David A Brenner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8413361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Liver fibrosis. Journal of Clinical Investigation, 2005, 115, 209-218.	3.9	4,210
2	TLR4 enhances TGF-β signaling and hepatic fibrosis. Nature Medicine, 2007, 13, 1324-1332.	15.2	1,712
3	The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1366, 177-196.	0.5	1,201
4	The gut–liver axis and the intersection with the microbiome. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 397-411.	8.2	905
5	Liver inflammation and fibrosis. Journal of Clinical Investigation, 2017, 127, 55-64.	3.9	861
6	Interactions Between the Intestinal Microbiome and Liver Diseases. Gastroenterology, 2014, 146, 1513-1524.	0.6	806
7	Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. Cell Metabolism, 2017, 25, 1054-1062.e5.	7.2	748
8	Pericytes and Perivascular Fibroblasts Are the Primary Source of Collagen-Producing Cells in Obstructive Fibrosis of the Kidney. American Journal of Pathology, 2008, 173, 1617-1627.	1.9	747
9	Prolonged activation of jun and collagenase genes by tumour necrosis factor-α. Nature, 1989, 337, 661-663.	13.7	735
10	Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9448-9453.	3.3	654
11	Toll-Like Receptor 9 Promotes Steatohepatitis by Induction of Interleukin-1β in Mice. Gastroenterology, 2010, 139, 323-334.e7.	0.6	640
12	Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology, 2011, 53, 96-105.	3.6	636
13	Tollâ€like receptors and adaptor molecules in liver disease: Update. Hepatology, 2008, 48, 322-335.	3.6	614
14	Mechanisms of Liver Injury. I. TNF-α-induced liver injury: role of IKK, JNK, and ROS pathways. American Journal of Physiology - Renal Physiology, 2006, 290, G583-G589.	1.6	597
15	Toll-Like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology, 2003, 37, 1043-1055.	3.6	588
16	Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nature Medicine, 2015, 21, 159-165.	15.2	562
17	Interleukin-17 Signaling in Inflammatory, Kupffer Cells, and Hepatic Stellate Cells Exacerbates Liver Fibrosis in Mice. Gastroenterology, 2012, 143, 765-776.e3.	0.6	536
18	Resident fibroblast lineages mediate pressure overload–induced cardiac fibrosis. Journal of Clinical Investigation, 2014, 124, 2921-2934.	3.9	497

#	Article	IF	CITATIONS
19	NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. Journal of Clinical Investigation, 2003, 112, 1383-1394.	3.9	482
20	Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nature Medicine, 2010, 16, 1152-1156.	15.2	465
21	Hepatic Stellate Cells as a Target for the Treatment of Liver Fibrosis. Seminars in Liver Disease, 2001, 21, 437-452.	1.8	444
22	Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. Journal of Hepatology, 2006, 45, 429-438.	1.8	439
23	Utility of magnetic resonance imaging versus histology for quantifying changes in liver fat in nonalcoholic fatty liver disease trials. Hepatology, 2013, 58, 1930-1940.	3.6	434
24	Mechanisms of Fibrogenesis. Experimental Biology and Medicine, 2008, 233, 109-122.	1.1	416
25	A Liver Full of JNK: Signaling in Regulation of Cell Function and Disease Pathogenesis, and Clinical Approaches. Gastroenterology, 2012, 143, 307-320.	0.6	414
26	Origin of myofibroblasts in the fibrotic liver in mice. Proceedings of the National Academy of Sciences of America, 2014, 111, E3297-305.	3.3	414
27	Identification of Small Molecule Activators of Cryptochrome. Science, 2012, 337, 1094-1097.	6.0	408
28	Casein kinase II is a negative regulator of c-Jun DNA binding and AP-1 activity. Cell, 1992, 70, 777-789.	13.5	406
29	Gene Expression Profiles During Hepatic Stellate Cell Activation in Culture and In Vivo. Gastroenterology, 2007, 132, 1937-1946.	0.6	402
30	The Mitochondrial Permeability Transition Is Required for Tumor Necrosis Factor Alpha-Mediated Apoptosis and Cytochrome <i>c</i> Release. Molecular and Cellular Biology, 1998, 18, 6353-6364.	1.1	389
31	Magnetic resonance elastography predicts advanced fibrosis in patients with nonalcoholic fatty liver disease: A prospective study. Hepatology, 2014, 60, 1920-1928.	3.6	388
32	Free Cholesterol-loaded Macrophages Are an Abundant Source of Tumor Necrosis Factor-α and Interleukin-6. Journal of Biological Chemistry, 2005, 280, 21763-21772.	1.6	381
33	Toll-Like Receptor Signaling in the Liver. Gastroenterology, 2006, 130, 1886-1900.	0.6	377
34	The role of TGFβ1 in initiating hepatic stellate cell activation in vivo. Journal of Hepatology, 1999, 30, 77-87.	1.8	372
35	CCR2 promotes hepatic fibrosis in mice. Hepatology, 2009, 50, 185-197.	3.6	359
36	Ceramide Activates the Stress-activated Protein Kinases. Journal of Biological Chemistry, 1995, 270, 22689-22692.	1.6	349

#	Article	IF	CITATIONS
37	Mitochondrial dysfunction in the pathogenesis of necrotic and apoptotic cell death. Journal of Bioenergetics and Biomembranes, 1999, 31, 305-319.	1.0	347
38	CCR1 and CCR5 promote hepatic fibrosis in mice. Journal of Clinical Investigation, 2009, 119, 1858-70.	3.9	340
39	Role of Mitochondrial Inner Membrane Permeabilization in Necrotic Cell Death, Apoptosis, and Autophagy. Antioxidants and Redox Signaling, 2002, 4, 769-781.	2.5	331
40	Aging and liver disease. Current Opinion in Gastroenterology, 2015, 31, 184-191.	1.0	323
41	Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 308-313.	3.3	300
42	Genetic polymorphisms and the progression of liver fibrosis: A critical appraisal. Hepatology, 2003, 37, 493-503.	3.6	298
43	Ezetimibe for the treatment of nonalcoholic steatohepatitis: Assessment by novel magnetic resonance imaging and magnetic resonance elastography in a randomized trial (MOZART trial). Hepatology, 2015, 61, 1239-1250.	3.6	296
44	Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice. Hepatology, 2010, 51, 1027-1036.	3.6	289
45	Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease. Journal of Hepatology, 2012, 56, 1283-1292.	1.8	289
46	Correlation between liver histology and novel magnetic resonance imaging in adult patients with nonâ€alcoholic fatty liver disease – <scp>MRI</scp> accurately quantifies hepatic steatosis in <scp>NAFLD</scp> . Alimentary Pharmacology and Therapeutics, 2012, 36, 22-29.	1.9	285
47	Intestinal REG3 Lectins Protect against Alcoholic Steatohepatitis by Reducing Mucosa-Associated Microbiota and Preventing Bacterial Translocation. Cell Host and Microbe, 2016, 19, 227-239.	5.1	284
48	Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology, 2012, 56, 2316-2327.	3.6	271
49	M2-like macrophages are responsible for collagen degradation through a mannose receptor–mediated pathway. Journal of Cell Biology, 2013, 202, 951-966.	2.3	269
50	Sitagliptin vs. placebo for non-alcoholic fatty liver disease: A randomized controlled trial. Journal of Hepatology, 2016, 65, 369-376.	1.8	264
51	The Role of Focal Adhesion Kinase-Phosphatidylinositol 3-Kinase-Akt Signaling in Hepatic Stellate Cell Proliferation and Type I Collagen Expression. Journal of Biological Chemistry, 2003, 278, 8083-8090.	1.6	261
52	Recent advancement of molecular mechanisms of liver fibrosis. Journal of Hepato-Biliary-Pancreatic Sciences, 2015, 22, 512-518.	1.4	259
53	Role of hepatic stellate cells in fibrogenesis and the reversal of fibrosis. Journal of Gastroenterology and Hepatology (Australia), 2007, 22, S73-S78.	1.4	254
54	Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 844-849.	3.3	247

