John F Kearney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8411246/publications.pdf

Version: 2024-02-01

126907 102487 7,149 71 33 66 citations h-index g-index papers 71 71 71 5932 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Marginal Zone and B1 B Cells Unite in the Early Response against T-Independent Blood-Borne Particulate Antigens. Immunity, 2001, 14, 617-629.	14.3	891
2	Marginal-zone B cells. Nature Reviews Immunology, 2002, 2, 323-335.	22.7	762
3	Blood Dendritic Cells Interact with Splenic Marginal Zone B Cells to Initiate T-Independent Immune Responses. Immunity, 2002, 17, 341-352.	14.3	548
4	Marginal zone B cells exhibit unique activation, proliferative and immunoglobulin secretory responses. European Journal of Immunology, 1997, 27, 2366-2374.	2.9	384
5	Autoreactivity by design: innate B and T lymphocytes. Nature Reviews Immunology, 2001, 1, 177-186.	22.7	379
6	B-cell subsets and the mature Âpreimmune repertoire. Marginal zone and B1 BÂcells as part of a "natural immune memory― Immunological Reviews, 2000, 175, 70-79.	6.0	345
7	B1 cells: similarities and differences with other B cell subsets. Current Opinion in Immunology, 2001, 13, 195-201.	5. 5	337
8	Positive Selection from Newly Formed to Marginal Zone B Cells Depends on the Rate of Clonal Production, CD19, and btk. Immunity, 2000, 12, 39-49.	14.3	322
9	Marginal Zone, but Not Follicular B Cells, Are Potent Activators of Naive CD4 T Cells. Journal of Immunology, 2004, 172, 803-811.	0.8	245
10	Naturally occurring anti-idiotypic antibodies in myasthenia gravis patients. Nature, 1983, 301, 611-614.	27.8	232
11			
	Evidence that murine pre-B cells synthesise μ heavy chains but no light chains. Nature, 1979, 280, 838-841.	27.8	224
12	Evidence that murine pre-B cells synthesise ν heavy chains but no light chains. Nature, 1979, 280, 838-841. Development and selection of marginal zone B cells. Immunological Reviews, 2004, 197, 192-205.	27.8	224
12			
	Development and selection of marginal zone B cells. Immunological Reviews, 2004, 197, 192-205. Terminal deoxynucleotidyl transferase and repertoire development. Immunological Reviews, 2000, 175,	6.0	216
13	Development and selection of marginal zone B cells. Immunological Reviews, 2004, 197, 192-205. Terminal deoxynucleotidyl transferase and repertoire development. Immunological Reviews, 2000, 175, 150-157. CD9 Is a Unique Marker for Marginal Zone B Cells, B1 Cells, and Plasma Cells in Mice. Journal of	6.0	216 155
13 14	Development and selection of marginal zone B cells. Immunological Reviews, 2004, 197, 192-205. Terminal deoxynucleotidyl transferase and repertoire development. Immunological Reviews, 2000, 175, 150-157. CD9 Is a Unique Marker for Marginal Zone B Cells, B1 Cells, and Plasma Cells in Mice. Journal of Immunology, 2002, 168, 5605-5611. Functional characterization of monoclonal auto-antiidiotype antibodies isolated from the early B	6.0	216 155 149
13 14 15	Development and selection of marginal zone B cells. Immunological Reviews, 2004, 197, 192-205. Terminal deoxynucleotidyl transferase and repertoire development. Immunological Reviews, 2000, 175, 150-157. CD9 Is a Unique Marker for Marginal Zone B Cells, B1 Cells, and Plasma Cells in Mice. Journal of Immunology, 2002, 168, 5605-5611. Functional characterization of monoclonal auto-antiidiotype antibodies isolated from the early B cell repertoire of BALB/c mice. European Journal of Immunology, 1986, 16, 1151-1158. Marginal zone B cells in lymphocyte activation and regulation. Current Opinion in Immunology, 2005,	6.0 6.0 0.8	216 155 149 141

