
Sang-Gyu Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8413741/publications.pdf Version: 2024-02-01

SANC-GYLLKIM

#	Article	IF	CITATIONS
1	Ribozymeâ€processed guide RNA enhances virusâ€mediated plant genome editing. Biotechnology Journal, 2022, 17, e2100189.	3.5	3
2	Singleâ€cell RNAâ€sequencing of <i>Nicotiana attenuata</i> corolla cells reveals the biosynthetic pathway of a floral scent. New Phytologist, 2022, 234, 527-544.	7.3	34
3	Effect of Soybean Volatiles on the Behavior of the Bean Bug, Riptortus pedestris. Journal of Chemical Ecology, 2022, 48, 207-218.	1.8	9
4	Ontogeny-dependent effects of elevated CO2 and watering frequency on interaction between Aristolochia contorta and its herbivores. Science of the Total Environment, 2022, 838, 156065.	8.0	5
5	<scp>MSD2</scp> â€mediated <scp>ROS</scp> metabolism fineâ€tunes the timing of floral organ abscission in Arabidopsis. New Phytologist, 2022, 235, 2466-2480.	7.3	8
6	Virus-induced plant genome editing. Current Opinion in Plant Biology, 2021, 60, 101992.	7.1	35
7	CRISPR innovations in plant breeding. Plant Cell Reports, 2021, 40, 913-914.	5.6	2
8	Response of theÂmicrobiome–gut–brain axis in Drosophila to amino acid deficit. Nature, 2021, 593, 570-574.	27.8	53
9	Pithâ€specific lignification in <i>Nicotiana attenuata</i> as a defense against a stemâ€boring herbivore. New Phytologist, 2021, 232, 332-344.	7.3	23
10	Tissue-specific systemic responses of the wild tobacco Nicotiana attenuata against stem-boring herbivore attack. Journal of Ecology and Environment, 2021, 45, .	1.6	1
11	RPS5A Promoter-Driven Cas9 Produces Heritable Virus-Induced Genome Editing in Nicotiana attenuata. Molecules and Cells, 2021, 44, 911-919.	2.6	12
12	The way to true plant genome editing. Nature Plants, 2020, 6, 736-737.	9.3	8
13	Submergence deactivates wound-induced plant defence against herbivores. Communications Biology, 2020, 3, 651.	4.4	5
14	A robust genome-editing method for wild plant species Nicotiana attenuata. Plant Biotechnology Reports, 2020, 14, 585-598.	1.5	8
15	ZEITLUPE facilitates the rhythmic movements of <i>Nicotiana attenuata</i> flowers. Plant Journal, 2020, 103, 308-322.	5.7	2
16	A multiplex guide RNA expression system and its efficacy for plant genome engineering. Plant Methods, 2020, 16, 37.	4.3	50
17	Guidelines for C to T base editing in plants: base-editing window, guide RNA length, and efficient promoter. Plant Biotechnology Reports, 2019, 13, 533-541.	1.5	6
18	Generation of early-flowering Chinese cabbage (Brassica rapa spp. pekinensis) through CRISPR/Cas9-mediated genome editing. Plant Biotechnology Reports, 2019, 13, 491-499.	1.5	32