#	Article	IF	CITATIONS
55	Hepatitis C virus-induced oxidative stress suppresses hepcidin expression through increased histone deacetylase activity. Hepatology, 2008, 48, 1420-1429.	3.6	245
56	Hepatic Stellate Cells Secrete Angiopoietin 1 That Induces Angiogenesis in Liver Fibrosis. Gastroenterology, 2008, 135, 1729-1738.	0.6	243
57	Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology, 2013, 57, 577-589.	3.6	242
58	Hepatic stellate cells and the reversal of fibrosis. Journal of Gastroenterology and Hepatology (Australia), 2006, 21, S84-S87.	1.4	230
59	A dual reporter gene transgenic mouse demonstrates heterogeneity in hepatic fibrogenic cell populations. Hepatology, 2004, 40, 1151-1159.	3.6	226
60	Hepatitis C virus core and nonstructural proteins induce fibrogenic effects in hepatic stellate cells. Gastroenterology, 2004, 126, 529-540.	0.6	225
61	The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology, 2001, 34, 89-100.	3.6	224
62	Human hepatic stellate cells express CCR5 and RANTES to induce proliferation and migration. American Journal of Physiology - Renal Physiology, 2003, 285, G949-G958.	1.6	224
63	c-Jun-N-terminal kinase drives cyclin D1 expression and proliferation during liver regeneration. Hepatology, 2003, 37, 824-832.	3.6	223
64	Delivery of matrix metalloproteinase-1 attenuates established liver fibrosis in the rat. Gastroenterology, 2003, 124, 445-458.	0.6	223
65	Effect of colesevelam on liver fat quantified by magnetic resonance in nonalcoholic steatohepatitis: A randomized controlled trial. Hepatology, 2012, 56, 922-932.	3.6	218
66	A gut microbiome signature for cirrhosis due to nonalcoholic fatty liver disease. Nature Communications, 2019, 10, 1406.	5.8	218
67	Role of glycogen synthase kinase-3 in TNF-α-induced NF-κB activation and apoptosis in hepatocytes. American Journal of Physiology - Renal Physiology, 2002, 283, G204-G211.	1.6	216
68	Roles for C16-ceramide and Sphingosine 1-Phosphate in Regulating Hepatocyte Apoptosis in Response to Tumor Necrosis Factor-α. Journal of Biological Chemistry, 2005, 280, 27879-27887.	1.6	205
69	Alcohol causes both tolerance and sensitization of rat Kupffer cells via mechanisms dependent on endotoxin. Gastroenterology, 1998, 115, 443-451.	0.6	200
70	Genetic Labeling Does Not Detect Epithelial-to-Mesenchymal Transition of Cholangiocytes in Liver Fibrosis in Mice. Gastroenterology, 2010, 139, 987-998.	0.6	200
71	JNK mediates hepatic ischemia reperfusion injury. Journal of Hepatology, 2005, 42, 850-859.	1.8	196
72	Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nature Immunology, 2012, 13, 1072-1082.	7.0	196

#	Article	IF	CITATIONS
73	The Enzymatic Defect in Variegate Porphyria. New England Journal of Medicine, 1980, 302, 765-769.	13.9	193
74	The Role of Fibrosis and Liver-Associated Fibroblasts in the Pathogenesis of Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2019, 20, 1723.	1.8	192
75	Innate immunity in alcoholic liver disease. American Journal of Physiology - Renal Physiology, 2011, 300, G516-G525.	1.6	191
76	Role of NADPH Oxidases in Liver Fibrosis. Antioxidants and Redox Signaling, 2014, 20, 2854-2872.	2.5	189
77	Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology, 2018, 67, 2150-2166.	3.6	189
78	Microbiome 101: Studying, Analyzing, and Interpreting Gut Microbiome Data for Clinicians. Clinical Gastroenterology and Hepatology, 2019, 17, 218-230.	2.4	187
79	Mechanisms of liver fibrosis and its role in liver cancer. Experimental Biology and Medicine, 2020, 245, 96-108.	1.1	183
80	What's new in liver fibrosis? The origin of myofibroblasts in liver fibrosis. Journal of Gastroenterology and Hepatology (Australia), 2012, 27, 65-68.	1.4	182
81	I. TNF-induced liver injury. American Journal of Physiology - Renal Physiology, 1998, 275, G387-G392.	1.6	179
82	DNase l–hypersensitive sites enhance α1(I) collagen gene expression in hepatic stellate cells. Hepatology, 2003, 37, 267-276.	3.6	179
83	The Focal Adhesion Kinase Suppresses Transformation-associated, Anchorage-independent Apoptosis in Human Breast Cancer Cells. Journal of Biological Chemistry, 2000, 275, 30597-30604.	1.6	177
84	Antifibrotic effects of a tissue inhibitor of metalloproteinase-1 antibody on established liver fibrosis in rats. Hepatology, 2004, 40, 1106-1115.	3.6	176
85	The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91phox mediate hepatic fibrosis in mice. Hepatology, 2011, 53, 1730-1741.	3.6	176
86	Oncogenic Ras activates c-Jun via a separate pathway from the activation of extracellular signal-regulated kinases Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 6030-6034.	3.3	174
87	Gastric acid suppression promotes alcoholic liver disease by inducing overgrowth of intestinal Enterococcus. Nature Communications, 2017, 8, 837.	5.8	174
88	New aspects of hepatic fibrosis. Journal of Hepatology, 2000, 32, 32-38.	1.8	172
89	c-Jun N-terminal Kinase-1 From Hematopoietic Cells Mediates Progression From Hepatic Steatosis to Steatohepatitis and Fibrosis in Mice. Gastroenterology, 2009, 137, 1467-1477.e5.	0.6	171
90	Inhibition of NF?B in activated rat hepatic stellate cells by proteasome inhibitors and an I?B super-repressor. Hepatology, 1998, 27, 1285-1295.	3.6	170

