Alexandra Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8412539/publications.pdf

Version: 2024-02-01

88 papers	11,286 citations	47006 47 h-index	90 g-index
102	102	102	11783
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Molecular Identification and Cellular Localization of a Corticotropin-Releasing Hormone-Type Neuropeptide in an Echinoderm. Neuroendocrinology, 2023, 113, 231-250.	2.5	7
2	Stimulation of Distinct Rhizosphere Bacteria Drives Phosphorus and Nitrogen Mineralization in Oilseed Rape under Field Conditions. MSystems, 2022, 7, .	3.8	7
3	Niche-adaptation in plant-associated <i>Bacteroidetes</i> favours specialisation in organic phosphorus mineralisation. ISME Journal, 2021, 15, 1040-1055.	9.8	74
4	Host-interactor screens of <i>Phytophthora infestans</i> RXLR proteins reveal vesicle trafficking as a major effector-targeted process. Plant Cell, 2021, 33, 1447-1471.	6.6	46
5	Transfer of stabilising mutations between different secondary active transporter families. FEBS Open Bio, 2021, 11, 1685-1694.	2.3	1
6	Structural and functional insights into the mechanism of action of plant borate transporters. Scientific Reports, 2021, 11, 12328.	3.3	4
7	The RNA-binding protein lgf2bp3 is critical for embryonic and germline development in zebrafish. PLoS Genetics, 2021, 17, e1009667.	3.5	5
8	Activation loop phosphorylation of a non-RD receptor kinase initiates plant innate immune signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	12
9	Ancient role of sulfakinin/cholecystokinin-type signalling in inhibitory regulation of feeding processes revealed in an echinoderm. ELife, $2021,10,.$	6.0	22
10	Comparative Genomics across Three Ensifer Species Using a New Complete Genome Sequence of the Medicago Symbiont Sinorhizobium (Ensifer) meliloti WSM1022. Microorganisms, 2021, 9, 2428.	3.6	3
11	Strategies for successful isolation of a eukaryotic transporter. Protein Expression and Purification, 2020, 166, 105522.	1.3	5
12	Current status of the multinational Arabidopsis community. Plant Direct, 2020, 4, e00248.	1.9	13
13	Molecular and functional characterization of somatostatin-type signalling in a deuterostome invertebrate. Open Biology, 2020, 10, 200172.	3.6	26
14	Regulation of Expression of Autophagy Genes by Atg8a-Interacting Partners Sequoia, YL-1, and Sir2 in Drosophila. Cell Reports, 2020, 31, 107695.	6.4	19
15	Echinoderms provide missing link in the evolution of PrRP/sNPF-type neuropeptide signalling. ELife, 2020, 9, .	6.0	25
16	Expanding the Zebrafish Genetic Code through Site-Specific Introduction of Azido-lysine, Bicyclononyne-lysine, and Diazirine-lysine. International Journal of Molecular Sciences, 2019, 20, 2577.	4.1	10
17	Phosphoregulation of tropomyosin is crucial for actin cable turnover and division site placement. Journal of Cell Biology, 2019, 218, 3548-3559.	5.2	16
18	Rapid production of pure recombinant actin isoforms in $\langle i \rangle$ Pichia pastoris $\langle i \rangle$. Journal of Cell Science, 2018, 131, .	2.0	31

#	Article	IF	CITATIONS
19	Functional characterization of a second pedal peptide/orcokininâ€type neuropeptide signaling system in the starfish <i>Asterias rubens</i>). Journal of Comparative Neurology, 2018, 526, 858-876.	1.6	26
20	SNAREs SYP121 and SYP122 Mediate the Secretion of Distinct Cargo Subsets. Plant Physiology, 2018, 178, 1679-1688.	4.8	56
21	Updates of the Inâ€Gel Digestion Method for Protein Analysis by Mass Spectrometry. Proteomics, 2018, 18, e1800236.	2.2	37
