Garcés Rafael

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8412534/publications.pdf

Version: 2024-02-01

		159585	175258
135	3,572	30	52
papers	citations	h-index	g-index
137	137	137	2563
137	13/	137	2303
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Metabolism and accumulation of hydroxylated fatty acids by castor (Ricinus comunis) seed microsomes. Plant Physiology and Biochemistry, 2022, 170, 266-274.	5.8	1
2	The Sunflower WRINKLED1 Transcription Factor Regulates Fatty Acid Biosynthesis Genes through an AW Box Binding Sequence with a Particular Base Bias. Plants, 2022, 11, 972.	3 . 5	5
3	Characterization and impact of sunflower plastidial octanoyltransferases (Helianthus annuus L.) on oil composition. Journal of Plant Physiology, 2022, 274, 153730.	3.5	O
4	Genome-Wide Mapping of Histone H3 Lysine 4 Trimethylation (H3K4me3) and Its Involvement in Fatty Acid Biosynthesis in Sunflower Developing Seeds. Plants, 2021, 10, 706.	3.5	10
5	Sunflower (Helianthus annuus) fatty acid synthase complex: \hat{l}^2 -Ketoacyl-[acyl carrier protein] reductase genes. Plant Physiology and Biochemistry, 2021, 166, 689-699.	5. 8	10
6	Lipid profiling and oil properties of Camelina sativa seeds engineered to enhance the production of saturated and omega-7 fatty acids. Industrial Crops and Products, 2021, 170, 113765.	5 . 2	8
7	High stearic sunflower oil: Latest advances and applications. OCL - Oilseeds and Fats, Crops and Lipids, 2021, 28, 35.	1.4	9
8	Characterization of Helianthus annuus Lipoic Acid Biosynthesis: The Mitochondrial Octanoyltransferase and Lipoyl Synthase Enzyme System. Frontiers in Plant Science, 2021, 12, 781917.	3.6	4
9	Characterization and function of a sunflower (Helianthus annuus L.) Class II acyl-CoA-binding protein. Plant Science, 2020, 300, 110630.	3. 6	6
10	Characterization of the acyl-ACP thioesterases from Koelreuteria paniculata reveals a new type of FatB thioesterase. Heliyon, 2020, 6, e05237.	3.2	4
11	Functional Characterization of Lysophosphatidylcholine: Acyl-CoA Acyltransferase Genes From Sunflower (Helianthus annuus L.). Frontiers in Plant Science, 2020, 11, 403.	3. 6	9
12	Impact of sunflower (Helianthus annuus L.) plastidial lipoyl synthases genes expression in glycerolipids composition of transgenic Arabidopsis plants. Scientific Reports, 2020, 10, 3749.	3.3	7
13	Agrobacterium-Mediated Transient Gene Expression in Developing Ricinus communis Seeds: A First Step in Making the Castor Oil Plant a Chemical Biofactory. Frontiers in Plant Science, 2019, 10, 1410.	3. 6	6
14	Lipidomic Analysis of Plastidial Octanoyltransferase Mutants of Arabidopsis thaliana. Metabolites, 2019, 9, 209.	2.9	7
15	Functional characterization and structural modelling of Helianthus annuus (sunflower) ketoacyl-CoA synthases and their role in seed oil composition. Planta, 2019, 249, 1823-1836.	3.2	14
16	Characterization of different ozonized sunflower oils I. Chemical changes during ozonization. Grasas Y Aceites, 2019, 70, 329.	0.9	7
17	Characterization of different ozonized sunflower oils II. Triacylglycerol condensation and physical properties. Grasas Y Aceites, 2019, 70, 330.	0.9	1
18	Molecular and biochemical characterization of the sunflower (Helianthus annuus L.) cytosolic and plastidial enolases in relation to seed development. Plant Science, 2018, 272, 117-130.	3.6	12

#	Article	IF	CITATIONS
19	New Insights Into Sunflower (Helianthus annuus L.) FatA and FatB Thioesterases, Their Regulation, Structure and Distribution. Frontiers in Plant Science, 2018, 9, 1496.	3.6	18