#	Article	IF	CITATIONS
91	Loss of MMP 13 attenuates murine hepatic injury and fibrosis during cholestasis. Hepatology, 2006, 44, 420-429.	3.6	169
92	Molecular pathogenesis of liver fibrosis. Transactions of the American Clinical and Climatological Association, 2009, 120, 361-8.	0.9	168
93	A Universal Gut-Microbiome-Derived Signature Predicts Cirrhosis. Cell Metabolism, 2020, 32, 878-888.e6.	7.2	167
94	NF-κB inactivation converts a hepatocyte cell line TNF-α response from proliferation to apoptosis. American Journal of Physiology - Cell Physiology, 1998, 275, C1058-C1066.	2.1	166
95	Deletion of IKK2 in hepatocytes does not sensitize these cells to TNF-induced apoptosis but protects from ischemia/reperfusion injury. Journal of Clinical Investigation, 2005, 115, 849-859.	3.9	165
96	Anandamide induces necrosis in primary hepatic stellate cells. Hepatology, 2005, 41, 1085-1095.	3.6	164
97	CX3CL1-CX3CR1 interaction prevents carbon tetrachloride-induced liver inflammation and fibrosis in mice. Hepatology, 2010, 52, 1390-1400.	3.6	163
98	Decreasing fibrogenesis: an immunohistochemical study of paired liver biopsies following lamivudine therapy for chronic hepatitis B. Journal of Hepatology, 2001, 35, 749-755.	1.8	161
99	Novel 3D Magnetic Resonance Elastography for the Noninvasive Diagnosis of Advanced Fibrosis in NAFLD: A Prospective Study. American Journal of Gastroenterology, 2016, 111, 986-994.	0.2	160
100	Deficiency of NOX1 or NOX4 Prevents Liver Inflammation and Fibrosis in Mice through Inhibition of Hepatic Stellate Cell Activation. PLoS ONE, 2015, 10, e0129743.	1.1	159
101	High molecular weight adiponectin inhibits proliferation of hepatic stellate cells via activation of adenosine monophosphate-activated protein kinase. Hepatology, 2008, 47, 677-685.	3.6	158
102	Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice. FASEB Journal, 2015, 29, 1043-1055.	0.2	156
103	Mechanisms of alcohol-induced hepatic fibrosis: A summary of the Ron Thurman Symposium. Hepatology, 2006, 43, 872-878.	3.6	155
104	Liver nbsp fibrosis signals leading to the amplification of the fibrogenic hepatic stellate cell. Frontiers in Bioscience - Landmark, 2003, 8, d69-77.	3.0	153
105	NOX in liver fibrosis. Archives of Biochemistry and Biophysics, 2007, 462, 266-272.	1.4	153
106	The Role of NADPH Oxidases (NOXs) in Liver Fibrosis and the Activation of Myofibroblasts. Frontiers in Physiology, 2016, 7, 17.	1.3	152
107	NF-κB stimulates inducible nitric oxide synthase to protect mouse hepatocytes from TNF-α– and Fas-mediated apoptosis. Gastroenterology, 2001, 120, 1251-1262.	0.6	151
108	TNF-α-Induced Sphingosine 1-Phosphate Inhibits Apoptosis Through a Phosphatidylinositol 3-Kinase/Akt Pathway in Human Hepatocytes. Journal of Immunology, 2001, 167, 173-180.	0.4	150

#	Article	IF	CITATIONS
109	CD40 Activates NF-κB and c-Jun N-Terminal Kinase and Enhances Chemokine Secretion on Activated Human Hepatic Stellate Cells. Journal of Immunology, 2001, 166, 6812-6819.	0.4	146
110	Anti-fibrogenic strategies and the regression of fibrosis. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2011, 25, 305-317.	1.0	144
111	Systemic infusion of angiotensin II exacerbates liver fibrosis in bile duct-ligated rats. Hepatology, 2005, 41, 1046-1055.	3.6	143
112	NF-kappaB Inhibits Expression of the alpha1(I) Collagen Gene. DNA and Cell Biology, 1999, 18, 751-761.	0.9	142
113	TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis. Journal of Clinical Investigation, 2014, 124, 3566-3578.	3.9	142
114	Liver Fibrogenesis: A New Role for the Renin–Angiotensin System. Antioxidants and Redox Signaling, 2005, 7, 1346-1355.	2.5	141
115	Link between gutâ€microbiome derived metabolite and shared geneâ€effects with hepatic steatosis and fibrosis in NAFLD. Hepatology, 2018, 68, 918-932.	3.6	141
116	Differential Expression of Human Lysyl Hydroxylase Genes, Lysine Hydroxylation, and Cross-Linking of Type I Collagen During Osteoblastic Differentiation In Vitro. Journal of Bone and Mineral Research, 1999, 14, 1272-1280.	3.1	140
117	The Forkhead Transcription Factor FoxO1 Regulates Proliferation and Transdifferentiation of Hepatic Stellate Cells. Gastroenterology, 2007, 132, 1434-1446.	0.6	140
118	Concanavalin A—induced liver cell damage: Activation of intracellular pathways triggered by tumor necrosis factor in miceâ~țâ~țâ~ț. Gastroenterology, 1998, 114, 1035-1045.	0.6	137
119	Nuclear factor κB in proliferation, activation, and apoptosis in rat hepatic stellate cells. Journal of Hepatology, 2000, 33, 49-58.	1.8	137
120	Nonalcoholic fatty liver disease with cirrhosis increases familial risk for advanced fibrosis. Journal of Clinical Investigation, 2017, 127, 2697-2704.	3.9	137
121	Differential requirement for câ€Jun NH 2 â€terminal kinase in TNFâ€Î±â€and Fasâ€mediated apoptosis in hepatocytes. FASEB Journal, 2004, 18, 720-722.	0.2	136
122	Protection from liver fibrosis by a peroxisome proliferator-activated receptor δagonist. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1369-76.	3.3	136
123	The Mitochondrial Permeability Transition Augments Fas-induced Apoptosis in Mouse Hepatocytes. Journal of Biological Chemistry, 2000, 275, 11814-11823.	1.6	135
124	Fibrogenesis of Parenchymal Organs. Proceedings of the American Thoracic Society, 2008, 5, 338-342.	3.5	134
125	A Simplified Method for the Preparation of Transcriptionally Active Liver Nuclear Extracts. DNA and Cell Biology, 1990, 9, 777-781.	0.9	129
126	Role of Toll-Like Receptors and Their Downstream Molecules in the Development of Nonalcoholic Fatty Liver Disease. Gastroenterology Research and Practice, 2010, 2010, 1-9.	0.7	126

#	Article	IF	CITATIONS
127	Role of Kupffer cells and gutâ€derived endotoxins in alcoholic liver injury 1. Journal of Gastroenterology and Hepatology (Australia), 2000, 15, 20-25.	1.4	123
128	Gliotoxin-mediated apoptosis of activated human hepatic stellate cells. Journal of Hepatology, 2003, 39, 38-46.	1.8	123
129	Enhanced sensitivity to DSS colitis caused by a hypomorphic <i>Mbtps1</i> mutation disrupting the ATF6-driven unfolded protein response. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3300-3305.	3.3	123
130	Development of a new, simple rat model of early alcohol-induced liver injury based on sensitization of kupffer cells. Hepatology, 1999, 29, 1680-1689.	3.6	122
131	TAK1/JNK and p38 have opposite effects on rat hepatic stellate cells. Hepatology, 2001, 34, 953-963.	3.6	119
132	Prolonged infusion of angiotensin II into normal rats induces stellate cell activation and proinflammatory events in liver. American Journal of Physiology - Renal Physiology, 2003, 285, G642-G651.	1.6	119
133	Angiotensin-converting-enzyme 2 inhibits liver fibrosis in mice. Hepatology, 2009, 50, 929-938.	3.6	117
134	Inherited human cPLA2α deficiency is associated with impaired eicosanoid biosynthesis, small intestinal ulceration, and platelet dysfunction. Journal of Clinical Investigation, 2008, 118, 2121-31.	3.9	116
135	IL-17 signaling in steatotic hepatocytes and macrophages promotes hepatocellular carcinoma in alcohol-related liver disease. Journal of Hepatology, 2020, 72, 946-959.	1.8	113
136	Neutralization of Oxidized Phospholipids Ameliorates Non-alcoholic Steatohepatitis. Cell Metabolism, 2020, 31, 189-206.e8.	7.2	113
137	Toll-Like Receptor 4 Mediates Alcohol-Induced Steatohepatitis Through Bone Marrow-Derived and Endogenous Liver Cells in Mice. Alcoholism: Clinical and Experimental Research, 2011, 35, no-no.	1.4	112
138	Identification of Lineage-Specific Transcription Factors That Prevent Activation of Hepatic Stellate Cells and Promote Fibrosis Resolution. Gastroenterology, 2020, 158, 1728-1744.e14.	0.6	112
139	Kupffer cell-derived prostaglandin E ₂ is involved in alcohol-induced fat accumulation in rat liver. American Journal of Physiology - Renal Physiology, 2000, 279, G100-G106.	1.6	111
140	Oxidative stress in alcoholic liver disease: Role of NADPH oxidase complex. Journal of Gastroenterology and Hepatology (Australia), 2008, 23, S98-103.	1.4	110
141	Effects of losartan on hepatic expression of nonphagocytic NADPH oxidase and fibrogenic genes in patients with chronic hepatitis C. American Journal of Physiology - Renal Physiology, 2009, 297, G726-G734.	1.6	110
142	Toll-Like Receptor 2–Mediated Intestinal Injury and Enteric Tumor Necrosis Factor Receptor I Contribute to Liver Fibrosis in Mice. Gastroenterology, 2012, 143, 1330-1340.e1.	0.6	108
143	Attenuated hepatic inflammation and fibrosis in angiotensin type 1a receptor deficient mice. Journal of Hepatology, 2005, 43, 317-323.	1.8	105
144	Recommendations for Probiotic Use—2015 Update. Journal of Clinical Gastroenterology, 2015, 49, S69-S73.	1.1	104

