Laszlo Biczok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8410920/publications.pdf Version: 2024-02-01

LASZIO RICZOK

#	Article	IF	CITATIONS
1	Aggregation and micelle formation of ionic liquids in aqueous solution. Chemical Physics Letters, 2004, 400, 296-300.	2.6	289
2	Micelle formation of 1-alkyl-3-methylimidazolium bromide ionic liquids in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 299, 256-261.	4.7	276
3	Spectroscopic properties of aromatic dicarboximides. Part1.—N—H and N-methyl-substituted naphthalimides. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 411-421.	1.7	195
4	Quenching Processes in Hydrogen-Bonded Pairs:  Interactions of Excited Fluorenone with Alcohols and Phenols. Journal of the American Chemical Society, 1997, 119, 11071-11077.	13.7	169
5	Highly Sensitive Fluorescence Response to Inclusion Complex Formation of Berberine Alkaloid with Cucurbit[7]uril. Journal of Physical Chemistry C, 2008, 112, 3410-3416.	3.1	147
6	Fluorescence lifetime of Nile Red as a probe for the hydrogen bonding strength with its microenvironment. Chemical Physics Letters, 2002, 360, 473-478.	2.6	142
7	Extinction coefficients of C60 triplet and anion radical, and one-electron reduction of the triplet by aromatic donors. Chemical Physics Letters, 1992, 195, 339-346.	2.6	139
8	External heavy atom induced phosphorescence emission of fullerenes: the energy of triplet C60. The Journal of Physical Chemistry, 1992, 96, 5237-5239.	2.9	123
9	Comprehensive Model of the Photophysics ofN-Phenylnaphthalimides:Â The Role of Solvent and Rotational Relaxation. The Journal of Physical Chemistry, 1996, 100, 2001-2011.	2.9	123
10	Coupled Electron-Proton Transfer in Interactions of Triplet C60with Hydrogen-Bonded Phenols:Â Effects of Solvation, Deuteration, and Redox Potentials. Journal of the American Chemical Society, 1997, 119, 12601-12609.	13.7	101
11	C60as a Photocatalyst of Electron-Transfer Processes:Â Reactions of Triplet C60with Chloranil, Perylene, and Tritolylamine Studied by Flash Photolysis and FT-EPR. The Journal of Physical Chemistry, 1996, 100, 8920-8926.	2.9	91
12	Effects of Molecular Structure and Hydrogen Bonding on the Radiationless Deactivation of Singlet Excited Fluorenone Derivatives. Journal of Physical Chemistry A, 1999, 103, 3837-3842.	2.5	87
13	Inclusion complex formation of sanguinarinealkaloid with cucurbit[7]uril: inhibition of nucleophilic attack and photooxidation. Organic and Biomolecular Chemistry, 2011, 9, 1061-1070.	2.8	84
14	Radiationless Deactivation of an Intramolecular Charge Transfer Excited State through Hydrogen Bonding:Â Effect of Molecular Structure and Hardâ´'Soft Anionic Character in the Excited State. Journal of Physical Chemistry A, 2001, 105, 10488-10496.	2.5	80
15	Synthesis and Solution- and Solid-State Characterization of Gold(I) Rings with Short Au···Au Interactions. Spontaneous Resolution of a Gold(I) Complex. Journal of the American Chemical Society, 2006, 128, 12668-12670.	13.7	80
16	Influence of geometry on the emitting properties of 2,3-naphthalimides. Journal of the American Chemical Society, 1992, 114, 946-953.	13.7	77
17	Considerable fluorescence enhancement upon supramolecular complex formation between berberine and p-sulfonated calixarenes. Chemical Physics Letters, 2006, 424, 71-76.	2.6	74
18	Inclusion Complex Formation of Ionic Liquids and Other Cationic Organic Compounds with Cucurbit[7]uril Studied by 4′,6-Diamidino-2-phenylindole Fluorescent Probe. Journal of Physical Chemistry B, 2009, 113, 1645-1651.	2.6	73