22	Determination of Boron Content Using a Simple and Rapid Miniaturized Curcumin Assay. Bio-protocol, 2018, 8, .	0.4	13
23	Biochemical, Anatomical, and Pharmacological Characterization of Calcitonin-Type Neuropeptides in Starfish: Discovery of an Ancient Role as Muscle Relaxants. Frontiers in Neuroscience, 2018, 12, 382.	2.8	34
24	Cellular localization of relaxinâ€like gonadâ€stimulating peptide expression in <i>Asterias rubens</i> New insights into neurohormonal control of spawning in starfish. Journal of Comparative Neurology, 2017, 525, 1599-1617.	1.6	47
25	The â€~known' genetic potential for microbial communities to degrade organic phosphorus is reduced in lowâ€pH soils. MicrobiologyOpen, 2017, 6, e00474.	3.0	34
26	Identification of extracellular glycerophosphodiesterases in Pseudomonas and their role in soil organic phosphorus remineralisation. Scientific Reports, 2017, 7, 2179.	3. 3	30
27	Pedal peptide/orcokininâ€type neuropeptide signaling in a deuterostome: The anatomy and pharmacology of starfish myorelaxant peptide in <i>Asterias rubens</i> . Journal of Comparative Neurology, 2017, 525, 3890-3917.	1.6	35
28	Comparative genomic, proteomic and exoproteomic analyses of three <i>Pseudomonas</i> strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria. Environmental Microbiology, 2016, 18, 3535-3549.	3.8	95
29	The Proteasome Acts as a Hub for Plant Immunity and Is Targeted by <i>Pseudomonas</i> Type III Effectors. Plant Physiology, 2016, 172, 1941-1958.	4.8	94
30	Probing formation of cargo/importinâ€Î± transport complexes in plant cells using a pathogen effector. Plant Journal, 2015, 81, 40-52.	5.7	48
31	Site Specific Genetic Incorporation of Azidophenylalanine in Schizosaccharomyces pombe. Scientific Reports, 2015, 5, 17196.	3.3	18
32	Phytophthora infestans RXLR-WY Effector AVR3a Associates with Dynamin-Related Protein 2 Required for Endocytosis of the Plant Pattern Recognition Receptor FLS2. PLoS ONE, 2015, 10, e0137071.	2.5	78
33	Identification of Regulatory and Cargo Proteins of Endosomal and Secretory Pathways in Arabidopsis thaliana by Proteomic Dissection*. Molecular and Cellular Proteomics, 2015, 14, 1796-1813.	3.8	101
34	The Plasmodesmal Protein PDLP1 Localises to Haustoria-Associated Membranes during Downy Mildew Infection and Regulates Callose Deposition. PLoS Pathogens, 2014, 10, e1004496.	4.7	130
35	Identification of Post-translational Modifications of Plant Protein Complexes. Journal of Visualized Experiments, 2014, , e51095.	0.3	5
36	Effector Specialization in a Lineage of the Irish Potato Famine Pathogen. Science, 2014, 343, 552-555.	12.6	179

#	Article	lF	Citations
37	Chaperones of the endoplasmic reticulum are required for Ve1 â€mediated resistance to V erticillium. Molecular Plant Pathology, 2014, 15, 109-117.	4.2	33
38	Identification of Related Peptides through the Analysis of Fragment Ion Mass Shifts. Journal of Proteome Research, 2014, 13, 4002-4011.	3.7	7
39	Direct Regulation of the NADPH Oxidase RBOHD by the PRR-Associated Kinase BIK1 during Plant Immunity. Molecular Cell, 2014, 54, 43-55.	9.7	744
40	From pathogen genomes to host plant processes: the power of plant parasitic oomycetes. Genome Biology, 2013, 14, 211.	8.8	64
41	Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10010-10015.	7.1	272
42	Editorial: Mechanisms regulating immunity in plants. Frontiers in Plant Science, 2013, 4, 64.	3.6	10
43	The Tomato Prf Complex Is a Molecular Trap for Bacterial Effectors Based on Pto Transphosphorylation. PLoS Pathogens, 2013, 9, e1003123.	4.7	49
