
Lihua Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8411650/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How to Make Personal Protective Equipment Spontaneously and Continuously Antimicrobial (Incorporating Oxidase-like Catalysts). ACS Nano, 2022, 16, 7755-7771.	14.6	27
2	Nanoparticle elasticity affects systemic circulation lifetime by modulating adsorption of apolipoprotein A-I in corona formation. Nature Communications, 2022, 13, .	12.8	32
3	Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action. Nature Communications, 2021, 12, 745.	12.8	202
4	pH-Sensitive Nanoparticles Composed Solely of Membrane-Disruptive Macromolecules for Treating Pancreatic Cancer. ACS Applied Materials & Interfaces, 2021, 13, 12824-12835.	8.0	23
5	Boosting Antitumor Sonodynamic Therapy Efficacy of Black Phosphorus via Covalent Functionalization. Advanced Science, 2021, 8, e2102422.	11.2	32
6	Promoting Nanoparticle Delivery Efficiency to Tumors by Locally Increasing Blood Flow There. ACS Applied Bio Materials, 2021, 4, 7615-7625.	4.6	4
7	Selective Entropy Gain-Driven Adsorption of Nanospheres onto Spherical Bacteria Endows Photodynamic Treatment with Narrow-Spectrum Activity. Journal of Physical Chemistry Letters, 2020, 11, 2788-2796.	4.6	11
8	Bioinspired Membrane-Disruptive Macromolecules as Drug-Free Therapeutics. ACS Applied Bio Materials, 2020, 3, 1267-1275.	4.6	13
9	Piezoelectric Materials as Sonodynamic Sensitizers to Safely Ablate Tumors: A Case Study Using Black Phosphorus. Journal of Physical Chemistry Letters, 2020, 11, 1228-1238.	4.6	105
10	Kill the Real with the Fake: Eliminate Intracellular <i>Staphylococcus aureus</i> Using Nanoparticle Coated with Its Extracellular Vesicle Membrane as Active-Targeting Drug Carrier. ACS Infectious Diseases, 2019, 5, 218-227.	3.8	87
11	Platelet membrane coating coupled with solar irradiation endows a photodynamic nanosystem with both improved antitumor efficacy and undetectable skin damage. Biomaterials, 2018, 159, 59-67.	11.4	72
12	pH-sensitive zwitterionic coating of gold nanocages improves tumor targeting and photothermal treatment efficacy. Nano Research, 2018, 11, 3193-3204.	10.4	53
13	Skin-safe photothermal therapy enabled by responsive release of acid-activated membrane-disruptive polymer from polydopamine nanoparticle upon very low laser irradiation. Biomaterials Science, 2017, 5, 1596-1602.	5.4	21
14	Long-subchain hyperbranched poly(aminoethyl acrylate): A potent antimicrobial polymer with low hemolytic toxicity. Journal of Polymer Science Part A, 2016, 54, 3462-3469.	2.3	10
15	Upper Critical Solution Temperature Polymer, Photothermal Agent, and Erythrocyte Membrane Coating: An Unexplored Recipe for Making Drug Carriers with Spatiotemporally Controlled Cargo Release. ACS Biomaterials Science and Engineering, 2016, 2, 2127-2132.	5.2	33
16	Assembling carbon quantum dots to a layered carbon for high-density supercapacitor electrodes. Scientific Reports, 2016, 6, 19028.	3.3	96
17	Calcium and Magnesium Ions Are Membrane-Active against Stationary-Phase Staphylococcus aureus with High Specificity. Scientific Reports, 2016, 6, 20628.	3.3	54
18	Cooperative Nanoparticle System for Photothermal Tumor Treatment without Skin Damage. ACS Applied Materials & Interfaces, 2016, 8, 2847-2856.	8.0	24

Lihua Yang

#	Article	IF	CITATIONS
19	Acid-Responsive Therapeutic Polymer for Prolonging Nanoparticle Circulation Lifetime and Destroying Drug-Resistant Tumors. ACS Applied Materials & Interfaces, 2016, 8, 936-944.	8.0	17
20	Antibacterial Property of Graphene Quantum Dots (Both Source Material and Bacterial Shape Matter). ACS Applied Materials & Interfaces, 2016, 8, 20-25.	8.0	135
21	Rupturing C60Molecules into Graphene-Oxide-like Quantum Dots: Structure, Photoluminescence, and Catalytic Application. Small, 2015, 11, 5296-5304.	10.0	39
22	Bactericidal Dendritic Polycation Cloaked with Stealth Material via Lipase-Sensitive Intersegment Acquires Neutral Surface Charge without Losing Membrane-Disruptive Activity. ACS Applied Materials & Interfaces, 2015, 7, 27602-27607.	8.0	20
23	Erythrocyte Membrane Is an Alternative Coating to Polyethylene Glycol for Prolonging the Circulation Lifetime of Gold Nanocages for Photothermal Therapy. ACS Nano, 2014, 8, 10414-10425.	14.6	371
24	Long Hydrophilic-and-Cationic Polymers: A Different Pathway toward Preferential Activity against Bacterial over Mammalian Membranes. Biomacromolecules, 2014, 15, 3267-3277.	5.4	51
25	Acid-Activated Antimicrobial Random Copolymers: A Mechanism-Guided Design of Antimicrobial Peptide Mimics. Macromolecules, 2013, 46, 3959-3964.	4.8	54
26	A Critical Evaluation of Random Copolymer Mimesis of Homogeneous Antimicrobial Peptides. Macromolecules, 2013, 46, 1908-1915.	4.8	68
27	Mechanism of a prototypical synthetic membrane-active antimicrobial: Efficient hole-punching via interaction with negative intrinsic curvature lipids. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20595-20600.	7.1	107
28	Synthetic Antimicrobial Oligomers Induce a Composition-Dependent Topological Transition in Membranes. Journal of the American Chemical Society, 2007, 129, 12141-12147.	13.7	123
29	Self-assembled virus–membrane complexes. Nature Materials, 2004, 3, 615-619.	27.5	57
30	Reductionâ€Nitridation Synthesis of Titanium Nitride Nanocrystals. Journal of the American Ceramic Society, 2003, 86, 206-208.	3.8	42