#	Article	IF	CITATIONS
19	Berberine Alkaloid as a Sensitive Fluorescent Probe for Bile Salt Aggregates. Journal of Physical Chemistry B, 2007, 111, 5635-5639.	2.6	65
20	Extensive astrocyte synchronization advances neuronal coupling in slow wave activity in vivo. Scientific Reports, 2017, 7, 6018.	3.3	65
21	Substituent, solvent, and temperature effects on radiative and nonradiative processes of singlet excited fluorenone derivatives. The Journal of Physical Chemistry, 1993, 97, 8895-8899.	2.9	64
22	Concerted Electron and Proton Movement in Quenching of Triplet C60 and Tetracene Fluorescence by Hydrogen-Bonded Phenol-Base Pairs. The Journal of Physical Chemistry, 1995, 99, 1843-1845.	2.9	64
23	Binding affinities of cucurbit[<i>n</i>]urils with cations. Chemical Communications, 2019, 55, 14131-14134.	4.1	64
24	Laser photolysis studies of transient processes in the photoreduction of naphthalimides by aliphatic amines. The Journal of Physical Chemistry, 1993, 97, 3217-3224.	2.9	60
25	Temperature dependence of the rates of photophysical processes of fluorenone. The Journal of Physical Chemistry, 1988, 92, 3842-3845.	2.9	56
26	Considerable Change of Fluorescence Properties upon Multiple Binding of Coralyne to 4-Sulfonatocalixarenes. Journal of Physical Chemistry B, 2010, 114, 2814-2819.	2.6	55
27	Kinetics and Thermodynamics of Berberine Inclusion in Cucurbit[7]uril. Journal of Physical Chemistry B, 2014, 118, 2499-2505.	2.6	53
28	Photochromism in Cucurbit[8]uril Cavity: Inhibition of Hydrolysis and Modification of the Rate of Merocyanine–Spiropyran Transformations. Journal of Physical Chemistry B, 2011, 115, 12577-12583.	2.6	52
29	Effect of Microenvironment on the Fluorescence of 2-Hydroxy-Substituted Nile Red Dye: A New Fluorescent Probe for the Study of Micelles. Journal of Physical Chemistry A, 2003, 107, 8784-8790.	2.5	48
30	The role of intersystem crossing in the deactivation of the singlet excited aminofluorenones. Physical Chemistry Chemical Physics, 2001, 3, 980-985.	2.8	44
31	Radiationless Deactivation Process of 1-Dimethylamino-9-fluorenone Induced by Conformational Relaxation in the Excited State: A New Model Molecule for the TICT Process. Journal of Physical Chemistry A, 2002, 106, 10089-10095.	2.5	39
32	Transient EPR Studies of Ion-Paired Metalloporphyrin Heterodimers. The Journal of Physical Chemistry, 1996, 100, 495-500.	2.9	35
33	Spectroscopic properties of aromatic dicarboximides part 3: Substituent effect on the photophysical properties of N-phenyl-2,3-napthalimides. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 93, 109-117.	3.9	34
34	Effect of molecular structure and hydrogen bonding on the fluorescence of hydroxy-substituted naphthalimides. Physical Chemistry Chemical Physics, 1999, 1, 4759-4766.	2.8	33
35	Tautomerization of lumichrome promoted by supramolecular complex formation with cucurbit[7]uril. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 207, 47-51.	3.9	33
36	Spectroscopic properties of aromatic dicarboximides. Part 2.—Substituent effect on the photophysical properties of N-phenyl-1,2-naphthalimide. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 2635-2641.	1.7	32

#	Article	IF	CITATIONS
37	Inclusion complex formation of ionic liquids with 4-sulfonatocalixarenes studied by competitive binding of berberine alkaloid fluorescent probe. Chemical Physics Letters, 2009, 477, 80-84.	2.6	32
38	Multiple decay pathways and electron transfer in excited ion-paired zinc-copper porphyrins: laser photolysis and time-resolved EPR spectroscopy. Chemical Physics Letters, 1991, 181, 400-406.	2.6	31