Sang-Gyu Kim

#	Article	IF	CITATIONS
19	JA-pretreated hypocotyl explants potentiate de novo shoot regeneration in Arabidopsis. Plant Signaling and Behavior, 2019, 14, 1618180.	2.4	8
20	Herbivory elicits changes in green leaf volatile production via jasmonate signaling and the circadian clock. Plant, Cell and Environment, 2019, 42, 972-982.	5.7	25
21	The circadian clock contributes to diurnal patterns of plant indirect defense in nature. Journal of Integrative Plant Biology, 2019, 61, 924-928.	8.5	10
22	Herbivoreâ€induced volatile blends with both "fast―and "slow―components provide robust indirect defence in nature. Functional Ecology, 2018, 32, 136-149.	3.6	51
23	Rootâ€expressed phytochromes <scp>B</scp> 1 and <scp>B</scp> 2, but not <scp>P</scp> hy <scp>A</scp> and <scp>C</scp> ry2, regulate shoot growth in nature. Plant, Cell and Environment, 2018, 41, 2577-2588.	5.7	12
24	CRISPR/Cpf1-mediated DNA-free plant genome editing. Nature Communications, 2017, 8, 14406.	12.8	386
25	Circadian clock component, LHY, tells a plant when to respond photosynthetically to light in nature. Journal of Integrative Plant Biology, 2017, 59, 572-587.	8.5	21
26	Functional specialization of <i>Nicotiana attenuata</i> phytochromes in leaf development and flowering time. Journal of Integrative Plant Biology, 2017, 59, 205-224.	8.5	10
27	Fitness consequences of altering floral circadian oscillations for <i>Nicotiana attenuata</i> . Journal of Integrative Plant Biology, 2017, 59, 180-189.	8.5	29
28	Fitness consequences of a clock pollinator filter in <i>Nicotiana attenuata</i> flowers in nature. Journal of Integrative Plant Biology, 2017, 59, 805-809.	8.5	10
29	What happens in the pith stays in the pith: tissueâ€localized defense responses facilitate chemical niche differentiation between two spatially separated herbivores. Plant Journal, 2017, 92, 414-425.	5.7	32
30	Shifting <i>Nicotiana attenuata</i> 's diurnal rhythm does not alter its resistance to the specialist herbivore <i>Manduca sexta</i> . Journal of Integrative Plant Biology, 2016, 58, 656-668.	8.5	13
31	A simple, flexible and highâ€ŧhroughput cloning system for plant genome editing via CRISPR as system. Journal of Integrative Plant Biology, 2016, 58, 705-712.	8.5	61
32	<i>Trichobaris</i> weevils distinguish amongst toxic host plants by sensing volatiles that do not affect larval performance. Molecular Ecology, 2016, 25, 3509-3519.	3.9	14
33	<scp>WRKY</scp> 71 accelerates flowering via the direct activation of <i><scp>FLOWERING LOCUS</scp> T</i> and <i><scp>LEAFY</scp></i> in <i>Arabidopsis thaliana</i> . Plant Journal, 2016, 85, 96-106.	5.7	113
34	Silencing <i>Nicotiana attenuata <scp>LHY</scp></i> and <i><scp>ZTL</scp></i> alters circadian rhythms in flowers. New Phytologist, 2016, 209, 1058-1066.	7.3	71
35	Functional characterization of the ribosome biogenesis factors PES, BOP1, and WDR12 (PeBoW), and mechanisms of defective cell growth and proliferation caused by PeBoW deficiency in Arabidopsis. Journal of Experimental Botany, 2016, 67, 5217-5232.	4.8	33
36	Stem-piped light activates phytochrome B to trigger light responses in <i>Arabidopsis thaliana</i> roots. Science Signaling, 2016, 9, ra106.	3.6	145

Sang-Gyu Kim

#	Article	IF	CITATIONS
37	Systemic Immunity Requires SnRK2.8-Mediated Nuclear Import of NPR1 in Arabidopsis. Plant Cell, 2015, 27, 3425-3438.	6.6	104
38	DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature Biotechnology, 2015, 33, 1162-1164.	17.5	975
39	Improving the accuracy of expression data analysis in time course experiments using resampling. BMC Bioinformatics, 2014, 15, 352.	2.6	4
40	Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature, 2014, 508, 546-549.	27.8	352
41	FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis. Nature Communications, 2014, 5, 5473.	12.8	87
42	Root jasmonic acid synthesis and perception regulate folivoreâ€induced shoot metabolites and increase <i>Nicotiana attenuata</i> resistance. New Phytologist, 2014, 202, 1335-1345.	7.3	56
43	Tissue Specific Diurnal Rhythms of Metabolites and Their Regulation during Herbivore Attack in a Native Tobacco, Nicotiana attenuata. PLoS ONE, 2011, 6, e26214.	2.5	105
44	Activation tagging of an Arabidopsis SHI-RELATED SEQUENCE gene produces abnormal anther dehiscence and floral development. Plant Molecular Biology, 2010, 74, 337-351.	3.9	36
45	Genome-scale screening and molecular characterization of membrane-bound transcription factors in Arabidopsis and rice. Genomics, 2010, 95, 56-65.	2.9	112
46	A membraneâ€bound NAC transcription factor NTL8 regulates gibberellic acidâ€mediated salt signaling in Arabidopsis seed germination. Plant Journal, 2008, 55, 77-88.	5.7	189
47	Gibberellic acid-mediated salt signaling in seed germination. Plant Signaling and Behavior, 2008, 3, 877-879.	2.4	30
48	Membrane-Mediated Salt Stress Signaling in Flowering Time Control. Plant Signaling and Behavior, 2007, 2, 517-518.	2.4	16
49	A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta, 2007, 226, 647-654.	3.2	214