#	Article	IF	Citations
19	Myeloid-Derived Suppressor Cells Impair B Cell Responses in Lung Cancer through IL-7 and STAT5. Journal of Immunology, 2018, 201, 278-295.	0.8	89
20	B Cell Positive Selection: Road Map to the Primary Repertoire?. Journal of Immunology, 2004, 173, 15-19.	0.8	86
21	Transitional B cells commit to marginal zone B cell fate by Taok3-mediated surface expression of ADAM10. Nature Immunology, 2017, 18, 313-320.	14.5	71
22	Innate-like B cells. Seminars in Immunopathology, 2005, 26, 377-383.	4.0	69
23	Natural Antibody Repertoires: Development and Functional Role in Inhibiting Allergic Airway Disease. Annual Review of Immunology, 2015, 33, 475-504.	21.8	67
24	Long-Term Maintenance of Polysaccharide-Specific Antibodies by IgM-Secreting Cells. Journal of Immunology, 2012, 188, 57-67.	0.8	64
25	Bacillus Spore Inactivation Methods Affect Detection Assays. Applied and Environmental Microbiology, 2001, 67, 3665-3670.	3.1	61
26	Generation of B Cell Memory to the Bacterial Polysaccharide \hat{l}_{\pm} -1,3 Dextran. Journal of Immunology, 2009, 183, 6359-6368.	0.8	54
27	DNA Microarray Gene Expression Profile of Marginal Zone versus Follicular B Cells and Idiotype Positive Marginal Zone B Cells before and after Immunization with <i>Streptococcus pneumoniae</i> Journal of Immunology, 2008, 180, 6663-6674.	0.8	50
28	The link between antibodies to OxLDL and natural protection against pneumococci depends on DH gene conservation. Journal of Experimental Medicine, 2013, 210, 875-890.	8.5	50
29	Neonatal Exposure to Commensal-Bacteria-Derived Antigens Directs Polysaccharide-Specific B-1 B Cell Repertoire Development. Immunity, 2020, 53, 172-186.e6.	14.3	50
30	CD36 Is Differentially Expressed on B Cell Subsets during Development and in Responses to Antigen. Journal of Immunology, 2008, 180, 230-237.	0.8	46
31	Cathelinâ€related antimicrobial peptide differentially regulates T†and Bâ€cell function. European Journal of Immunology, 2011, 41, 3006-3016.	2.9	43
32	Fc Receptor Homolog 3 Is a Novel Immunoregulatory Marker of Marginal Zone and B1 B Cells. Journal of Immunology, 2006, 177, 6815-6823.	0.8	42
33	Immunofluorescence analysis of B-1 cell ontogeny in the mouse. International Immunology, 1994, 6, 355-361.	4.0	37
34	A biological consequence of variation in the site of D–JH gene rearrangement. Nature, 1984, 311, 376-379.	27.8	33
35	Cathelicidin Administration Protects Mice fromBacillus anthracisSpore Challenge. Journal of Immunology, 2008, 181, 4989-5000.	0.8	32
36	Neonatal Exposure to Pneumococcal Phosphorylcholine Modulates the Development of House Dust Mite Allergy during Adult Life. Journal of Immunology, 2015, 194, 5838-5850.	0.8	32

#	Article	IF	CITATIONS
37	Manipulation of the glycanâ€specific natural antibody repertoire for immunotherapy. Immunological Reviews, 2016, 270, 32-50.	6.0	32
38	Antigen-Independent Selection of T15 Idiotype During B-Cell Ontogeny In Mice. Autoimmunity, 1991, 1, 203-212.	0.6	31
39	PIR-B-Deficient Mice Are Susceptible to <i>Salmonella</i> Infection. Journal of Immunology, 2008, 181, 4229-4239.	0.8	31
40	The Absence of a Microbiota Enhances TSLP Expression in Mice with Defective Skin Barrier but Does Not Affect the Severity of their Allergic Inflammation. Journal of Investigative Dermatology, 2013, 133, 2714-2721.	0.7	29
41	Unique Ligand-Binding Property of the Human IgM Fc Receptor. Journal of Immunology, 2015, 194, 1975-1982.	0.8	25
42	Regulatory Influences of Neonatal Multispecific Antibodies on the Developing B Cell Repertoire. International Reviews of Immunology, 1988, 3, 117-131.	3.3	24
43	Antibodies Generated against Conserved Antigens Expressed by Bacteria and Allergen-Bearing Fungi Suppress Airway Disease. Journal of Immunology, 2012, 189, 2246-2256.	0.8	22
44	Studies on phosphorylcholine-specific T cell idiotypes and idiotype-specific immunity. Molecular Immunology, 1980, 17, 823-831.	2.2	20
45	Independently Ligating CD38 and $Fc^{\hat{1}3}RIIB$ Relays A Dominant Negative Signal to B Cells. Hybridoma, 1999, 18, 113-119.	0.6	19
46	Immunological Outcomes of Antibody Binding to Glycans Shared between Microorganisms and Mammals. Journal of Immunology, 2016, 197, 4201-4209.	0.8	19
47	Antibodies Generated against Streptococci Protect in a Mouse Model of Disseminated Aspergillosis. Journal of Immunology, 2015, 194, 4387-4396.	0.8	18
48	lrgm1 coordinately regulates autoimmunity and host defense at select mucosal surfaces. JCI Insight, $2017, 2, .$	5.0	18
49	B Cell Development in Mice. International Reviews of Immunology, 1997, 15, 207-241.	3.3	17
50	Pulmonary α-1,3-Glucan–Specific IgA-Secreting B Cells Suppress the Development of Cockroach Allergy. Journal of Immunology, 2016, 197, 3175-3187.	0.8	16
51	Accelerated Systemic Autoimmunity in the Absence of Somatic Hypermutation in 564lgi: A Mouse Model of Systemic Lupus with Knocked-In Heavy and Light Chain Genes. Frontiers in Immunology, 2017, 8, 1094.	4.8	16
52	Functional Relationship Between T15 and J558 Idiotypes in BALB/c Mice. Autoimmunity, 1991, 1, 213-224.	0.6	13
53	CD36 and Platelet-Activating Factor Receptor Promote House Dust Mite Allergy Development. Journal of Immunology, 2017, 199, 1184-1195.	0.8	13
54	Development of the Mouse Bâ€Cell Repertoire ^a . Annals of the New York Academy of Sciences, 1995, 764, 207-221.	3.8	12