39	FT-EPR study of triplet state C60. Spin dynamics and electron transfer quenching. Chemical Physics Letters, 1993, 204, 23-28.	2.6	29
40	Sequential inclusion of two berberine cations in cucurbit[8]uril cavity: kinetic and thermodynamic studies. Physical Chemistry Chemical Physics, 2014, 16, 20147-20156.	2.8	29
41	Effect of ion pairing on the fluorescence of berberine, a natural isoquinoline alkaloid. Chemical Physics Letters, 2007, 447, 247-251.	2.6	28
42	4-Sulfonatocalix[6]arene-Induced Aggregation of Ionic Liquids. Langmuir, 2013, 29, 7682-7688.	3.5	26
43	Effect of amino acid addition on the micelle formation of the surfaceâ€active ionic liquid 1â€tetradecylâ€3â€methylimidazolium bromide in aqueous solution. Journal of Physical Organic Chemistry, 2019, 32, e3814.	1.9	24
44	Kinetics and Mechanism of Cationâ€Induced Guest Release from Cucurbit[7]uril. Chemistry - A European Journal, 2020, 26, 7433-7441.	3.3	24
45	Solvent-dependent radiationless transitions in fluorenone: A probe for hydrogen bonding interactions in the cyclodextrin cavity. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1994, 18, 237-245.	1.6	23
46	Effect of hydroxylic compounds on the photophysical properties of ellipticine and its 6-methyl derivative: The origin of dual fluorescence. Chemical Physics Letters, 2006, 427, 76-81.	2.6	23
47	Effect of torsional isomerization and inclusion complex formation with cucurbit[7]uril on the fluorescence of 6-methoxy-1-methylquinolinium. Photochemical and Photobiological Sciences, 2014, 13, 499-508.	2.9	23
48	Thermodynamics of inclusion complex formation between 1-alkyl-3-methylimidazolium ionic liquids and cucurbit[7]uril. Supramolecular Chemistry, 2010, 22, 612-618.	1.2	22
49	Kinetics of the reversible inclusion of flavopereirine in cucurbit[7]uril. Physical Chemistry Chemical Physics, 2017, 19, 766-773.	2.8	22
50	Dimer-promoted fluorescence quenching of coralyne by binding to anionic polysaccharides. Photochemical and Photobiological Sciences, 2009, 8, 556.	2.9	21
51	Photochromism of a Merocyanine Dye Bound to Sulfonatocalixarenes: Effect of pH and the Size of Macrocycle on the Kinetics. Journal of Physical Chemistry B, 2013, 117, 648-653.	2.6	21
52	Substituent effect on the dynamics of the inclusion complex formation between protoberberine alkaloids and cucurbit[7]uril. Physical Chemistry Chemical Physics, 2018, 20, 15986-15994.	2.8	21
53	Reduction of Triplet C60by Hydrogen-Bonded Naphthols: Concerted Electron and Proton Movement. Fullerenes, Nanotubes, and Carbon Nanostructures, 1997, 5, 343-353.	0.6	20
54	Anion-induced changes in the absorption and fluorescence properties of lumichrome: A new off-the-shelf fluorescent probe. Chemical Physics Letters, 2005, 411, 238-242.	2.6	20

#	Article	IF	CITATIONS
55	Thermodynamics of host–guest complexation between p-sulfonatocalixarenes and 1-alkyl-3-methylimidazolium type ionic liquids. Thermochimica Acta, 2011, 523, 227-231.	2.7	20
56	Fluorescence Response of Alkaloids and DAPI on Inclusion in Cucurbit[7]uril: Utilization for the Study of the Encapsulation of Ionic Liquid Cations. Israel Journal of Chemistry, 2011, 51, 625-633.	2.3	19
57	Application of 4-amino-N-adamantylphthalimide solvatochromic dye for fluorescence microscopy in selective visualization of lipid droplets and mitochondria. Sensors and Actuators B: Chemical, 2019, 286, 52-61.	7.8	18
58	Oxidation of Triplet C60 by Hydrogen-Bonded Chloranil:  Efficient Formation, Spectrum and Charge-Shift Reactions of C60+• Cation Radical. Journal of Physical Chemistry A, 2001, 105, 11051-11056.	2.5	17
