
## Shankar B Rananavare

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8408921/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Morphology-controlled copper nanowire synthesis and magnetic field assisted self-assembly.<br>Nanoscale, 2019, 11, 2679-2686.                                                 | 5.6 | 10        |
| 2  | Optimizing the performance of a commercial electrochemical ethylene sensor via controlled ethylene generation in situ. Sensors and Actuators B: Chemical, 2019, 281, 535-541. | 7.8 | 13        |
| 3  | The LÎ <sup>3</sup> Phase of Pulmonary Surfactant. Langmuir, 2018, 34, 6601-6611.                                                                                             | 3.5 | 10        |
| 4  | Bubbling and foaming assisted clearing of mucin plugs in microfluidic Y-junctions. Journal of Biomechanics, 2017, 64, 1-7.                                                    | 2.1 | 2         |
| 5  | The L-Gamma Phase of Pulmonary Surfactant. Biophysical Journal, 2017, 112, 84a.                                                                                               | 0.5 | 0         |
| 6  | Use of Sacrificial Nanoparticles to Remove the Effects of Shot-noise in Contact Holes Fabricated by<br>E-beam Lithography. Journal of Visualized Experiments, 2017, , .       | 0.3 | 0         |
| 7  | A method to derivatize surface silanol groups to Si-alkyl groups in carbon-doped silicon oxides. RSC<br>Advances, 2016, 6, 93219-93230.                                       | 3.6 | 88        |
| 8  | Controlled Deposition of Tin Oxide and Silver Nanoparticles Using Microcontact Printing. Crystals, 2015, 5, 116-142.                                                          | 2.2 | 6         |
| 9  | Hydrophobic Surfactant Proteins Strongly Induce Negative Curvature. Biophysical Journal, 2015, 109,<br>95-105.                                                                | 0.5 | 23        |
| 10 | Reducing the effects of shot noise using nanoparticles. Journal of Materials Chemistry C, 2015, 3, 955-959.                                                                   | 5.5 | 5         |
| 11 | The Hydrophobic Surfactant Proteins Strongly Induce Lipid Curvature. FASEB Journal, 2015, 29, 1016.3.                                                                         | 0.5 | 0         |
| 12 | The Effect of the Hydrophobic Surfactant Proteins on HII-Curvature Depends on the Cylindrical<br>Radius. Biophysical Journal, 2014, 106, 295a-296a.                           | 0.5 | 0         |
| 13 | An Anionic Phospholipid Enables the Hydrophobic Surfactant Proteins to Alter Spontaneous<br>Curvature. Biophysical Journal, 2013, 104, 594-603.                               | 0.5 | 16        |
| 14 | An Anionic Phospholipid Enables the Hydrophobic Surfactant Proteins to Alter Spontaneous<br>Curvature. Biophysical Journal, 2013, 104, 91a.                                   | 0.5 | 0         |
| 15 | Single component photoacid/photobase generators: potential applications in double patterning photolithography. Journal of Materials Chemistry C, 2013, 1, 2657.               | 5.5 | 15        |
| 16 | Interaction of Hydrophobic Surfactant Proteins with Oriented Phospholipid Bilayers. Biophysical<br>Journal, 2012, 102, 491a.                                                  | 0.5 | 0         |
| 17 | Anionic Phospholipids change the Effect of the Hydrophobic Surfactant Proteins on Structures of<br>Hexagonal Lipids. Biophysical Journal, 2012, 102, 491a.                    | 0.5 | 0         |
| 18 | Differential Effects of the Hydrophobic Surfactant Proteins on the Formation of Inverse<br>Bicontinuous Cubic Phases. Langmuir, 2012, 28, 16596-16604.                        | 3.5 | 21        |

