
Pasi Tavi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8408387/publications.pdf Version: 2024-02-01

ΔΛςι ΤΛλ/Ι

#	Article	lF	CITATIONS
1	PGC-1α deficiency reveals sex-specific links between cardiac energy metabolism and EC-coupling during development of heart failure in mice. Cardiovascular Research, 2022, 118, 1520-1534.	3.8	8
2	The Ablation of VEGFR-1 Signaling Promotes Pressure Overload-Induced Cardiac Dysfunction and Sudden Death. Biomolecules, 2021, 11, 452.	4.0	3
3	Short highâ€fat diet interferes with the physiological maturation of the late adolescent mouse heart. Physiological Reports, 2020, 8, e14474.	1.7	1
4	Heart specific PGC-1α deletion identifies metabolome of cardiac restricted metabolic heart failure. Cardiovascular Research, 2019, 115, 107-118.	3.8	38
5	Nrf2 and SQSTM1/p62 jointly contribute to mesenchymal transition and invasion in glioblastoma. Oncogene, 2019, 38, 7473-7490.	5.9	61
6	Oxidative hotspots on actin promote skeletal muscle weakness in rheumatoid arthritis. JCI Insight, 2019, 4, .	5.0	23
7	Sarcoplasmic reticulum Ca ²⁺ -induced Ca ²⁺ release regulates class IIa HDAC localization in mouse embryonic cardiomyocytes. Physiological Reports, 2018, 6, e13522.	1.7	5
8	Structural Immaturity of Human iPSC-Derived Cardiomyocytes: In Silico Investigation of Effects on Function and Disease Modeling. Frontiers in Physiology, 2018, 9, 80.	2.8	110
9	Genome-Wide Dynamics of Nascent Noncoding RNA Transcription in Porcine Heart After Myocardial Infarction. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	17
10	The role of cardiac energy metabolism in cardiac hypertrophy and failure. Experimental Cell Research, 2017, 360, 12-18.	2.6	77
11	Aggravated Postinfarct Heart Failure in Type 2 Diabetes Is Associated with Impaired Mitophagy and Exaggerated Inflammasome Activation. American Journal of Pathology, 2017, 187, 2659-2673.	3.8	48
12	Loss of CLN5 causes altered neurogenesis in a childhood neurodegenerative disorder. DMM Disease Models and Mechanisms, 2017, 10, 1089-1100.	2.4	14
13	PSEN1 Mutant iPSC-Derived Model Reveals Severe Astrocyte Pathology in Alzheimer's Disease. Stem Cell Reports, 2017, 9, 1885-1897.	4.8	239
14	Vascular Endothelial Growth Factor-B Induces a Distinct Electrophysiological Phenotype in Mouse Heart. Frontiers in Physiology, 2017, 8, 373.	2.8	5
15	Refractoriness in human atria: Time and voltage dependence of sodium channel availability. Journal of Molecular and Cellular Cardiology, 2016, 101, 26-34.	1.9	35
16	Peroxisome proliferatorâ€activated receptorâ€Î³ coactivator 1 α1 induces a cardiac excitation–contraction coupling phenotype without metabolic remodelling. Journal of Physiology, 2016, 594, 7049-7071.	2.9	20
17	Potassium Channel Interacting Protein 2 (KChIP2) is not a transcriptional regulator of cardiac electrical remodeling. Scientific Reports, 2016, 6, 28760.	3.3	3
18	Generation of Functional Neuromuscular Junctions from Human Pluripotent Stem Cell Lines. Frontiers in Cellular Neuroscience, 2015, 9, 473.	3.7	35