#	Article	IF	CITATIONS
145	Akt protects mouse hepatocytes from TNF-α- and Fas-mediated apoptosis through NK-κB activation. American Journal of Physiology - Renal Physiology, 2001, 281, G1357-G1368.	1.6	102
146	In Vivo Pattern of Lipopolysaccharide and Anti-CD3-Induced NF-κB Activation Using a Novel Gene-Targeted Enhanced GFP Reporter Gene Mouse. Journal of Immunology, 2004, 173, 1561-1570.	0.4	102
147	NADPH Oxidase in the Liver: Defensive, Offensive, or Fibrogenic?. Gastroenterology, 2006, 131, 272-275.	0.6	102
148	Immortal Activated Human Hepatic Stellate Cells Generated by Ectopic Telomerase Expression. Laboratory Investigation, 2002, 82, 323-333.	1.7	100
149	Clinical Syndromes of Alcoholic Liver Disease. Digestive Diseases, 2005, 23, 255-263.	0.8	100
150	Origin of myofibroblasts in liver fibrosis. Fibrogenesis and Tissue Repair, 2012, 5, S17.	3.4	99
151	Migration of Fibrocytes in Fibrogenic Liver Injury. American Journal of Pathology, 2011, 179, 189-198.	1.9	97
152	New Developments on the Treatment of Liver Fibrosis. Digestive Diseases, 2016, 34, 589-596.	0.8	97
153	Reduction of advanced liver fibrosis by short-term targeted delivery of an angiotensin receptor blocker to hepatic stellate cells in rats. Hepatology, 2010, 51, NA-NA.	3.6	96
154	TNFα is required for cholestasis-induced liver fibrosis in the mouse. Biochemical and Biophysical Research Communications, 2009, 378, 348-353.	1.0	91
155	TRAIL-mediated apoptosis requires NF-k B inhibition and the mitochondrial permeability transition in human hepatoma cells. Hepatology, 2002, 36, 1498-1508.	3.6	88
156	Transcriptional Repression of the Transforming Growth Factor β (TGF-β) Pseudoreceptor BMP and Activin Membrane-bound Inhibitor (BAMBI) by Nuclear Factor κB (NF-κB) p50 Enhances TGF-β Signaling in Hepatic Stellate Cells. Journal of Biological Chemistry, 2014, 289, 7082-7091.	1.6	88
157	Glutamine metabolism stimulates intestinal cell MAPKs by a cAMP-inhibitable, RAF-independent mechanism. Gastroenterology, 2000, 118, 90-100.	0.6	85
158	Tumor Necrosis Factor Alpha-Induced Interleukin-8 Production via NF-κB and Phosphatidylinositol 3-Kinase/Akt Pathways Inhibits Cell Apoptosis in Human Hepatocytes. Infection and Immunity, 2002, 70, 6294-6301.	1.0	85
159	The Role of p70S6K in Hepatic Stellate Cell Collagen Gene Expression and Cell Proliferation. Journal of Biological Chemistry, 2005, 280, 13374-13382.	1.6	85
160	Reversibility of Liver Fibrosis and Inactivation of Fibrogenic Myofibroblasts. Current Pathobiology Reports, 2013, 1, 209-214.	1.6	85
161	GIV/Girdin is a central hub for profibrogenic signalling networks during liver fibrosis. Nature Communications, 2014, 5, 4451.	5.8	84
162	Transient induction of C-jun during hepatic regeneration. Hepatology, 1990, 11, 909-915.	3.6	83

#	Article	IF	CITATIONS
163	Identifying nonalcoholic fatty liver disease patients with active fibrosis by measuring extracellular matrix remodeling rates in tissue and blood. Hepatology, 2017, 65, 78-88.	3.6	83
164	Activated hepatic stellate cells and portal fibroblasts contribute to cholestatic liver fibrosis in MDR2 knockout mice. Journal of Hepatology, 2019, 71, 573-585.	1.8	83
165	Sp1 binding activity increases in activated Ito cells. Hepatology, 1995, 22, 241-251.	3.6	82
166	c-Jun N-Terminal Kinase Mediates Hepatic Injury after Rat Liver Transplantation. Transplantation, 2004, 78, 324-332.	0.5	82
167	Reduced nicotinamide adenine dinucleotide phosphate oxidase mediates fibrotic and inflammatory effects of leptin on hepatic stellate cells. Hepatology, 2008, 48, 2016-2026.	3.6	81
168	The phenotypic fate and functional role for bone marrow-derived stem cells in liver fibrosis. Journal of Hepatology, 2012, 56, 965-972.	1.8	81
169	Role of Gut Microbiota in Liver Disease. Journal of Clinical Gastroenterology, 2015, 49, S25-S27.	1.1	81
170	Serum bile acid patterns are associated with the presence of NAFLD in twins, and doseâ€dependent changes with increase in fibrosis stage in patients with biopsyâ€proven NAFLD. Alimentary Pharmacology and Therapeutics, 2019, 49, 183-193.	1.9	80
171	Antiapoptotic Effect of c-Jun N-terminal Kinase-1 through Mcl-1 Stabilization in TNF-Induced Hepatocyte Apoptosis. Gastroenterology, 2009, 136, 1423-1434.	0.6	79
172	Gene delivery of Cu/Zn-superoxide dismutase improves graft function after transplantation of fatty livers in the rat. Hepatology, 2000, 32, 1255-1264.	3.6	78
173	Diagnosis and Management of Patients With α1-Antitrypsin (A1AT) Deficiency. Clinical Gastroenterology and Hepatology, 2012, 10, 575-580.	2.4	76
174	Promising Therapy Candidates for Liver Fibrosis. Frontiers in Physiology, 2016, 7, 47.	1.3	76
175	Intestinal Virome in Patients With Alcoholic Hepatitis. Hepatology, 2020, 72, 2182-2196.	3.6	74
176	Role and cellular source of nicotinamide adenine dinucleotide phosphate oxidase in hepatic fibrosis. Hepatology, 2010, 52, 1420-1430.	3.6	73
177	Confocal microscopy of the mitochondrial permeability transition in necrotic cell killing, apoptosis and autophagy. BioFactors, 1998, 8, 283-285.	2.6	72
178	NADPH Oxidase 1 in Liver Macrophages Promotes Inflammation and Tumor Development in Mice. Gastroenterology, 2019, 156, 1156-1172.e6.	0.6	72
179	Hepatic stellate cells primed with cytokines upregulate inflammation in response to peptidoglycan or lipoteichoic acid. Laboratory Investigation, 2006, 86, 676-686.	1.7	71
180	Heterogeneity of HSCs in a Mouse Model of NASH. Hepatology, 2021, 74, 667-685.	3.6	71