20	Characterization of Sunflower Stearinâ€Based Confectionary Fats in Bulk and in Compound Coatings. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 1139-1150.	1.9	9
21	New insights in the composition of wax and sterol esters in common and mutant sunflower oils revealed by ESI-MS/MS. Food Chemistry, 2018, 269, 70-79.	8.2	19
22	Characterization of Xanthoceras sorbifolium Bunge seeds: Lipids, proteins and saponins content. Industrial Crops and Products, 2017, 109, 192-198.	5.2	46
23	Temperature effect on triacylglycerol species in seed oil from high stearic sunflower lines with different genetic backgrounds. Journal of the Science of Food and Agriculture, 2016, 96, 4367-4376.	3.5	11
24	Molecular and biochemical characterization of the OLE-1 high-oleic castor seed (Ricinus communis L.) mutant. Planta, 2016, 244, 245-258.	3.2	17
25	Acyl carrier proteins from sunflower (Helianthus annuus L.) seeds and their influence on FatA and FatB acyl-ACP thioesterase activities. Planta, 2016, 244, 479-490.	3.2	21
26	Molecular cloning and characterization of the genes encoding a microsomal oleate Î"12 desaturase (CsFAD2) and linoleate Î"15 desaturase (CsFAD3) from Camelina sativa. Industrial Crops and Products, 2016, 89, 405-415.	5.2	27
27	Sunflower HaGPAT9-1 is the predominant GPAT during seed development. Plant Science, 2016, 252, 42-52.	3.6	30
28	Sunflower (Helianthus annuus) fatty acid synthase complex: β-hydroxyacyl-[acyl carrier protein] dehydratase genes. Planta, 2016, 243, 397-410.	3.2	18
29	Characterization of a small acyl-CoA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities. Plant Physiology and Biochemistry, 2016, 102, 141-150.	5.8	24
30	Effect of the distribution of saturated fatty acids in the melting and crystallization profiles of high-oleic high-stearic oils. Grasas Y Aceites, 2016, 67, e149.	0.9	4
31	Food Uses of Sunflower Oils. , 2015, , 441-464.		16
32	Mutagenesis in Sunflower. , 2015, , 27-52.		16
33	Cloning, heterologous expression and biochemical characterization of plastidial sn-glycerol-3-phosphate acyltransferase from Helianthus annuus. Phytochemistry, 2015, 111, 27-36.	2.9	16
34	Sunflower (Helianthus annuus) fatty acid synthase complex: enoyl-[acyl carrier protein]-reductase genes. Planta, 2015, 241, 43-56.	3.2	17
35	Characterization of soluble acyl-ACP desaturases from Camelina sativa, Macadamia tetraphylla and Dolichandra unguis-cati. Journal of Plant Physiology, 2015, 178, 35-42.	3.5	19
36	Effect of solvents on the fractionation of high oleic–high stearic sunflower oil. Food Chemistry, 2015, 172, 710-717.	8.2	14

#	Article	IF	Citations
37	Sunflower (⟨i⟩Helianthus annuus⟨/i⟩) longâ€chain acylâ€coenzyme A synthetases expressed at high levels in developing seeds. Physiologia Plantarum, 2014, 150, 363-373.	5.2	28
38	Effect of a mutagenized acyl-ACP thioesterase FATA allele from sunflower with improved activity in tobacco leaves and Arabidopsis seeds. Planta, 2014, 239, 667-677.	3.2	16
39	Acyl-ACP thioesterases from Camelina sativa: Cloning, enzymatic characterization and implication in seed oil fatty acid composition. Phytochemistry, 2014, 107, 7-15.	2.9	20
40	Biochemistry of high stearic sunflower, a new source of saturated fats. Progress in Lipid Research, 2014, 55, 30-42.	11.6	31
41	Comparing Sunflower Stearins with Cocoa Butter. , 2013, , 149-161.		0
42	Characterization of the morphological changes and fatty acid profile of developing Camelina sativa seeds. Industrial Crops and Products, 2013, 50, 673-679.	5.2	73
43	Effect of growth temperature on the high stearic and high stearic-high oleic sunflower traits. Crop and Pasture Science, 2013, 64, 18.	1.5	14