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Positional control over nanoparticle deposition into nanoholes. , 2011, , .                                                                                                |     | 0         |
| 20 | Photochemical reactivity of bis-carbamate photobase generators. , 2011, , .                                                                                                |     | 0         |
| 21 | Coaxial tips for infrared NSOM. , 2011, , .                                                                                                                                |     | 0         |
| 22 | Synthesis and characterization of N- and P- doped tin oxide nanowires. , 2011, , .                                                                                         |     | 1         |
| 23 | The Accelerated Late Adsorption of Pulmonary Surfactant. Langmuir, 2011, 27, 4857-4866.                                                                                    | 3.5 | 14        |
| 24 | Effect of Hydrophobic Surfactant Proteins on the Structure of Oriented Lipid Bilayers. Biophysical<br>Journal, 2011, 100, 509a.                                            | 0.5 | 0         |
| 25 | The Hydrophobic Proteins of Pulmonary Surfactant Reduce Bilayer Elasticity. Biophysical Journal, 2011,<br>100, 547a.                                                       | 0.5 | 0         |
| 26 | The Pivotal Plane of Phosphatidylethanolamine is Unaffected by the Hydrophobic Surfactant Proteins.<br>Biophysical Journal, 2011, 100, 337a.                               | 0.5 | 0         |
| 27 | Towards p-type conductivity in SnO <sub>2</sub> nanocrystals through Li doping. Nanotechnology, 2010, 21, 035708.                                                          | 2.6 | 19        |
| 28 | Facile pyrolytic synthesis of silicon nanowires. Solid-State Electronics, 2010, 54, 1185-1191.                                                                             | 1.4 | 9         |
| 29 | Corrosion Behavior of Copper Thin Films in Organic HF-Containing Cleaning Solution for Semiconductor Applications. Journal of the Electrochemical Society, 2010, 157, C24. | 2.9 | 11        |
| 30 | The Hydrophobic Surfactant Proteins Induce Cubic Phases Without Altering Spontaneous Curvature.<br>Biophysical Journal, 2010, 98, 280a.                                    | 0.5 | 0         |
| 31 | Hydrophobic Surfactant Proteins Induce a Phosphatidylethanolamine to Form Cubic Phases.<br>Biophysical Journal, 2010, 98, 1549-1557.                                       | 0.5 | 32        |
| 32 | Copper Thin-Film Dissolution/Precipitation Kinetics in Organic HF Containing Cleaning Solution.<br>Journal of the Electrochemical Society, 2010, 157, H801.                | 2.9 | 3         |
| 33 | In Memory of Pierre-Gilles de Gennes. Journal of Physical Chemistry B, 2009, 113, 3591-3592.                                                                               | 2.6 | 0         |
| 34 | Facile pyrolytic synthesis of silicon nanowires. , 2009, , .                                                                                                               |     | 1         |
| 35 | The Hydrophobic Surfactant Proteins Induce Cubic-Phase Formation in a Hii Forming Phospholipid.<br>Biophysical Journal, 2009, 96, 360a.                                    | 0.5 | 0         |
| 36 | Room temperature Cl <sub>2</sub> sensing using thick nanoporous films of Sb-doped<br>SnO <sub>2</sub> . Nanotechnology, 2008, 19, 245501.                                  | 2.6 | 50        |