#	Article	IF	CITATIONS
181	NF-I/Sp1 Switch Elements Regulate Collagen α1(I) Gene Expression. DNA and Cell Biology, 1992, 11, 443-452.	0.9	70
182	From quiescence to activation: Gene regulation in hepatic stellate cells. Gastroenterology, 2004, 127, 1260-1262.	0.6	70
183	Molecular Pathogenesis of Alcohol-Induced Hepatic Fibrosis. Alcoholism: Clinical and Experimental Research, 2005, 29, 102S-109S.	1.4	70
184	Molecular Mechanisms of Alcohol-Induced Hepatic Fibrosis. Digestive Diseases, 2005, 23, 264-274.	0.8	70
185	Transforming Growth Factor-α Stimulates Proto-Oncogene c- <i>jun</i> Expression and a Mitogenic Program in Primary Cultures of Adult Rat Hepatocytes. DNA and Cell Biology, 1989, 8, 279-285.	5.1	69
186	TRAM2 Protein Interacts with Endoplasmic Reticulum Ca 2+ Pump Serca2b and Is Necessary for Collagen Type I Synthesis. Molecular and Cellular Biology, 2004, 24, 1758-1768.	1.1	69
187	Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis. Journal of Clinical Investigation, 2017, 127, 1254-1270.	3.9	69
188	Analysis of the collagen $\hat{I}_{\pm}(I)$ promoter. Nucleic Acids Research, 1989, 17, 6055-6064.	6.5	68
189	Activation of nuclear factor-κB during orthotopic liver transplantation in rats is protective and does not require kupffer cells. Liver Transplantation, 1999, 5, 282-293.	1.9	68
190	Therapeutic strategies for hepatic fibrosis. Hepatology, 1988, 8, 176-182.	3.6	67
191	Direct Hepatotoxic Effect of KC Chemokine in the Liver Without Infiltration of Neutrophils. Experimental Biology and Medicine, 2005, 230, 573-586.	1.1	67
192	Jun kinase modulates tumor necrosis factor-dependent apoptosis in liver cells. Hepatology, 2002, 36, 315-325.	3.6	65
193	Tumor necrosis factor α prevents tumor necrosis factor receptor-mediated mouse hepatocyte apoptosis, but not fas-mediated apoptosis: Role of nuclear factor-κB. Hepatology, 2000, 32, 1272-1279.	3.6	64
194	Liver Regeneration Is Suppressed in Small-for-Size Liver Grafts after Transplantation: Involvement of c-Jun N-terminal Kinase, Cyclin D1, and Defective Energy Supply. Transplantation, 2006, 82, 241-250.	0.5	64
195	Shared genetic effects between hepatic steatosis and fibrosis: A prospective twin study. Hepatology, 2016, 64, 1547-1558.	3.6	64
196	Matrix Metalloproteinase Gene Delivery for Liver Fibrosis. Pharmaceutical Research, 2008, 25, 249-258.	1.7	63
197	Aging increases the susceptibility of hepatic inflammation, liver fibrosis and aging in response to high-fat diet in mice. Age, 2016, 38, 291-302.	3.0	63
198	Bone Morphogenetic Protein 7 is Elevated in Patients with Chronic Liver Disease and Exerts Fibrogenic Effects on Human Hepatic Stellate Cells. Digestive Diseases and Sciences, 2007, 52, 3404-3415.	1.1	60

#	Article	IF	CITATIONS
199	Recent advances in liver stem cell therapy. Current Opinion in Gastroenterology, 2010, 26, 395-402.	1.0	60
200	Interleukin-6 Increases Rat Metalloproteinase-13 Gene Expression through Stimulation of Activator Protein 1 Transcription Factor in Cultured Fibroblasts. Journal of Biological Chemistry, 1999, 274, 30919-30926.	1.6	59
201	Combatting Fibrosis: Exosomeâ€Based Therapies in the Regression of Liver Fibrosis. Hepatology Communications, 2019, 3, 180-192.	2.0	58
202	c-Jun N-terminal kinase signaling in the pathogenesis of nonalcoholic fatty liver disease: Multiple roles in multiple steps. Hepatology, 2009, 49, 6-8.	3.6	57
203	Serum Levels of Alanine Aminotransferase Decrease With Age in Longitudinal Analysis. Clinical Gastroenterology and Hepatology, 2012, 10, 285-290.e1.	2.4	57
204	Norepinephrine induces calcium spikes and proinflammatory actions in human hepatic stellate cells. American Journal of Physiology - Renal Physiology, 2006, 291, G877-G884.	1.6	54
205	Alpha-1 antitrypsin Z protein (PiZ) increases hepatic fibrosis in a murine model of cholestasis. Hepatology, 2007, 46, 1443-1452.	3.6	53
206	Genetic Covariance Between γ-Glutamyl Transpeptidase and Fatty Liver Risk Factors: Role of β2-Adrenergic Receptor Genetic Variation in Twins. Gastroenterology, 2010, 139, 836-845.e1.	0.6	53
207	Regulation of α1(I) Collagen Messenger RNA Decay by Interactions with αCP at the 3′-Untranslated Region. Journal of Biological Chemistry, 2004, 279, 23822-23829.	1.6	51
208	[35] Methods for analyzing c-Jun kinase. Methods in Enzymology, 1995, 255, 342-359.	0.4	50
209	Cellular Differentiation Causes a Selective Down-regulation of Interleukin (IL)-1β-mediated NF-κB Activation and IL-8 Gene Expression in Intestinal Epithelial Cells. Journal of Biological Chemistry, 2000, 275, 12207-12213.	1.6	50
210	EFFECTS OF THREE SUPEROXIDE DISMUTASE GENES DELIVERED WITH AN ADENOVIRUS ON GRAFT FUNCTION AFTER TRANSPLANTATION OF FATTY LIVERS IN THE RAT1. Transplantation, 2003, 76, 28-37.	0.5	50
211	A fluorometric assay for measurement of protoporphyrinogen oxidase activity in mammalian tissue. Clinica Chimica Acta, 1980, 100, 259-266.	0.5	49
212	An exon 10 deletion in the mouse ferrochelatase gene has a dominant-negative effect and causes mild protoporphyria. Blood, 2002, 100, 1470-1477.	0.6	49
213	NADPH oxidase mediated oxidative stress in hepatic fibrogenesis. The Korean Journal of Hepatology, 2011, 17, 251.	1.5	49
214	Long-Term Alcohol Exposure Changes Sensitivity of Rat Kupffer Cells to Lipopolysaccharide. Alcoholism: Clinical and Experimental Research, 2001, 25, 1360-1367.	1.4	48
215	NF-κB activation in Kupffer cells after partial hepatectomy. American Journal of Physiology - Renal Physiology, 2005, 289, G530-G538.	1.6	48
216	Serum metabolites detect the presence of advanced fibrosis in derivation and validation cohorts of patients with non-alcoholic fatty liver disease. Gut, 2019, 68, 1884-1892.	6.1	48