44	Changes in acyl-coenzyme A pools in sunflower seeds with modified fatty acid composition. Phytochemistry, 2013, 87, 39-50.	2.9	9
45	Studies of isothermal crystallisation kinetics of sunflower hard stearin-based confectionery fats. Food Chemistry, 2013, 139, 184-195.	8.2	32
46	Alternatives to tropical fats based on highâ€stearic sunflower oils. Lipid Technology, 2012, 24, 63-65.	0.3	8
47	Evaluation of high oleic-high stearic sunflower hard stearins for cocoa butter equivalent formulation. Food Chemistry, 2012, 134, 1409-1417.	8.2	75
48	Molecular cloning and biochemical characterization of three phosphoglycerate kinase isoforms from developing sunflower (Helianthus annuus L.) seeds. Phytochemistry, 2012, 79, 27-38.	2.9	16
49	Reduced expression of FatA thioesterases in Arabidopsis affects the oil content and fatty acid composition of the seeds. Planta, 2012, 235, 629-639.	3.2	55
50	Characterization of Sphingolipids from Sunflower Seeds with Altered Fatty Acid Composition. Journal of Agricultural and Food Chemistry, 2011, 59, 12486-12492.	5.2	13
51	Proteome Analysis of Cold Acclimation in Sunflower. Journal of Proteome Research, 2011, 10, 2330-2346.	3.7	55
52	Cloning, biochemical characterization and expression of a sunflower (Helianthus annuus L.) hexokinase associated with seed storage compounds accumulation. Journal of Plant Physiology, 2011, 168, 299-308.	3.5	27
53	Sphingolipid base modifying enzymes in sunflower (Helianthus annuus): Cloning and characterization of a C4-hydroxylase gene and a new paralogous î"8-desaturase gene. Journal of Plant Physiology, 2011, 168, 831-839.	3.5	9
54	Acyl-ACP thioesterases from macadamia (Macadamia tetraphylla) nuts: Cloning, characterization and their impact on oil composition. Plant Physiology and Biochemistry, 2011, 49, 82-87.	5.8	42

#	Article	IF	CITATIONS
55	Dry Fractionation and Crystallization Kinetics of Highâ€Oleic Highâ€Stearic Sunflower Oil. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 1511.	1.9	33
56	Production of stearate-rich butters by solvent fractionation of high stearic–high oleic sunflower oil. Food Chemistry, 2011, 124, 450-458.	8.2	50
57	Vegetable oil basestocks for lubricants. Grasas Y Aceites, 2011, 62, 21-28.	0.9	61
58	Prologe: Biodegradable lubricants from vegetable oils. Grasas Y Aceites, 2011, 62, 7.	0.9	0
59	Acyl-ACP thioesterases from castor (Ricinus communis L.): An enzymatic system appropriate for high rates of oil synthesis and accumulation. Phytochemistry, 2010, 71, 860-869.	2.9	53
60	Glycolytic enzymatic activities in developing seeds involved in the differences between standard and low oil content sunflowers (Helianthus annuus L.). Plant Physiology and Biochemistry, 2010, 48, 961-965.	5.8	23
61	The role of \hat{l}^2 -ketoacyl-acyl carrier protein synthase III in the condensation steps of fatty acid biosynthesis in sunflower. Planta, 2010, 231, 1277-1289.	3.2	27
62	Cloning, biochemical characterisation, tissue localisation and possible post-translational regulatory mechanism of the cytosolic phosphoglucose isomerase from developing sunflower seeds. Planta, 2010, 232, 845-859.	3.2	8
63	The sunflower plastidial I‰3-fatty acid desaturase (HaFAD7) contains the signalling determinants required for targeting to, and retention in, the endoplasmic reticulum membrane in yeast but requires co-expressed ferredoxin for activity. Phytochemistry, 2010, 71, 1050-1058.	2.9	9
64	Characterization and partial purification of acyl-CoA:glycerol 3-phosphate acyltransferase from sunflower (Helianthus annuus L.) developing seeds. Plant Physiology and Biochemistry, 2010, 48, 73-80.	5.8	13
65	Oleins as a source of estolides for biolubricant applications. Grasas Y Aceites, 2010, 61, 171-174.	0.9	28
