HLA-A2.1-restricted immunodominant T cell epitope derived from human α-fetoprotein. Molecular Immunology, 2000, 37, 943-950.	2.2	51