59	Effect of Macrocycle Size on the Self-Assembly of Methylimidazolium Surfactant with Sulfonatocalix[<i>n</i>]arenes. Langmuir, 2016, 32, 10651-10658.	3.5	17
60	Effect of protonation and hydrogen bonding on the fluorescent properties and exciplex formation of N-(4-pyridyl)-1,2-naphthalimide. Photochemical and Photobiological Sciences, 2004, 3, 389-395.	2.9	16
61	Photooxidation of Alkaloids: Considerable Quantum Yield Enhancement by Rose Bengalâ€ s ensitized Singlet Molecular Oxygen Generation. Photochemistry and Photobiology, 2011, 87, 1315-1320.	2.5	16
62	Teaching indicators to unravel the kinetic features of host–guest inclusion complexes. Chemical Communications, 2020, 56, 12327-12330.	4.1	16
63	Effect of Headgroup Variation on the Self-Assembly of Cationic Surfactants with Sulfonatocalix[6]arene. Langmuir, 2017, 33, 8052-8061.	3.5	16
64	Photoreduction and Ketoneâ€sensitized Reduction of Alkaloids. Photochemistry and Photobiology, 2011, 87, 284-291.	2.5	15
65	Pressure dependence of the dual luminescence of twisting molecules. The case of substituted 2,3-naphthalimides. Photochemical and Photobiological Sciences, 2004, 3, 473-482.	2.9	14
66	Reversible Nanoparticle–Micelle Transformation of Ionic Liquid–Sulfonatocalix[6]arene Aggregates. Langmuir, 2015, 31, 6655-6662.	3.5	14
67	Structural effects in the decay kinetics of 1-naphthyl derivative-triethylamine exciplexes. Journal of Photochemistry and Photobiology A: Chemistry, 1989, 48, 265-276.	3.9	13
68	Selective Acceleration of the Protonated Merocyanine‣piropyran Photochromic Transformation by Inclusion in Cucurbit[7]uril. Photochemistry and Photobiology, 2012, 88, 1461-1466.	2.5	13
69	Change of the kinetics of inclusion in cucurbit[7]uril upon hydrogenation and methylation of palmatine. Physical Chemistry Chemical Physics, 2019, 21, 4912-4919.	2.8	13
70	Spectroscopic properties of aromatic dicarboximides Part 4: N-alkyl- and N-cycloalkyl-substituted 1,2-naphthalimides. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 113, 225-231.	3.9	12
71	Substituent and solvent effects on the photophysical properties of 3-azafluorenone derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 146, 59-62.	3.9	11
72	Host–guest interactions between 4-sulfonatocalix[8]arene and 1-alkyl-3-methylimidazolium type ionic liquids. Thermochimica Acta, 2012, 548, 76-80.	2.7	11

#	Article	IF	CITATIONS
73	4-Sulfonatocalixarene-induced nanoparticle formation of methylimidazolium-conjugated dextrans: Utilization for drug encapsulation. Carbohydrate Polymers, 2019, 223, 115071.	10.2	11
74	Solvent and temperature effects on the deactivation pathways of excited ion pairs produced via photoinduced proton transfer. Photochemical and Photobiological Sciences, 2003, 2, 230-235.	2.9	10
75	Interaction of triplet C60with p-tert-butyl-calixarenes and their complexes with pyridine derivatives. Physical Chemistry Chemical Physics, 2003, 5, 2047-2052.	2.8	10
76	Nanoparticle formation of chitosan induced by 4-sulfonatocalixarenes: utilization for alkaloid encapsulation. Colloid and Polymer Science, 2016, 294, 1807-1814.	2.1	10
77	Temperature-Dependent Behavior of the Dual Fluorescence of 2-(3-Fluorophenyl)-2,3-dihydro-1H-benzo[f]isoindole-1,3-dione. Helvetica Chimica Acta, 2001, 84, 2813.	1.6	9
78	Proton transfer and supramolecular complex formation between Nile Blue and tetraundecylcalix[4]resorcinarene—a fluorescence spectroscopic study. Perkin Transactions II RSC, 2002, , 1784-1789.	1.1	9