#	Article	IF	CITATIONS
217	Analysis of signaling protein kinases in human colon or colorectal carcinomas. Digestive Diseases and Sciences, 1998, 43, 1454-1464.	1.1	47
218	TRAIL-mediated apoptosis requires NF-κB inhibition and the mitochondrial permeability transition in human hepatoma cells. Hepatology, 2002, 36, 1498-1508.	3.6	47
219	Expression of the NF-κB Target Gene X-Ray-Inducible Immediate Early Response Factor-1 Short Enhances TNF-α-Induced Hepatocyte Apoptosis by Inhibiting Akt Activation. Journal of Immunology, 2003, 170, 4053-4060.	0.4	47
220	Development of an animal model of chronic alcohol-induced pancreatitis in the rat. American Journal of Physiology - Renal Physiology, 2001, 280, G1178-G1186.	1.6	46
221	Salicylate Enhances Necrosis and Apoptosis Mediated by the Mitochondrial Permeability Transition. Toxicological Sciences, 2003, 73, 44-52.	1.4	46
222	Semaphorin 7A Contributes to TGF-β–Mediated Liver Fibrogenesis. American Journal of Pathology, 2013, 183, 820-830.	1.9	46
223	The role of human cytochrome P450 2E1 in liver inflammation and fibrosis. Hepatology Communications, 2017, 1, 1043-1057.	2.0	46
224	Association Between Obesity and Discordance in Fibrosis Stage Determination by Magnetic Resonance vs Transient Elastography in Patients With Nonalcoholic Liver Disease. Clinical Gastroenterology and Hepatology, 2018, 16, 1974-1982.e7.	2.4	46
225	Overexpression of Endoglin Modulates TGF-β1-Signalling Pathways in a Novel Immortalized Mouse Hepatic Stellate Cell Line. PLoS ONE, 2013, 8, e56116.	1.1	46
226	Nonâ€alcoholic steatohepatitisâ€induced fibrosis: Tollâ€like receptors, reactive oxygen species and Jun Nâ€terminal kinase. Hepatology Research, 2011, 41, 683-686.	1.8	45
227	Acid sphingomyelinase regulates glucose and lipid metabolism in hepatocytes through AKT activation and AMPâ€activated protein kinase suppression. FASEB Journal, 2011, 25, 1133-1144.	0.2	45
228	Stimulation of the collagen α1(I) endogenous gene and transgene in carbon tetrachloride–induced hepatic fibrosis. Hepatology, 1993, 17, 287-292.	3.6	44
229	Binding of Upstream Stimulatory Factor to an E-box in the 3′-Flanking Region Stimulates α1(I) Collagen Gene Transcription. Journal of Biological Chemistry, 1997, 272, 1753-1760.	1.6	44
230	Differential role of IκB kinase 1 and 2 in primary rat hepatocytes. Hepatology, 2001, 33, 81-90.	3.6	44
231	Inhibition of Collagen α1(I) Expression by the 5′ Stem-Loop as a Molecular Decoy. Journal of Biological Chemistry, 2002, 277, 18229-18237.	1.6	44
232	Hepatocarcinoma cells stimulate the growth, migration and expression of pro-angiogenic genes in human hepatic stellate cells. Liver International, 2010, 30, 31-41.	1.9	44
233	Akt activation protects rat liver from ischemia/reperfusion injury1. Journal of Surgical Research, 2004, 121, 159-170.	0.8	43
234	Corn oil rapidly activates nuclear factor-κB in hepatic Kupffer cells by oxidant-dependent mechanisms. Carcinogenesis, 1999, 20, 2095-2100.	1.3	41

#	Article	IF	CITATIONS
235	Roles of AKT and sphingosine kinase in the antiapoptotic effects of bile duct ligation in mouse liver. Hepatology, 2005, 42, 1320-1328.	3.6	41
236	Bradykinin Attenuates Hepatocellular Damage and Fibrosis in Rats With Chronic Liver Injury. Gastroenterology, 2007, 133, 2019-2028.	0.6	41
237	Inactivation of myofibroblasts during regression of liver fibrosis. Cell Cycle, 2013, 12, 381-382.	1.3	39
238	Comparison of cathepsin L synthesized by normal and transformed cells at the gene, message, protein, and oligosaccharide levels. Archives of Biochemistry and Biophysics, 1990, 283, 447-457.	1.4	38
239	5′ Stem-Loop of Collagen α1(I) mRNA Inhibits Translationin Vitro but Is Required for Triple Helical Collagen Synthesis in Vivo. Journal of Biological Chemistry, 2003, 278, 927-933.	1.6	38
240	Fibrocyte-like cells recruited to the spleen support innate and adaptive immune responses to acute injury or infection. Journal of Molecular Medicine, 2011, 89, 997-1013.	1.7	38
241	Characterization of the interaction between alphaCP2 and the 3'-untranslated region of collagen alpha1(I) mRNA. Nucleic Acids Research, 2000, 28, 4306-4316.	6.5	36
242	Genomics of Liver Fibrosis and Cirrhosis. Seminars in Liver Disease, 2007, 27, 028-043.	1.8	36
243	Expression of small heat shock protein αB-crystallin is induced after hepatic stellate cell activation. American Journal of Physiology - Renal Physiology, 2000, 279, G1333-G1342.	1.6	34
244	Pronase destroys the lipopolysaccharide receptor CD14 on Kupffer cells. American Journal of Physiology - Renal Physiology, 1999, 276, G591-G598.	1.6	33
245	Estriol sensitizes rat Kupffer cells via gut-derived endotoxin. American Journal of Physiology - Renal Physiology, 1999, 277, G671-G677.	1.6	32
246	Primary cirrhotic hepatocytes resist TGF\$beta;-induced apoptosis through a ROS-dependent mechanism. Journal of Hepatology, 2004, 40, 942-951.	1.8	32
247	What goes up must come down: The emerging role of microRNA in fibrosis. Hepatology, 2011, 53, 4-6.	3.6	32
248	Deletion of the ferrochelatase gene in a patient with protoporphyria. Human Molecular Genetics, 1994, 3, 1695-1697.	1.4	30
249	Autocrine expression of activated transforming growth factor-β ₁ induces apoptosis in normal rat liver. American Journal of Physiology - Renal Physiology, 2001, 280, G139-G148.	1.6	30
250	p18(INK4c) collaborates with other CDK-inhibitory proteins in the regenerating liver. Hepatology, 2003, 37, 833-841.	3.6	29
251	Up-regulated eotaxin plasma levels in chronic liver disease patients indicate hepatic inflammation, advanced fibrosis and adverse clinical course. Journal of Gastroenterology and Hepatology (Australia), 2007, 22, 1256-1264.	1.4	29
252	New therapies for hepatic fibrosis. Clinics and Research in Hepatology and Gastroenterology, 2015, 39, S75-S79.	0.7	29

#	Article	IF	CITATIONS
253	Blockade of IL-17 signaling reverses alcohol-induced liver injury and excessive alcohol drinking in mice. JCI Insight, 2020, 5, .	2.3	29
254	Mutation of the 5′-Untranslated Region Stem-Loop Structure Inhibits α1(I) Collagen Expression in Vivo. Journal of Biological Chemistry, 2011, 286, 8609-8619.	1.6	28
255	Protective effect of human serum amyloid P on CCl4-induced acute liver injury in mice. International Journal of Molecular Medicine, 2017, 40, 454-464.	1.8	28
256	Analysis of the Human Ferrochelatase Promoter in Transgenic Mice. Blood, 1998, 92, 320-328.	0.6	26
257	Pharmacological inhibition of P2RX7 ameliorates liver injury by reducing inflammation and fibrosis. PLoS ONE, 2020, 15, e0234038.	1.1	26
258	Confocal microscopy of the mitochondrial permeability transition in necrotic and apoptotic cell death. Biochemical Society Symposia, 1999, 66, 205-222.	2.7	26
259	Contribution of bone marrow-derived fibrocytes to liver fibrosis. Hepatobiliary Surgery and Nutrition, 2015, 4, 34-47.	0.7	26
260	Analysis of ferrochelatase expression during hematopoietic development of embryonic stem cells. Blood, 2000, 95, 3568-3577.	0.6	25
261	Inhibition of transforming growth factor-l²/Smad signaling improves regeneration of small-for-size rat liver grafts. Liver Transplantation, 2010, 16, 181-190.	1.3	25
262	Reversibility of liver fibrosis. Gastroenterology and Hepatology, 2013, 9, 737-9.	0.2	25
263	The genetics of nonalcoholic fatty liver disease. Annals of Hepatology, 2007, 6, 83-88.	0.6	24
264	YIPF6 controls sorting of FGF21 into COPII vesicles and promotes obesity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15184-15193.	3.3	24
265	Inhibition of nuclear factor κB and phosphatidylinositol 3-kinase/Akt is essential for massive hepatocyte apoptosis induced by tumor necrosis factor α in mice. Liver International, 2003, 23, 386-396.	1.9	23
266	The role of NF-κB in hepatocarcinogenesis: Promoter or suppressor?. Journal of Hepatology, 2007, 47, 307-309.	1.8	23
267	Nuclear Factor-κB in the Liver: Friend or Foe?. Gastroenterology, 2007, 132, 2601-2604.	0.6	23
268	Is it the end of the line for the EMT?. Hepatology, 2011, 53, 1433-1435.	3.6	23
269	Targeting the Wnt signaling pathway through R-spondin 3 identifies an anti-fibrosis treatment strategy for multiple organs. PLoS ONE, 2020, 15, e0229445.	1.1	23
270	CRIg on liver macrophages clears pathobionts and protects against alcoholic liver disease. Nature Communications, 2021, 12, 7172.	5.8	22

