Mercedes Oñaderra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8408967/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fungal ribotoxins: molecular dissection of a family of natural killers. FEMS Microbiology Reviews, 2007, 31, 212-237.	8.6	126
2	Mechanism of the leakage induced on lipid model membranes by the hemolytic protein sticholysin II from the sea anemone Stichodactyla helianthus. FEBS Journal, 1998, 252, 284-289.	0.2	102
3	Characterization of the Antifungal Protein Secreted by the MouldAspergillus giganteus. Archives of Biochemistry and Biophysics, 1995, 324, 273-281.	3.0	101
4	Overproduction and purification of biologically active native fungal α-sarcin in Escherichia coli. Gene, 1994, 142, 147-151.	2.2	64
5	Sea Anemone Actinoporins: The Transition from a Folded Soluble State to a Functionally Active Membrane-Bound Oligomeric Pore. Current Protein and Peptide Science, 2007, 8, 558-572.	1.4	63
6	Conformational study of the antitumor protein α-sarcin. BBA - Proteins and Proteomics, 1988, 953, 280-288.	2.1	57
7	Fungal Ribotoxins: A Review of Potential Biotechnological Applications. Toxins, 2017, 9, 71.	3.4	57
8	Sticholysin II, a cytolysin from the sea anemoneStichodactyla helianthus, is a monomer-tetramer associating protein. FEBS Letters, 1999, 455, 27-30.	2.8	55
9	Release of Lipid Vesicle Contents by an Antibacterial Cecropin Aâ^'Melittin Hybrid Peptide. Biochemistry, 1996, 35, 9892-9899.	2.5	50
10	Deletion of the NH2-terminal β-Hairpin of the Ribotoxin α-Sarcin Produces a Nontoxic but Active Ribonuclease. Journal of Biological Chemistry, 2002, 277, 18632-18639.	3.4	48
11	Food mustard allergen interaction with phospholipid vesicles. FEBS Journal, 1994, 225, 609-615.	0.2	47
12	Role of histidine-50, glutamic acid-96, and histidine-137 in the ribonucleolytic mechanism of the ribotoxin ?-sarcin. , 1999, 37, 474-484.		47
13	RNase U2 and α-Sarcin: A Study of Relationships. Methods in Enzymology, 2001, 341, 335-351.	1.0	44
14	The insecticidal protein hirsutellin A from the mite fungal pathogen <i>Hirsutella thompsonii</i> is a ribotoxin. Proteins: Structure, Function and Bioinformatics, 2008, 72, 217-228.	2.6	44
15	Acid phospholipid vesicles produce conformational changes on the antitumour protein α-sarcin. BBA - Proteins and Proteomics, 1991, 1080, 51-58.	2.1	40
16	Anomalous electrophoretic behavior of a very acidic protein: Ribonuclease U2. Electrophoresis, 2005, 26, 3407-3413.	2.4	38
17	The cytotoxin α-sarcin behaves as a cyclizing ribonuclease. FEBS Letters, 1998, 424, 46-48.	2.8	36
18	Overproduction in Escherichia coli and Purification of the Hemolytic Protein Sticholysin II from the Sea Anemone Stichodactyla helianthus. Protein Expression and Purification, 2000, 18, 71-76.	1.3	36