79	Effects of solvent polarity and hydrogen bonding on the fluorescence properties of trans-4-hydroxy-4′-nitrostilbenes. Chemical Physics Letters, 2010, 489, 59-63.	2.6	9
80	Effect of electrolytes, nucleotides and DNA on the fluorescence of flavopereirine natural alkaloid. Photochemical and Photobiological Sciences, 2011, 10, 592.	2.9	9
81	Structural insight into a partially unfolded state preceding aggregation in an intracellular lipidâ€binding protein. FEBS Journal, 2017, 284, 3637-3661.	4.7	9
82	Interaction of 2-Hydroxy-substituted Nile Red Fluorescent Probe with Organic Nitrogen Compounds. Photochemistry and Photobiology, 2005, 81, 1212.	2.5	8
83	Fluorescent properties of hydrogen-bonded ellipticine: A special effect of fluoride anion. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 182, 82-87.	3.9	8
84	Photoproducts and triplet reactivity of 4′-nitro- and 2′,4′-dinitro-substituted 4-hydroxystilbenes. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 214, 188-193.	3.9	8
85	Photophysical properties and electron transfer photochemical reactivity of substituted phthalimides. New Journal of Chemistry, 2020, 44, 17252-17266.	2.8	8
86	Effect of host–guest complex formation on the fluorescence of 6-methoxy-1-methyl-quinolinium cation with 4-sulfonatocalix[4]arene: utilization as a fluorescent probe for the study of difenzoquat binding. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 81, 377-384.	1.6	7
87	Multiple inclusion complex formation of protonated ellipticine with cucurbit[8]uril: thermodynamics and fluorescence properties. Supramolecular Chemistry, 2016, 28, 842-848.	1.2	7
88	Extinction coefficients of C60 triplet and anion radical, and one-electron reduction of the triplet by aromatic donors. Chemical Physics Letters, 1994, 221, 188.	2.6	6
89	Dual fluorescence of 1-hydroxy-substituted Nile Red dye in the red and near-infrared spectral range: Excited-state proton transfer along intramolecular hydrogen bond. Chemical Physics Letters, 2007, 440, 92-97.	2.6	6
90	New fluorescent isoquinoline derivatives. Tetrahedron Letters, 2011, 52, 5264-5266.	1.4	6

#	Article	IF	CITATIONS
91	Comment on "Dual Fluorescence of Ellipticine: Excited State Proton Transfer from Solvent versus Solvent Mediated Intramolecular Proton Transferâ€, Journal of Physical Chemistry A, 2012, 116, 899-900.	2.5	6
92	Excimer formation in the photochemistry of aliphatic ketones I: concentration dependence of quantum yields. Journal of Photochemistry and Photobiology, 1984, 27, 41-48.	0.6	5
93	Photophysical properties of novel [1,2,3]triazolo[4,5-d] pyridazine derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 153, 83-88.	3.9	5
94	Novel fluorescent isoquinoline derivatives obtained via Buchwald-Hartwig coupling of isoquinolin-3-amines. Arkivoc, 2012, 2012, 109-119.	0.5	5
95	Simultaneous analyte indicator binding assay (SBA) for the monitoring of reversible host–guest complexation kinetics. Chemical Communications, 2021, 57, 12663-12666.	4.1	5
96	lon pair formation via photoinduced proton transfer in excited hydroxynaphthalimide-N-methylimidazole hydrogen bonded complex: effect of temperature and viscosity on dual fluorescence. Physical Chemistry Chemical Physics, 2001, 3, 1459-1464.	2.8	4
97	Self-assembly of anionic pyrene derivatives with cationic surfactants bearing a tetradecyl chain. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 552, 161-168.	4.7	4
98	Substituent Effects on the Inclusion of 1-Alkyl-6-alkoxy-quinolinium in 4-Sulfonatocalix[n]arenes. ACS Omega, 2018, 3, 8631-8637.	3.5	4