#	Article	IF	CITATIONS
271	The Crosstalk between Hepatocytes, Hepatic Macrophages, and Hepatic Stellate Cells Facilitates Alcoholic Liver Disease. Cell Metabolism, 2019, 30, 850-852.	7.2	21
272	Collagen Formation Assessed by Nâ€Terminal Propeptide of Type 3 Procollagen Is a Heritable Trait and Is Associated With Liver Fibrosis Assessed by Magnetic Resonance Elastography. Hepatology, 2019, 70, 127-141.	3.6	21
273	Sp1 binding activity increases in activated ito cells*1. Hepatology, 1995, 22, 241-251.	3.6	20
274	Zinc finger protein 267 is up-regulated during the activation process of human hepatic stellate cells and functions as a negative transcriptional regulator of MMP-10. Biochemical and Biophysical Research Communications, 2005, 335, 87-96.	1.0	20
275	Systemic mediators induce fibrogenic effects in normal liver after partial bile duct ligation. Liver International, 2006, 26, 1138-1147.	1.9	20
276	Dominant-negative TAK1 induces c-Myc and G ₀ exit in liver. American Journal of Physiology - Renal Physiology, 2001, 281, G1279-G1289.	1.6	19
277	Increased expression of collagenase in the liver induces hepatocyte proliferation with cytoplasmic accumulation of β-catenin in the rat. Journal of Hepatology, 2003, 38, 468-475.	1.8	19
278	Lipopolysaccharide-binding protein modulates hepatic damage and the inflammatory response after hemorrhagic shock and resuscitation. American Journal of Physiology - Renal Physiology, 2006, 291, G456-G463.	1.6	19
279	Nonalcoholic Steatohepatitis and HCC in a Hyperphagic Mouse Accelerated by Western Diet. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 891-920.	2.3	17
280	c-Jun Does Not Mediate Hepatocyte Apoptosis Following NFκB Inhibition and Partial Hepatectomy. Journal of Surgical Research, 2000, 88, 142-149.	0.8	16
281	Epimorphin, a morphogenic protein, induces proteases in rodent hepatocytes through NF-κB. Journal of Hepatology, 2007, 47, 834-843.	1.8	16
282	Synectin promotes fibrogenesis by regulating PDGFR isoforms through distinct mechanisms. JCI Insight, 2017, 2, .	2.3	16
283	Minimizing oxidative stress by gene delivery of superoxide dismutase accelerates regeneration after transplantation of reduced-size livers in the rat. Liver Transplantation, 2006, 12, 550-559.	1.3	15
284	The enteropathy of prostaglandin deficiency. Journal of Gastroenterology, 2009, 44, 1-7.	2.3	15
285	Ferrochelatase cDNA Delivered by Adenoviral Vector Corrects Biochemical Defect in Protoporphyric Cells. Human Gene Therapy, 1995, 6, 1285-1290.	1.4	14
286	What is the potential role of antifibrotic agents for the treatment of liver disease?. Nature Reviews Gastroenterology & Hepatology, 2008, 5, 496-497.	1.7	14
287	Intestinal α1-2-Fucosylation Contributes to Obesity and Steatohepatitis in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 293-320.	2.3	14
288	Targeted disruption of the mouse ferrochelatase gene producing an exon 10 deletion. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1999, 1453, 161-174.	1.8	13

#	Article	IF	CITATIONS
289	Porphyrias. Journal of Clinical Gastroenterology, 1998, 27, 192-198.	1.1	12
290	Traditional Chinese Medicine Fuzheng Huayu Prevents Development of Liver Fibrosis in Mice. Archives of Clinical and Biomedical Research, 2020, 04, 561-580.	0.1	12
291	Different mechanisms decrease hepatic collagen and albumin production in fasted rats. Hepatology, 1988, 8, 1040-1045.	3.6	11
292	Moderate alcohol drinking: Effects on the heart and liver. Gastroenterology, 2000, 119, 1399-1401.	0.6	11
293	Functional Microbial Responses to Alcohol Abstinence in Patients With Alcohol Use Disorder. Frontiers in Physiology, 2020, 11, 370.	1.3	11
294	Immunotherapy-based targeting of MSLN ⁺ activated portal fibroblasts is a strategy for treatment of cholestatic liver fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
295	Hepatic progenitors for liver disease: current position. Stem Cells and Cloning: Advances and Applications, 2010, 3, 39.	2.3	10
296	Alteration of Interferon-α/β Receptors in Chronic Hepatitis B Patients. Journal of Clinical Immunology, 2011, 31, 521-532.	2.0	10
297	DNA methylation controls liver fibrogenesis. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 126-128.	8.2	10
298	Of Mice and Men and Nonalcoholic Steatohepatitis. Hepatology, 2018, 68, 2059-2061.	3.6	10
299	Nondegradable Collagen Increases Liver Fibrosis but Not Hepatocellular Carcinoma in Mice. American Journal of Pathology, 2021, 191, 1564-1579.	1.9	10
300	TNFα-induced hepatocyte apoptosis is associated with alterations of the cell cycle and decreased stem loop binding protein. Surgery, 2004, 135, 619-628.	1.0	9
301	Staging of fibrosis in experimental non-alcoholic steatohepatitis by quantitative molecular imaging in rat models. Nuclear Medicine and Biology, 2016, 43, 179-187.	0.3	9
302	Cardiovascular health of nonagenarians in southern Italy: a cross-sectional, home-based pilot study of longevity. Journal of Cardiovascular Medicine, 2020, 21, 89-98.	0.6	9
303	Techniques to Measure Nucleic Acid-Protein Binding and Specificity: Nuclear Extract Preparations, DNase I Footprinting, and Mobility Shift Assays. , 2001, 160, 459-479.		7
304	Cognitive Health of Nonagenarians in Southern Italy: A Descriptive Analysis from a Cross-Sectional, Home-Based Pilot Study of Exceptional Longevity (Cilento Initiative on Aging Outcomes or CIAO). Medicina (Lithuania), 2020, 56, 218.	0.8	7
305	HEPATIC PORPHYRIAS. Clinics in Liver Disease, 1998, 2, 77-102.	1.0	6
306	Gastrointestinal basic science 2002?2003: the year in review. Clinical Gastroenterology and Hepatology, 2004, 2, 9-13.	2.4	5