44	MRMaid: The SRM Assay Design Tool for Arabidopsis and Other Species. Frontiers in Plant Science, 2012, 3, 164.	3.6	30
45	The Irish Potato Famine Pathogen Phytophthora infestans Translocates the CRN8 Kinase into Host Plant Cells. PLoS Pathogens, 2012, 8, e1002875.	4.7	77
46	Endoplasmic Reticulum-Quality Control Chaperones Facilitate the Biogenesis of Cf Receptor-Like Proteins Involved in Pathogen Resistance of Tomato Â. Plant Physiology, 2012, 159, 1819-1833.	4.8	63
47	The <i>Ph1</i> Locus Suppresses Cdk2-Type Activity during Premeiosis and Meiosis in Wheat Â. Plant Cell, 2012, 24, 152-162.	6.6	109
48	The HUPO initiative on Model Organism Proteomes, iMOP. Proteomics, 2012, 12, 340-345.	2.2	9
49	Molecular Crosstalk Between PAMP-Triggered Immunity and Photosynthesis. Molecular Plant-Microbe Interactions, 2012, 25, 1083-1092.	2.6	162
50	Purification of Effector–Target Protein Complexes via Transient Expression in Nicotiana benthamiana. Methods in Molecular Biology, 2011, 712, 181-194.	0.9	90
51	<i>Phytophthora infestans</i> effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20832-20837.	7.1	285
52	Phosphoproteomics Using iTRAQ. Methods in Molecular Biology, 2011, 779, 287-302.	0.9	14
53	The <i>Arabidopsis</i> Leucine-Rich Repeat Receptor–Like Kinases BAK1/SERK3 and BKK1/SERK4 Are Required for Innate Immunity to Hemibiotrophic and Biotrophic Pathogens. Plant Cell, 2011, 23, 2440-2455.	6.6	578
54	The Chemoselective Oneâ€Step Alkylation and Isolation of Thiophosphorylated Cdk2 Substrates in the Presence of Native Cysteine. ChemBioChem, 2011, 12, 633-640.	2.6	8

#	Article	IF	Citations
55	MASCP Gator: An Aggregation Portal for the Visualization of Arabidopsis Proteomics Data. Plant Physiology, 2011, 155, 259-270.	4.8	94
56	Phosphorylation-Dependent Differential Regulation of Plant Growth, Cell Death, and Innate Immunity by the Regulatory Receptor-Like Kinase BAK1. PLoS Genetics, 2011, 7, e1002046.	3.5	439
57	Analysis of the phosphoproteome of the multicellular bacterium <i>Streptomyces coelicolor</i> A3(2) by protein/peptide fractionation, phosphopeptide enrichment and highâ€accuracy mass spectrometry. Proteomics, 2010, 10, 2486-2497.	2.2	68
58	Prf immune complexes of tomato are oligomeric and contain multiple Ptoâ€like kinases that diversify effector recognition. Plant Journal, 2010, 61, 507-518.	5.7	116
59	Putative <i>Arabidopsis</i> THO/TREX mRNA export complex is involved in transgene and endogenous siRNA biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13948-13953.	7.1	101
60	PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Research, 2010, 38, D828-D834.	14.5	346
61	The Lysin Motif Receptor-like Kinase (LysM-RLK) CERK1 Is a Major Chitin-binding Protein in Arabidopsis thaliana and Subject to Chitin-induced Phosphorylation. Journal of Biological Chemistry, 2010, 285, 28902-28911.	3.4	392
62	Altered interactions within FY/AtCPSF complexes required for <i>Arabidopsis</i> FCA-mediated chromatin silencing. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8772-8777.	7.1	36
63	Host Inhibition of a Bacterial Virulence Effector Triggers Immunity to Infection. Science, 2009, 324, 784-787.	12.6	120
64	Effector Proteins of the Bacterial Pathogen Pseudomonas syringae Alter the Extracellular Proteome of the Host Plant, Arabidopsis thaliana. Molecular and Cellular Proteomics, 2009, 8, 145-156.	3.8	107
65	Selective recruitment of proteins to 5′ cap complexes during the growth cycle in Arabidopsis. Plant Journal, 2009, 59, 400-412.	5.7	53
66	Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 2009, 461, 393-398.	27.8	1,405
