## Aswani Yella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8413466/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | All Roomâ€Temperatureâ€Processed Carbonâ€Based Flexible Perovskite Solar Cells with TiO <sub>2</sub><br>Electron Collection Layer. Energy Technology, 2022, 10, .                                                                              | 3.8  | 4         |
| 2  | Enhanced charge transport in low temperature carbon-based n-i-p perovskite solar cells with<br>NiOx-CNT hole transport material. Solar Energy Materials and Solar Cells, 2021, 230, 111241.                                                    | 6.2  | 19        |
| 3  | Synthesis of bismuth sulphoiodide thin films from single precursor solution. Solar Energy, 2021, 230, 714-720.                                                                                                                                 | 6.1  | 7         |
| 4  | Mixed metal–antimony oxide nanocomposites: low pH water oxidation electrocatalysts with<br>outstanding durability at ambient and elevated temperatures. Journal of Materials Chemistry A, 2021, 9,<br>27468-27484.                             | 10.3 | 19        |
| 5  | Humidityâ€Mediated Synthesis of Highly Luminescent and Stable CsPbX <sub>3</sub> (X = Cl, Br, I)<br>Nanocrystals. Energy Technology, 2020, 8, 1900890.                                                                                         | 3.8  | 13        |
| 6  | Binder-solvent effects on low temperature-processed carbon-based, hole-transport layer free perovskite solar cells. Materials Chemistry and Physics, 2020, 256, 123594.                                                                        | 4.0  | 28        |
| 7  | Lattice Dynamics and Electron–Phonon Coupling in Lead-Free<br>Cs <sub>2</sub> AgIn <sub>1–<i>x</i></sub> Bi <sub><i>x</i></sub> Cl <sub>6</sub> Double Perovskite<br>Nanocrystals. Journal of Physical Chemistry Letters, 2020, 11, 2113-2120. | 4.6  | 69        |
| 8  | High-Efficiency Organic Solar Cells With Solution Processable Non-Fullerene Acceptor as an<br>Interlayer. IEEE Journal of Photovoltaics, 2019, 9, 1266-1272.                                                                                   | 2.5  | 3         |
| 9  | ZnX <sub>2</sub> mediated post-synthetic transformation of zero dimensional<br>Cs <sub>4</sub> PbBr <sub>6</sub> nanocrystals for opto-electronic applications. Nanoscale<br>Advances, 2019, 1, 2502-2509.                                     | 4.6  | 8         |
| 10 | Reversible Dimensionality Tuning of Hybrid Perovskites with Humidity: Visualization and Application to<br>Stable Solar Cells. Chemistry of Materials, 2019, 31, 3111-3117.                                                                     | 6.7  | 35        |
| 11 | Tunable and Stable White Light Emission in Bi <sup>3+</sup> -Alloyed<br>Cs <sub>2</sub> AgInCl <sub>6</sub> Double Perovskite Nanocrystals. Chemistry of Materials, 2019, 31,<br>10063-10070.                                                  | 6.7  | 113       |
| 12 | Interface engineering through electron transport layer modification for high efficiency organic solar cells. RSC Advances, 2018, 8, 5984-5991.                                                                                                 | 3.6  | 24        |
| 13 | Double perovskites overtaking the single perovskites: A set of new solar harvesting materials with much higher stability and efficiency. Physical Review Materials, 2018, 2, .                                                                 | 2.4  | 60        |
| 14 | Dye-sensitized solar cells using cobalt electrolytes: the influence of porosity and pore size to achieve high-efficiency. Journal of Materials Chemistry C, 2017, 5, 2833-2843.                                                                | 5.5  | 52        |
| 15 | Experimental evaluation of room temperature crystallization and phase evolution of hybrid perovskite materials. CrystEngComm, 2017, 19, 3834-3843.                                                                                             | 2.6  | 43        |
| 16 | Simultaneous enhancement of light absorption and improved charge collection in PTB7-Th: PC70BM organic solar cells. MRS Advances, 2017, 2, 835-840.                                                                                            | 0.9  | 1         |
| 17 | TiO 2 colloid-based compact layers for hybrid lead halide perovskite solar cells. Applied Materials<br>Today, 2017, 7, 112-119.                                                                                                                | 4.3  | 24        |
| 18 | Efficient light trapping and interface engineering for performance enhancement in PTB7-Th: PC70BM organic solar cells. Organic Electronics, 2017, 41, 280-286.                                                                                 | 2.6  | 18        |

ASWANI YELLA

| #  | Article                                                                                                                                                                                                          | IF           | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 19 | Molecularly Engineered Ru(II) Sensitizers Compatible with Cobalt(II/III) Redox Mediators for Dye-Sensitized Solar Cells. Inorganic Chemistry, 2016, 55, 7388-7395.                                               | 4.0          | 21        |
| 20 | An Optically Transparent Iron Nickel Oxide Catalyst for Solar Water Splitting. Journal of the<br>American Chemical Society, 2015, 137, 9927-9936.                                                                | 13.7         | 247       |
| 21 | Unravel the Impact of Anchoring Groups on the Photovoltaic Performances of Diketopyrrolopyrrole<br>Sensitizers for Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2015, 3,<br>2389-2396. | 6.7          | 65        |
| 22 | A durable SWCNT/PET polymer foil based metal free counter electrode for flexible dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 19609-19615.                                             | 10.3         | 53        |
| 23 | Molecular Engineering of Push–Pull Porphyrin Dyes for Highly Efficient Dyeâ€Sensitized Solar Cells:<br>The Role of Benzene Spacers. Angewandte Chemie - International Edition, 2014, 53, 2973-2977.              | 13.8         | 458       |
| 24 | Nanocrystalline Rutile Electron Extraction Layer Enables Low-Temperature Solution Processed Perovskite Photovoltaics with 13.7% Efficiency. Nano Letters, 2014, 14, 2591-2596.                                   | 9.1          | 397       |
| 25 | Perovskite solar cells employing organic charge-transport layers. Nature Photonics, 2014, 8, 128-132.                                                                                                            | 31.4         | 1,320     |
| 26 | Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry, 2014, 6, 242-247.                                                          | 13.6         | 3,982     |
| 27 | Acetylene-bridged dyes with high open circuit potential for dye-sensitized solar cells. RSC Advances, 2014, 4, 35251.                                                                                            | 3.6          | 23        |
| 28 | Thiocyanateâ€Free Ru(II) Sensitizers with a 4,4′â€Dicarboxyvinylâ€2,2′â€bipyridine Anchor for Dyeâ€Sensit<br>Solar Cells. Advanced Functional Materials, 2013, 23, 2285-2294.                                    | ized<br>14.9 | 27        |
| 29 | Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent<br>Efficiency, Science, 2011, 334, 629-634.                                                                      | 12.6         | 5,637     |