66	Phospholipase DÎ $_\pm$ from sunflower (Helianthus annuus): cloning and functional characterization. Journal of Plant Physiology, 2010, 167, 503-511.	3.5	15
67	Estudio comparativo de la ozonizaci $ ilde{A}^3$ n de aceites de girasol modificados gen $ ilde{A}$ ©ticamente y sin modificar. Quimica Nova, 2009, 32, 2467-2472.	0.3	7
68	Current advances in sunflower oil and its applications. Lipid Technology, 2009, 21, 79-82.	0.3	28
69	cDNA cloning, expression levels and gene mapping of photosynthetic and non-photosynthetic ferredoxin genes in sunflower (Helianthus annuus L.). Theoretical and Applied Genetics, 2009, 118, 891-901.	3.6	3
70	Characterization of glycolytic initial metabolites and enzyme activities in developing sunflower (Helianthus annuus L.) seeds. Phytochemistry, 2009, 70, 1117-1122.	2.9	20
71	Effect of the ferredoxin electron donor on sunflower (Helianthus annuus) desaturases. Plant Physiology and Biochemistry, 2009, 47, 657-662.	5.8	6
72	Influence of Specific Fatty Acids on the Asymmetric Distribution of Saturated Fatty Acids in Sunflower (Helianthus annuus L.) Triacylglycerols. Journal of Agricultural and Food Chemistry, 2009, 57, 1595-1599.	5.2	12

#	Article	IF	CITATIONS
73	Tropical vegetable fats and butters: properties and new alternatives. Oleagineux Corps Gras Lipides, 2009, 16, 254-258.	0.2	19
74	Lipid characterization of a wrinkled sunflower mutant. Phytochemistry, 2008, 69, 684-691.	2.9	5
75	The biochemical characterization of a high-stearic acid sunflower mutant reveals the coordinated regulation of stearoyl-acyl carrier protein desaturases. Plant Physiology and Biochemistry, 2008, 46, 109-116.	5.8	15
76	Day–Night Variation in Fatty Acids and Lipids Biosynthesis in Sunflower Seeds. Crop Science, 2008, 48, 1952-1957.	1.8	11
77	Estudio analitico de especies oxigenadas en el aceite de teobroma ozonizado. Quimica Nova, 2008, 31, 610-613.	0.3	2
78	Characterization of the glycerolipid composition of a high-palmitoleic acid sunflower mutant. European Journal of Lipid Science and Technology, 2007, 109, 591-599.	1.5	13
79	Lipid Characterization of a High-Stearic Sunflower Mutant Displaying a Seed Stearic Acid Gradient. Journal of Agricultural and Food Chemistry, 2006, 54, 3612-3616.	5.2	5
80	Increase of the Stearic Acid Content in High-Oleic Sunflower (Helianthus annuus) Seeds. Journal of Agricultural and Food Chemistry, 2006, 54, 9383-9388.	5.2	22
81	Inhibitors of fatty acid biosynthesis in sunflower seeds. Journal of Plant Physiology, 2006, 163, 885-894.	3.5	7
82	Comparative study of ozonized olive oil and ozonized sunflower oil. Journal of the Brazilian Chemical Society, 2006, 17, 403-407.	0.6	59
83	Functional characterization ofÂaÂplastidial omega-3 desaturase from sunflower (HelianthusÂannuus) inÂcyanobacteria. Plant Physiology and Biochemistry, 2006, 44, 517-525.	5.8	18
84	Phospholipid molecular profiles in the seed kernel from different sunflower (Helianthus annuus) mutants. Lipids, 2006, 41, 805-811.	1.7	12
85	Accumulation of phospholipids and glycolipids in seed kernels of different sunflower mutants (Helianthus annuus). JAOCS, Journal of the American Oil Chemists' Society, 2006, 83, 539-545.	1.9	19
86	Cloning, characterization and structural model of a FatA-type thioesterase from sunflower seeds (Helianthus annuus L.). Planta, 2005, 221, 868-880.	3.2	61
87	Lipid characterization of seed oils from high-palmitic, low-palmitoleic, and very high-stearic acid sunflower lines. Lipids, 2005, 40, 369-374.	1.7	26
88	Spectroscopic Characterization of Ozonated Sunflower Oil. Ozone: Science and Engineering, 2005, 27, 247-253.	2.5	25