67	An atypical RNA polymerase involved in RNA silencing shares small subunits with RNA polymerase II. Nature Structural and Molecular Biology, 2009, 16, 91-93.	8.2	118
68	Phosphoproteomic analysis of nuclei-enriched fractions from Arabidopsis thaliana. Journal of Proteomics, 2009, 72, 439-451.	2.4	84
69	Identification of novel proteins and phosphorylation sites in a tonoplast enriched membrane fraction of <i>Arabidopsis thaliana</i> . Proteomics, 2008, 8, 3536-3547.	2.2	103
70	PhosCalc: A tool for evaluating the sites of peptide phosphorylation from Mass Spectrometer data. BMC Research Notes, 2008, 1, 30.	1.4	50
71	A PHD-Polycomb Repressive Complex 2 triggers the epigenetic silencing of <i>FLC</i> during vernalization. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16831-16836.	7.1	438
72	S-Nitrosylation of Peroxiredoxin II E Promotes Peroxynitrite-Mediated Tyrosine Nitration. Plant Cell, 2008, 19, 4120-4130.	6.6	320

#	Article	IF	CITATIONS
73	Broccoli Consumption Interacts with GSTM1 to Perturb Oncogenic Signalling Pathways in the Prostate. PLoS ONE, 2008, 3, e2568.	2.5	135
74	Considerations on Post-Translational Modification and Protein Targeting in the Arabidopsis Defense Proteome. Plant Signaling and Behavior, 2007, 2, 153-154.	2.4	3
75	The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12217-12222.	7.1	998
76	Multidimensional Protein Identification Technology (MudPIT) Analysis of Ubiquitinated Proteins in Plants. Molecular and Cellular Proteomics, 2007, 6, 601-610.	3.8	171
77	Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant Journal, 2007, 51, 931-940.	5.7	466
78	Analysis of the defence phosphoproteome of Arabidopsis thaliana using differential mass tagging. Proteomics, 2006, 6, 4155-4165.	2.2	146
79	Defective RNA processing enhances RNA silencing and influences flowering of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14994-15001.	7.1	172
80	Modifications to the Arabidopsis Defense Proteome Occur Prior to Significant Transcriptional Change in Response to Inoculation with Pseudomonas syringae Â. Plant Physiology, 2006, 142, 1603-1620.	4.8	168
81	Specific changes in the Arabidopsis proteome in response to bacterial challenge: differentiating basal and R-gene mediated resistance. Phytochemistry, 2004, 65, 1805-1816.	2.9	114
82	Chapter six A novel myrosinase-glucosinolate defense system in, cruciferous specialist aphids. Recent Advances in Phytochemistry, 2003, 37, 127-142.	0.5	12
83	Spatial organization of the glucosinolate–myrosinase system in brassica specialist aphids is similar to that of the host plant. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 187-191.	2.6	132
84	Characterization and evolution of a myrosinase from the cabbage aphid Brevicoryne brassicae. Insect Biochemistry and Molecular Biology, 2002, 32, 275-284.	2.7	54
85	Transferability and genome specificity of a new set of microsatellite primers among Brassica species of the U triangle. Molecular Ecology Notes, 2002, 2, 7-11.	1.7	90
86	Purification and characterisation of a non-plant myrosinase from the cabbage aphid Brevicoryne brassicae (L.). Insect Biochemistry and Molecular Biology, 2001, 31, 1-5.	2.7	82
87	A direct regional scale estimate of transgene movement from genetically modified oilseed rape to its wild progenitors. Molecular Ecology, 2000, 9, 983-991.	3.9	106
88	Quantifying gene movement from oilseed rape to its wild relatives using remote sensing. International Journal of Remote Sensing, 2000, 21, 3567-3573.	2.9	16