99	Self-assembly of quaternary benzo[c]phenanthridine plant alkaloids into dimer in aqueous solution. Journal of Molecular Liquids, 2021, 334, 116014.	4.9	4
100	Energy Dissipation Processes of Singlet-excited 1-Hydroxyfluorenone and its Hydrogen-bonded Complex with N-methylimidazole¶. Photochemistry and Photobiology, 2004, 80, 119.	2.5	4
101	Intermolecular primary processes of triplet 2-pentanone with tributyl stannane and n-butyraldehyde. Journal of Photochemistry and Photobiology, 1981, 16, 267-278.	0.6	3
102	Photophysical properties of 3-azafluorenone. Reaction Kinetics and Catalysis Letters, 1997, 61, 57-62.	0.6	3
103	Effect of N-pyridyl substitution and hydrogen bonding on the deactivation of singlet excited 1,2-naphthalimide. Research on Chemical Intermediates, 2002, 28, 837-846.	2.7	3
104	Photophysical properties of novel cationic naphthalimides. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 182, 99-106.	3.9	3
105	The effect of the rate of photoinduced electron transfer on the photodecarboxylation efficiency in phthalimide photochemistry. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 408, 113109.	3.9	3
106	Photophysical and Photochemical Properties of 2,3-Dihydro-4(l H)-quinolinones. Part I. Fluorescence Properties. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1990, 45, 980-986.	1.4	2
107	Effect of hydrogen bonding and complexation with metal ions on the fluorescence of luotonin A. Photochemical and Photobiological Sciences, 2013, 12, 936-943.	2.9	2
108	The origin of the dual fluorescence of protonated ellipticine in water. Chemical Physics Letters, 2016, 644, 292-295.	2.6	2

#	Article	IF	CITATIONS
109	Electron transfer kinetics of methylviologen included in 4-sulfonatocalix[n]arenes at glassy carbon electrode; adiabaticity and activation energy. Chemical Physics Letters, 2018, 708, 222-227.	2.6	2
110	Push or Pull for a Better Selectivity? A Study on the Electronic Effects of Substituents of the Pyridine Ring on the Enantiomeric Recognition of Chiral Pyridino-18-Crown-6 Ethers. Symmetry, 2020, 12, 1795.	2.2	2
111	Hydrogen Bonding Interactions With Cyclodextrins: Utilization of Fluorenone as a New Probe. , 1996, , 255-258.		2
112	Encapsulation of Metronidazole in Biocompatible Macrocycles and Structural Characterization of Its Nano Spray-Dried Nanostructured Composite. Molecules, 2021, 26, 7335.	3.8	2
113	Reduction of triplet tetraphenyl-prophyrin dication by aryl amines and hydroquinones: Kinetics and primary radical yields. Research on Chemical Intermediates, 1994, 20, 939-951.	2.7	1
114	Photophysical properties and photoreduction of N-acetyl- and N-benzoylphthalimides. Chemical Physics, 2012, 392, 10-15.	1.9	1
115	Influence of molecular design on the morphology of nanoparticles formed from 1-alkyl-6-alkoxy-quinolinium cations and 4-sulfonatocalix[n]arenes. Journal of Molecular Liquids, 2019, 294, 111656.	4.9	1
116	Evaluation of quantum yields in the presence of an absorbing additive. Reaction Kinetics and Catalysis Letters, 1981, 18, 503-507.	0.6	0
117	Photophysical and Photochemical Properties of 2,3-Dihydro-4(l H)- quinolinones. Part II. Rates and Mechanism of Primary Processes. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1991, 46, 549-556.	1.4	0
118	On the photochemical decomposition of aromatic α-azohydroperoxides. Journal of Photochemistry and Photobiology A: Chemistry, 1993, 76, 69-76.	3.9	0
119	Energy Dissipation Processes of singletâ€excited 1â€Hydroxyfluorenone and its Hydrogenâ€bonded Complex with Nâ€methylimidazole [¶] . Photochemistry and Photobiology. 2004. 80. 119-126.	2.5	0