89	Very Long Chain Fatty Acid Synthesis in Sunflower Kernels. Journal of Agricultural and Food Chemistry, 2005, 53, 2710-2716.	5 . 2	29
90	Oils from Improved High Stearic Acid Sunflower Seeds. Journal of Agricultural and Food Chemistry, 2005, 53, 5326-5330.	5.2	61

#	Article	IF	CITATIONS
91	The sources of carbon and reducing power for fatty acid synthesis in the heterotrophic plastids of developing sunflower (Helianthus annuus L.) embryos. Journal of Experimental Botany, 2005, 56, 1297-1303.	4.8	46
92	Biochemical characterization of a high-palmitoleic acid Helianthus annuus mutant. Plant Physiology and Biochemistry, 2004, 42, 373-381.	5.8	31
93	The determination of the asymmetrical stereochemical distribution of fatty acids in triacylglycerols. Analytical Biochemistry, 2004, 334, 175-182.	2.4	34
94	Temperature-related non-homogeneous fatty acid desaturation in sunflower (Helianthus annuus L.) seeds. Planta, 2003, 216, 834-840.	3.2	14
95	Sequential one-step extraction and analysis of triacylglycerols and fatty acids in plant tissues. Analytical Biochemistry, 2003, 317, 247-254.	2.4	32
96	Cloning and expression of fatty acids biosynthesis key enzymes from sunflower (Helianthus annuus L.) in Escherichia coli. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 786, 221-228.	2.3	23
97	Study of the Asymmetric Distribution of Saturated Fatty Acids in Sunflower Oil Triacylglycerols. , 2003, , 31-34.		0
98	Inheritance of Medium Stearic Acid Content in the Seed Oil of a Sunflower Mutant CASâ€4. Crop Science, 2002, 42, 1806-1811.	1.8	7
99	Dynamic channelling during de novo fatty acid biosynthesis in Helianthus annuus seeds. Plant Physiology and Biochemistry, 2002, 40, 383-391.	5.8	10
100	Inheritance of high palmitic acid content in the sunflower mutant CAS-12 and its relationship with high oleic content. Plant Breeding, 2002, 121, 49-56.	1.9	18
101	Temperature effect on a high stearic acid sunflower mutant. Phytochemistry, 2002, 59, 33-37.	2.9	51
102	Metabolic control analysis of de novo sunflower fatty acid biosynthesis. Biochemical Society Transactions, 2000, 28, 669-671.	3.4	2
103	Enzymatic studies of high stearic acid sunflower seed mutants. Plant Physiology and Biochemistry, 2000, 38, 377-382.	5.8	32
104	Epistatic interaction among loci controlling the palmitic and the stearic acid levels in the seed oil of sunflower. Theoretical and Applied Genetics, 2000, 100, 105-111.	3.6	11
105	Acyl-acyl carrier protein thioesterase activity from sunflower (Helianthus annuus L.) seeds. Planta, 2000, 211, 673-678.	3.2	27
106	Genetic Relationships between Loci Controlling the High Stearic and the High Oleic Acid Traits in Sunflower. Crop Science, 2000, 40, 990-995.	1.8	5
107	GENETIC CHARACTERIZATION OF SUNFLOWER MUTANTS WITH HIGH CONTENT OF SATURATED FATTY ACIDS IN SEED OIL / CARACTERIZACION GENETICA DE MUTANTES DE GIRASOL CON ALTO CONTENIDO EN ACIDOS GRASOS SATURADOS / CARACTÉRISATION GÉNÉTIQUE DES MUTANTS DE TOURNESOL À HAUT CONTEI D'ACIDES GRAS SATURÉS DANS L'HUILE. Helia, 2000, 23, 77-84.	\8r ⁴	O
108	Metabolism of Triacylglycerol Species during Seed Germination in Fatty Acid Sunflower (Helianthusannuus) Mutants. Journal of Agricultural and Food Chemistry, 2000, 48, 770-774.	5.2	16

#	Article	IF	CITATIONS
109	Identification of Triacylglycerol Species from High-Saturated Sunflower (Helianthus annuus) Mutants. Journal of Agricultural and Food Chemistry, 2000, 48, 764-769.	5.2	56
110	Inheritance of high palmitic acid content in the seed oil of sunflower mutant CAS-5. Theoretical and Applied Genetics, 1999, 98, 496-501.	3.6	26