#	Article	IF	CITATIONS
307	Next-generation academic medicine. Journal of Clinical Investigation, 2012, 122, 4280-4282.	3.9	5
308	Heme content of normal and porphyric cultured skin fibroblasts. Biochemical Genetics, 1977, 15, 1061-1070.	0.8	4
309	Transforming growth factor B and hepatic fibrosis: Cause or effect?. Hepatology, 1991, 14, 740-742.	3.6	4
310	Stellate Cells, Portal Myofibroblasts, and Epithelial-to-Mesenchymal Transition. , 2015, , 87-106.		4
311	Mutation of the 5′-untranslated region stem-loop mRNA structure reduces type I collagen deposition and arterial stiffness in male obese mice. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H435-H445.	1.5	4
312	Molecular and cellular biology of the small intestine. Current Opinion in Gastroenterology, 1998, 14, 90-93.	1.0	3
313	Pathogenesis of alcoholic hepatitis. Journal of Gastroenterology and Hepatology (Australia), 2004, 19, S229-S235.	1.4	3
314	Fra, Fra Away: The complex role of activator protein 1 in liver injury. Hepatology, 2014, 59, 19-20.	3.6	3
315	PNPLA3 downregulation exacerbates the fibrotic response in human hepatic stellate cells. PLoS ONE, 2021, 16, e0260721.	1.1	3
316	Molecular and cellular biology of the small intestine. Current Opinion in Gastroenterology, 1996, 12, 115-121.	1.0	2
317	Gastro-Central, one year later. Gastroenterology, 2002, 123, 5-6.	0.6	2
318	Immunosuppression, Hepatitis B Virus Variants: Synergistic Role in Hepatic Fibrogenesis. Gastroenterology, 2006, 131, 957-960.	0.6	2
319	Pathogenesis of Hepatic Fibrosis. , 0, , 658-679.		2
320	G astroenterology 's Editors-in-Chief: Historical and Personal Perspectives of Their Editorships. Gastroenterology, 2013, 145, 16-31.	0.6	2
321	Thomas E. Starzl: Transplantation pioneer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10808-10809.	3.3	2
322	Previous liver regeneration induces fibro-protective mechanisms during thioacetamide-induced chronic liver injury. International Journal of Biochemistry and Cell Biology, 2021, 134, 105933.	1.2	2
323	Molecular and cell biology of the small intestine. Current Opinion in Gastroenterology, 1991, 7, 202-206.	1.0	1
324	Transforming growth factor-l²1: There is regulation beyond transcription. Hepatology, 1993, 17, 164-167.	3.6	1

#	Article	IF	CITATIONS
325	Information Assimilation and Distribution Challenges and Goals for Real and Virtual Journals. Journal of Clinical Gastroenterology, 2005, 39, 181-188.	1.1	1
326	Toll-like receptor signaling in the liver. , 2006, , 125-142.		1
327	The Future of Gastroenterology and Gastroenterology. Gastroenterology, 2006, 130, 1562.	0.6	1
328	Long-Term Alcohol Exposure Changes Sensitivity of Rat Kupffer Cells to Lipopolysaccharide. Alcoholism: Clinical and Experimental Research, 2001, 25, 1360-1367.	1.4	1
329	Molecular and cellular biology of the small intestine. Current Opinion in Gastroenterology, 1999, 15, 103.	1.0	1
330	Analysis of ferrochelatase expression during hematopoietic development of embryonic stem cells. Blood, 2000, 95, 3568-3577.	0.6	1
331	The in vivo role of Sma3 in mediating CCl4 induced liver fibrosis. Gastroenterology, 2000, 118, A987.	0.6	Ο
332	Lysyl hydroxylase gene expression and collagen cross-linking in normal, acute hepatic failure and cirrhotic human liver. Gastroenterology, 2000, 118, A988.	0.6	0
333	Comment From the Editors. Gastroenterology, 2001, 121, 3.	0.6	Ο
334	Cooperation of p18INK4c with p21CIP1/WAF1 and p27KIP1 in liver-regeneration. Journal of Hepatology, 2002, 36, 19.	1.8	0
335	MELD and the practicing gastroenterologist. Gastroenterology, 2003, 125, 1009.	0.6	Ο
336	Jon Isenberg (1937–2003). Gastroenterology, 2003, 125, 1571-1572.	0.6	0
337	Data from arrays: An embarrassment of riches. Gastroenterology, 2004, 127, 1659.	0.6	Ο
338	Extracellular matrix combinations differentially modulate hepatic stellate cell biology. Digestive and Liver Disease, 2008, 40, A132-A133.	0.4	0
339	578 Human Serum Amyloid P (Hsap) Inhibits Bile Duct Ligation Induced Liver Fibrosis in Mice. Gastroenterology, 2008, 134, A-768.	0.6	Ο
340	Molecular Biological Approaches to the Diagnosis and Treatment of Gastrointestinal Diseases. , 0, , 703-716.		0
341	Apoptosis in Liver Injury and Liver Diseases. , 2009, , 547-564.		0
342	Tu1028 Correlation Between Liver Histology and Novel Magnetic Resonance Imaging in Adult Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology, 2012, 142, S-1014-S-1015.	0.6	0

0

#	Article	IF	CITATIONS
343	297 Deletion of Fibrocytes in Mice Attenuates Experimental Liver Fibrosis. Gastroenterology, 2013, 144, S-940.	0.6	Ο
344	Mo1005 Effect of Weight Loss on Novel MRI Quantitative Changes in Liver and Pancreatic Fat in Patients With Biopsy-Proven Nonalcoholic Fatty Liver Disease. Gastroenterology, 2013, 144, S-1010-S-1011.	0.6	0
345	208 Deletion of PPARy in Hepatic Stellate Cells Attenuates Regression of Liver Fibrosis. Gastroenterology, 2013, 144, S-938.	0.6	0
346	Fibroblast growth factor inducible 14 as potential target in patients with alcoholic hepatitis. Gut, 2013, 62, 335-336.	6.1	0
347	903 Novel Association Between Serum Pentraxin-2 Levels and Advanced Fibrosis in Well-Characterized Patients With NAFLD. Gastroenterology, 2015, 148, S-999-S-1000.	0.6	0
348	226 The Mechanism of Hepatic Stellate Cell Inactivation During Reversal of Liver Fibrosis. Gastroenterology, 2016, 150, S1020-S1021.	0.6	0
349	Tu1697 Mesothelin Signaling Regulates Proliferation of Portal Fibroblasts and Contributes to the Pathogenesis of Cholestatic Liver Fibrosis in Mice. Gastroenterology, 2016, 150, S1165-S1166.	0.6	0
350	Mo1542 Effect of Weight Loss on MRE Estimated Stiffness in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology, 2016, 150, S1140.	0.6	0
351	The Characteristics of Myofibroblasts in Various Cholestatic Liver Injury Models in Mice. Gastroenterology, 2017, 152, S1104.	0.6	0
352	Western Diet Accelerates NASH in foz / foz Mouse. Gastroenterology, 2017, 152, S1118.	0.6	0
353	The Role of Human CYP2E1 in Liver Fibrosis. Gastroenterology, 2017, 152, S1072-S1073.	0.6	0
354	Regulation of TNF-Î \pm - and Fas-Induced Hepatic Apoptosis by NF-ΰB. , 2002, , 27-32.		0
355	Molecular Pathogenesis of Alcoholic Liver Disease. Acta Hepatologica Japonica, 2004, 45, A524-A524.	0.0	0
356	The Liver's Response to Injury. , 2018, , 77-83.e5.		0
357	PCL22-187: Functional Role of TREM2 in NASH and HCC Development. Journal of the National Comprehensive Cancer Network: JNCCN, 2022, 20, PCL22-187.	2.3	0

358

Introducing <i>PNAS Nexus</i>., 2022, 1, .