Shankar B Rananavare

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Differential Effects of Lysophosphatidylcholine on the Adsorption of Phospholipids to an Air/Water<br>Interface. Biophysical Journal, 2007, 92, 493-501.                                                                              | 0.5  | 27        |
| 38 | Synthesis and characterization of lithium-doped tin dioxide nanocrystalline powders. Materials<br>Chemistry and Physics, 2007, 102, 176-180.                                                                                          | 4.0  | 20        |
| 39 | Aromatic pentafluoro-λ6-sulfanyl (SF5) surfactants: m-SF5(CF2)nC6H4SO3K. Mendeleev<br>Communications, 2006, 16, 182-184.                                                                                                              | 1.6  | 3         |
| 40 | Mechanisms of Aging of Antimony Doped Tin Oxide Based Electrochromic Devices. Japanese Journal of<br>Applied Physics, 2006, 45, L1300-L1303.                                                                                          | 1.5  | 12        |
| 41 | Effects of gramicidin-A on the adsorption of phospholipids to the air–water interface. Biochimica Et<br>Biophysica Acta - Biomembranes, 2005, 1717, 41-49.                                                                            | 2.6  | 26        |
| 42 | SF5-Terminated Fluorinated Schiff Base Liquid Crystals. Journal of Physical Chemistry B, 2004, 108, 19940-19948.                                                                                                                      | 2.6  | 37        |
| 43 | Bolaamphiphilic Phosphocholines: Structure and Phase Behavior in Aqueous Mediaâ€. Langmuir, 2000,<br>16, 128-133.                                                                                                                     | 3.5  | 42        |
| 44 | Smectic-A–smectic-C–smectic-C*multicritical point in ferroelectric liquid crystals. Physical Review<br>Letters, 1994, 72, 3558-3561.                                                                                                  | 7.8  | 17        |
| 45 | <title>Lifshitz point in ferroelectric liquid crystals</title> . , 1994, , .                                                                                                                                                          |      | 0         |
| 46 | Interdigitated smectic A and B mesophases in higher homologues of the 5O. <i>m</i> series. Liquid<br>Crystals, 1993, 13, 757-764.                                                                                                     | 2.2  | 25        |
| 47 | Critical fluctuations and molecular dynamics at liquidâ€crystalline phase transitions. II. Electron spin<br>resonance experiments. Journal of Chemical Physics, 1992, 96, 3912-3938.                                                  | 3.0  | 16        |
| 48 | Tetraether bolaform amphiphiles as models of archaebacterial membrane lipids: Raman spectroscopy,<br>phosphorus-31 NMR, x-ray scattering, and electron microscopy. Journal of the American Chemical<br>Society, 1992, 114, 9035-9042. | 13.7 | 74        |
| 49 | Heisenberg spin exchange and molecular diffusion in liquid crystals. Journal of Chemical Physics, 1989, 91, 6887-6905.                                                                                                                | 3.0  | 49        |
| 50 | Twoâ€dimensional electron–electron double resonance and electron spin–echo study of solute<br>dynamics in smectics. Journal of Chemical Physics, 1989, 90, 5764-5786.                                                                 | 3.0  | 43        |
| 51 | E.S.R. and D.S.C. investigations of phase transitions in polymorphic<br>4- <i>n</i> -alkoxybenzylidene-4′- <i>n</i> -alkylanilines. Liquid Crystals, 1988, 3, 957-976.                                                                | 2.2  | 24        |
| 52 | Nematic order near a tricritical nematic-smectic a phase transition. Chemical Physics Letters, 1987, 140, 255-262.                                                                                                                    | 2.6  | 34        |
| 53 | Solvation changes induced in a lyotropic lamellar liquid crystal containing solubilized benzene.<br>Langmuir, 1986, 2, 373-375.                                                                                                       | 3.5  | 6         |
| 54 | The mechanism of hydrotrope action of a dicarboxylic acid. Journal of Colloid and Interface Science, 1986, 109, 487-492.                                                                                                              | 9.4  | 26        |

4

| #  | Article                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Solvent-Solute Interaction in an L <sub>α</sub> Phase Formed With Water, Ethylene Glycol and Lecithin. Molecular Crystals and Liquid Crystals, 1986, 133, 207-222. | 0.8  | 9         |
| 56 | Dynamic structure of n-hexadecane solubilized in a nonionic surfactant bilayer measured by deuteron magnetic resonance. Langmuir, 1985, 1, 24-28.                  | 3.5  | 8         |
| 57 | Alignment of a nonaqueous lyotropic liquid crystalline phase with lecithin. Journal of the American<br>Chemical Society, 1984, 106, 1848-1849.                     | 13.7 | 8         |
| 58 | Molecular motion and phases in an equimolar phosphatidylcholine/ethylene glycol system. The<br>Journal of Physical Chemistry, 1984, 88, 4015-4018.                 | 2.9  | 4         |