111	Genetic control of high stearic acid content in the seed oil of the sunflower mutant CAS-3. Theoretical and Applied Genetics, 1999, 99, 663-669.	3.6	39
112	Enzymatic characterisation of high-palmitic acid sunflower (Helianthus annuus L.) mutants. Planta, 1999, 207, 533-538.	3.2	30
113	Thermoxidative stability of triacylglycerols from mutant sunflower seeds. JAOCS, Journal of the American Oil Chemists' Society, 1999, 76, 1169-1174.	1.9	37
114	Lipid Characterization in Vegetative Tissues of High Saturated Fatty Acid Sunflower Mutants. Journal of Agricultural and Food Chemistry, 1999, 47, 78-82.	5.2	19
115	Oleate desaturation and acyl turnover in sunflower (Helianthus annuus L.) seed lipids during rapid temperature adaptation. Planta, 1998, 205, 595-600.	3.2	41
116	Fatty Acid Composition in Developing High Saturated Sunflower (Helianthus annuus) Seeds:Â Maturation Changes and Temperature Effect. Journal of Agricultural and Food Chemistry, 1998, 46, 3577-3582.	5.2	45
117	Sunflower mutant containing high levels of palmitic acid in high oleic background. Euphytica, 1997, 97, 113-116.	1.2	80
118	Characterization of polar and nonpolar seed lipid classes from highly saturated fatty acid sunflower mutants. Lipids, 1997, 32, 833-837.	1.7	59
119	Fatty Acid Composition of Different Tissues During High Stearic or High Palmitic Sunflower Mutants Germination., 1997,, 322-324.		1
120	Mutant Sunflowers with High Concentration of Saturated Fatty Acids in the Oil. Crop Science, 1995, 35, 739-742.	1.8	117
121	Acyl Turnover in Triacylglycerols. Its Role in the Regulation by Temperature of the 18:1/18:2 Ratio in Sunflower Seeds., 1995,, 378-380.		5
122	Oleate from triacylglycerols is desaturated in cold-induced developing sunflower (Helianthus) Tj ETQq0 0 0 rgBT	/Oyerlock	10 ₃₀ 50 222
123	Microsomal polypeptides in sunflower (Helianthus annum). Comparison between normal type before and after cold-induction, and a high oleic acid mutant. Physiologia Plantarum, 1994, 91, 97-103.	5. 2	3
124	New sunflower mutants with altered seed fatty acid composition. Progress in Lipid Research, 1994, 33, 147-154.	11.6	9
125	Microsomal polypeptides in sunflower (Helianthus annuus). Comparison between normal type before and after cold-induction, and a high oleic acid mutant. Physiologia Plantarum, 1994, 91, 97-103.	5.2	0
126	One-Step Lipid Extraction and Fatty Acid Methyl Esters Preparation from Fresh Plant Tissues. Analytical Biochemistry, 1993, 211, 139-143.	2.4	515

#	Article	IF	Citations
127	Temperature regulation of oleate desaturase in sunflower (Helianthus annuus L.) seeds. Planta, 1992, 186, 461-5.	3.2	55
128	In vitro oleate desaturase in developing sunflower seeds. Phytochemistry, 1991, 30, 2127-2130.	2.9	72
129	Oleate desaturation in seeds of two genotypes of sunflower. Phytochemistry, 1989, 28, 2593-2595.	2.9	40
130	Lipid characterization in seeds of a high oleic acid sunflower mutant. Phytochemistry, 1989, 28, 2597-2600.	2.9	47
131	Genetic analysis of the high oleic acid content in cultivated sunflower (Helianthus annuus L.). Euphytica, 1989, 41, 39-51.	1.2	78
132	Phycomyces: a new gene for a flavoprotein with covalently linked cofactor. Molecular Genetics and Genomics, 1986, 203, 341-345.	2.4	3
133	Alcohol dehydrogenase activity and carotenogenesis in Phycomyces. Experimental Mycology, 1985, 9, 356-358.	1.6	1
134	Light-dependent decrease in alcohol dehydrogenase activity ofPhycomyces. Experimental Mycology, 1985, 9, 94-98.	1.6	8
135	Examination of Phycomyces blakesleeanus for nitrate reductase as a possible blue light photoreceptor. Plant Science, 1985, 40, 173-177.	3.6	5