#	Article	IF	CITATIONS
55	Intrathymic differentiation of natural antibody-producing plasma cells in human neonates. Nature Communications, 2021, 12, 5761.	12.8	12
56	Identification of a surface protein (p100) associated with two glycosyl-phosphatidylinositol-linked molecules (Thy-1 and ThB) by natural anti-lymphocyte autoantibodies. European Journal of Immunology, 1992, 22, 2373-2380.	2.9	11
57	A Possible Cause of Myasthenia Gravis: Idiotypic Networks Involving Bacterial Antigens. Annals of the New York Academy of Sciences, 1987, 505, 461-471.	3.8	10
58	Effects of IgM Allotype Suppression on Serum IgM Levels, B-1 and B-2 Cells, and Antibody Responses ir Allotype Heterozygous F1 Mice. Autoimmunity, 1994, 4, 27-41.	0.6	9
59	Terminal Deoxynucleotidyl Transferase Is Required for an Optimal Response to the Polysaccharide α-1,3 Dextran. Journal of Immunology, 2010, 184, 851-858.	0.8	9
60	Limiting CDR-H3 Diversity Abrogates the Antibody Response to the Bacterial Polysaccharide $\hat{l}\pm 1\hat{a}\dagger '3$ Dextran. Journal of Immunology, 2011, 187, 879-886.	0.8	9
61	Development and Function of B Cell Subsets. , 2015, , 99-119.		8
62	IL-7 Enables Antibody Responses to Bacterial Polysaccharides by Promoting B Cell Receptor Diversity. Journal of Immunology, 2018, 201, 1229-1240.	0.8	6
63	Glycan Reactive Natural Antibodies and Viral Immunity. Viral Immunology, 2020, 33, 266-276.	1.3	6
64	Terminal Deoxynucleotidyl Transferase Is Not Required for Antibody Response to Polysaccharide Vaccines against Streptococcus pneumoniae and Salmonella enterica Serovar Typhi. Infection and Immunity, 2018, 86, .	2.2	5
65	Terminal deoxynucleotidyl transferase and repertoire development. Immunological Reviews, 2000, 175, 150-157.	6.0	3
66	GPR183 Is Dispensable for B1 Cell Accumulation and Function, but Affects B2 Cell Abundance, in the Omentum and Peritoneal Cavity. Cells, 2022, 11, 494.	4.1	3
67	Idiotypes and Autoimmunity. Novartis Foundation Symposium, 1987, 129, 109-122.	1.1	1
68	The role of Terminal deoxynucleotidyl Transferase (TdT) in the Tâ€cellâ€independent antibody response to α 1–3 Dextran. FASEB Journal, 2008, 22, 849.4.	0.5	0
69	Cathelicidins protect mice from Bacillus anthracis spore challenge through their lytic and immunomodulatory abilities. FASEB Journal, 2008, 22, .	0.5	0
70	DNA Microarray Gene Expression Profile of Marginal Zone versus Follicular B cells and Idiotype Positive Marginal Zone B cells Before and After Activation. FASEB Journal, 2008, 22, 1066.4.	0.5	0
71	VHJ558 transgenic mice: A model to study the development of polysaccharide specific B cells and the antibody response to gramâ€negative bacteria. FASEB Journal, 2008, 22, 847.6.	0.5	0