#	Article	IF	CITATIONS
19	Silent mutations at the 5′-end of the cDNA of actinoporins from the sea anemone Stichodactyla helianthus allow their heterologous overproduction in Escherichia coli. Journal of Biotechnology, 2007, 127, 211-221.	3.8	35
20	Membrane interaction of a beta-structure-forming synthetic peptide comprising the 116–139th sequence region of the cytotoxic protein alpha-sarcin. Biophysical Journal, 1995, 68, 2387-2395.	0.5	34
21	Phenotypic selection and characterization of randomly produced non-haemolytic mutants of the toxic sea anemone protein sticholysin II. FEBS Letters, 2004, 575, 14-18.	2.8	34
22	Predictive study of the conformation of the cytotoxic protein α-sarcin: a structural model to explain α-sarcin-membrane interaction. Journal of Theoretical Biology, 1995, 172, 259-267.	1.7	33
23	The Antifungal Protein AFP of Aspergillus giganteusIs an Oligonucleotide/Oligosaccharide Binding (OB) Fold-containing Protein That Produces Condensation of DNA. Journal of Biological Chemistry, 2002, 277, 46179-46183.	3.4	33
24	Secretion of Recombinant Pro- and Mature Fungal α-Sarcin Ribotoxin by the Methylotrophic YeastPichia pastoris:The Lys–Arg Motif Is Required for Maturation. Protein Expression and Purification, 1998, 12, 315-322.	1.3	32
25	Effect of the antitumour protein α-sarcin on the thermotropic behaviour of acid phospholipid vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1068, 9-16.	2.6	31
26	Bovine Seminal Ribonuclease Destabilizes Negatively Charged Membranes. Biochemical and Biophysical Research Communications, 1994, 199, 119-124.	2.1	31
27	Characterization of a natural larger form of the antifungal protein (AFP) from Aspergillus giganteus. BBA - Proteins and Proteomics, 1997, 1340, 81-87.	2.1	31
28	Involvement of the amino-terminal \hat{l}^2 -hairpin of theAspergillusribotoxins on the interaction with membrances and nonspecific ribonuclease activity. Protein Science, 2001, 10, 1658-1668.	7.6	30
29	Production and characterization of a colon cancer-specific immunotoxin based on the fungal ribotoxin Â-sarcin. Protein Engineering, Design and Selection, 2012, 25, 425-435.	2.1	30
30	Assignment of the contribution of the tryptophan residues to the spectroscopic and functional properties of the ribotoxin ?-sarcin. Proteins: Structure, Function and Bioinformatics, 2000, 41, 350-361.	2.6	29
31	The Therapeutic Potential of Fungal Ribotoxins. Current Pharmaceutical Biotechnology, 2008, 9, 153-160.	1.6	28
32	Kinetic study of the aggregation and lipid mixing produced by alpha-sarcin on phosphatidylglycerol and phosphatidylserine vesicles: stopped-flow light scattering and fluorescence energy transfer measurements. Biophysical Journal, 1994, 67, 1117-1125.	0.5	27
33	Partially folded states of the cytolytic protein sticholysin II. BBA - Proteins and Proteomics, 2001, 1545, 122-131.	2.1	25
34	Sequence Determination and Molecular Characterization of Gigantin, a Cytotoxic Protein Produced by the MouldAspergillus giganteusIFO 5818. Archives of Biochemistry and Biophysics, 1997, 343, 188-193.	3.0	24
35	Arginine 121 is a crucial residue for the specific cytotoxic activity of the ribotoxin α-sarcin. FEBS Journal, 2001, 268, 6190-6196.	0.2	24
36	Production and characterization of a noncytotoxic deletion variant of the Aspergillus fumigatus allergen Aspf1 displaying reduced IgE binding. FEBS Journal, 2005, 272, 2536-2544.	4.7	23

Mercedes Oñaderra

#	Article	IF	CITATIONS
37	Fluorescence studies on the lipoprotein complex of the fatty acid synthetase from the insect Ceratitis capitata. Biochemistry, 1981, 20, 5689-5694.	2.5	22
38	Hirsutellin A: A Paradigmatic Example of the Insecticidal Function of Fungal Ribotoxins. Insects, 2013, 4, 339-356.	2.2	22
39	Response of osteoblasts and preosteoblasts to calcium deficient and Si substituted hydroxyapatites treated at different temperatures. Colloids and Surfaces B: Biointerfaces, 2015, 133, 304-313.	5.0	21
40	Fungal extracellular ribotoxins as insecticidal agents. Insect Biochemistry and Molecular Biology, 2013, 43, 39-46.	2.7	19
41	Preparation of an engineered safer immunotoxin against colon carcinoma based on the ribotoxin hirsutellinÂA. FEBS Journal, 2015, 282, 2131-2141.	4.7	19
42	Thermal unfolding of the cytotoxin α-sarcin: phospholipid binding induces destabilization of the protein structure. BBA - Proteins and Proteomics, 1995, 1252, 126-134.	2.1	18
43	Production and characterization of scFvA33T1, an immunoRNase targeting colon cancer cells. FEBS Journal, 2012, 279, 3022-3032.	4.7	18
44	Hirsutellin A Displays Significant Homology to Microbial Extracellular Ribonucleases. Journal of Invertebrate Pathology, 1999, 74, 96-97.	3.2	17
45	A peptide of nine amino acid residues from αâ€sarcin cytotoxin is a membraneâ€perturbing structure. Chemical Biology and Drug Design, 1998, 51, 142-148.	1.1	17
46	Leucine 145 of the ribotoxin Â-sarcin plays a key role for determining the specificity of the ribosome-inactivating activity of the protein. Protein Science, 2003, 12, 161-169.	7.6	16
47	Solution structure of hirsutellin A – new insights into the active site and interacting interfaces of ribotoxins. FEBS Journal, 2009, 276, 2381-2390.	4.7	16
48	Spectroscopic characterization of the alkylated α-sarcin cytotoxin: analysis of the structural requirements for the protein-lipid bilayer hydrophobic interaction. BBA - Proteins and Proteomics, 1995, 1252, 43-52.	2.1	15
49	Interaction of Type I Collagen with Phosphatidylcholine Vesicles. Collagen and Related Research, 1988, 8, 133-144.	2.0	13
50	Oligomerization of the cytotoxin α-sarcin associated with phospholipid membranes. Molecular Membrane Biology, 1998, 15, 141-144.	2.0	13
51	Circular dichroism studies of the fatty acid synthetase complex from the insect Ceratitis capitata. Biochemical and Biophysical Research Communications, 1978, 83, 998-1003.	2.1	12
52	Implication of an Asp residue in the ribonucleolytic activity of hirsutellin A reveals new electrostatic interactions at the active site of ribotoxins. Biochimie, 2012, 94, 427-433.	2.6	11
53	Interaction of type I collagen fibrils with phospholipid vesicles. Matrix Biology, 1989, 9, 405-410.	1.7	10
54	Effect of divalent cations on structureâ€function relationships of the antitumor protein αâ€sarcin. International Journal of Peptide and Protein Research, 1989, 34, 416-422.	0.1	10

Mercedes Oñaderra

#	Article	IF	CITATIONS
55	A non-cytotoxic but ribonucleolytically specific ribotoxin variant: implication of tryptophan residues in the cytotoxicity of hirsutellin A. Biological Chemistry, 2012, 393, 449-456.	2.5	10
56	Early in vitro response of macrophages and T lymphocytes to nanocrystalline hydroxyapatites. Journal of Colloid and Interface Science, 2014, 416, 59-66.	9.4	9
57	Involvement of loops 2 and 3 of α-sarcin on its ribotoxic activity. Toxicon, 2015, 96, 1-9.	1.6	9
58	Effect of phospholipids on the length of the helical segments in the fatty acid synthetase complex from Ceratitis capitata. FEBS Letters, 1981, 126, 253-256.	2.8	8
59	Molecular aspects of α-sarcin penetration in phospholipid bilayers. Biochemical Society Transactions, 1989, 17, 999-1000.	3.4	8
60	Ribonuclease U2: cloning, production inPichia pastorisand affinity chromatography purification of the active recombinant protein. FEMS Microbiology Letters, 2000, 189, 165-169.	1.8	8
61	Ribonuclease U2: cloning, production in Pichia pastoris and affinity chromatography purification of the active recombinant protein. FEMS Microbiology Letters, 2000, 189, 165-169.	1.8	8
62	Conserved asparagine residue 54 of α-sarcin plays a role in protein stability and enzyme activity. Biological Chemistry, 2004, 385, 1165-1170.	2.5	8
63	Effect of E. coli endotoxin on the structure-function of fatty acid synthetase lipoprotein. Biochemical and Biophysical Research Communications, 1981, 101, 1228-1232.	2.1	6
64	Binding of 1â€anilinonaphthaleneâ€8â€sulfonic acid to type I collagen. International Journal of Peptide and Protein Research, 1986, 28, 173-178.	0.1	6
65	Involvement of loop 5 lysine residues and the N-terminal β-hairpin of the ribotoxin hirsutellin A on its insecticidal activity. Biological Chemistry, 2016, 397, 135-145.	2.5	5
66	Fatty acid synthetase complex from the insect Ceratitis capitata Structural studies. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1981, 668, 246-256.	1.7	4
67	Effects of palmitoyl-CoA on the structure-function of the fatty acid synthetase complex from Ceratitis capitata. International Journal of Biochemistry & Cell Biology, 1982, 14, 1061-1066.	0.5	4
68	Minimized natural versions of fungal ribotoxins show improved active site plasticity. Archives of Biochemistry and Biophysics, 2017, 619, 45-53.	3.0	4
69	Escherichia coli JA221 can suppress the UAG stop signal. Letters in Applied Microbiology, 1995, 21, 96-98.	2.2	3
70	Fatty acid synthetase complex in Ceratitis capitata adult. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1983, 76, 249-252.	0.2	1
71	Molecular Interactions Involved in the Passage of the Cytotoxic Protein α-Sarcin Across Membranes. , 1994, , 269-276.		1