Pasi Tavi

#	Article	IF	CITATIONS
19	MicroRNA Profiling of Pericardial Fluid Samples from Patients with Heart Failure. PLoS ONE, 2015, 10, e0119646.	2.5	59
20	WDR12, a Member of Nucleolar PeBoW-Complex, Is Up-Regulated in Failing Hearts and Causes Deterioration of Cardiac Function. PLoS ONE, 2015, 10, e0124907.	2.5	7
21	Calcium signalling in developing cardiomyocytes: implications for model systems and disease. Journal of Physiology, 2015, 593, 1047-1063.	2.9	66
22	Endothelial Bmx tyrosine kinase activity is essential for myocardial hypertrophy and remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13063-13068.	7.1	31
23	In Silico Screening of the Key Cellular Remodeling Targets in Chronic Atrial Fibrillation. PLoS Computational Biology, 2014, 10, e1003620.	3.2	59
24	Hypoxia-inducible factor 1-induced G protein-coupled receptor 35 expression is an early marker of progressive cardiac remodelling. Cardiovascular Research, 2014, 101, 69-77.	3.8	39
25	Injected nanoparticles: The combination of experimental systems to assess cardiovascular adverse effects. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 64-72.	4.3	17
26	AAV9-mediated VEGF-B Gene Transfer Improves Systolic Function in Progressive Left Ventricular Hypertrophy. Molecular Therapy, 2012, 20, 2212-2221.	8.2	63
27	Hypoxia and HIF-1 suppress SERCA2a expression in embryonic cardiac myocytes through two interdependent hypoxia response elements. Journal of Molecular and Cellular Cardiology, 2011, 50, 1008-1016.	1.9	33
28	Ca ²⁺ –calmodulinâ€dependent protein kinase II represses cardiac transcription of the Lâ€type calcium channel α _{1C} â€subunit gene (<i>Cacna1c</i>) by DREAM translocation. Journal of Physiology, 2011, 589, 2669-2686.	2.9	63
29	The role of <i>in vivo</i> Ca ²⁺ signals acting on Ca ²⁺ –calmodulinâ€dependent proteins for skeletal muscle plasticity. Journal of Physiology, 2011, 589, 5021-5031.	2.9	69
30	Impact of Sarcoplasmic Reticulum Calcium Release on Calcium Dynamics and Action Potential Morphology in Human Atrial Myocytes: A Computational Study. PLoS Computational Biology, 2011, 7, e1001067.	3.2	115
31	Local Ca ²⁺ releases enable rapid heart rates in developing cardiomyocytes. Journal of Physiology, 2010, 588, 1407-1417.	2.9	30
32	Increased fatigue resistance linked to Ca ²⁺ -stimulated mitochondrial biogenesis in muscle fibres of cold-acclimated mice. Journal of Physiology, 2010, 588, 4275-4288.	2.9	71
33	Mitochondrial uncoupling downregulates calsequestrin expression and reduces SR Ca2+ stores in cardiomyocytes. Cardiovascular Research, 2010, 88, 75-82.	3.8	26
34	Increased mitochondrial Ca 2+ and decreased sarcoplasmic reticulum Ca 2+ in mitochondrial myopathy. Human Molecular Genetics, 2009, 18, 278-288.	2.9	64
35	Regulation of excitation-contraction coupling in mouse cardiac myocytes: integrative analysis with mathematical modelling. BMC Physiology, 2009, 9, 16.	3.6	23
36	Model of Excitation-Contraction Coupling of Rat Neonatal Ventricular Myocytes. Biophysical Journal, 2009, 96, 1189-1209.	0.5	78

Pasi Tavi

#	Article	IF	CITATIONS
37	Mathematical Model of Mouse Embryonic Cardiomyocyte Excitation–Contraction Coupling. Journal of General Physiology, 2008, 132, 407-419.	1.9	22
38	Excitation–Contraction Coupling of the Mouse Embryonic Cardiomyocyte. Journal of General Physiology, 2008, 132, 397-405.	1.9	53
39	Mathematical modelling elucidates sex disparities in human cardiac physiology. Acta Physiologica, 2006, 187, 431-431.	3.8	0
40	Abnormal Ca2+ release and catecholamine-induced arrhythmias in mitochondrial cardiomyopathy. Human Molecular Genetics, 2005, 14, 1069-1076.	2.9	22
41	Impaired Ca handling and contraction in cardiomyocytes from mice with a dominant negative thyroid hormone receptor ?. Journal of Molecular and Cellular Cardiology, 2005, 38, 655-663.	1.9	25
42	Pacing-induced calcineurin activation controls cardiac Ca2+signalling and gene expression. Journal of Physiology, 2004, 554, 309-320.	2.9	51
43	Calmodulin kinase modulates Ca2+ release in mouse skeletal muscle. Journal of Physiology, 2003, 551, 5-12.	2.9	34
44	Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions. Journal of Physiology, 2003, 551, 179-190.	2.9	71
45	Cardiac mechanotransduction: from sensing to disease and treatment. Trends in Pharmacological Sciences, 2001, 22, 254-260.	8.7	58
46	cAMP- and cGMP-independent stretch-induced changes in the contraction of rat atrium. Pflugers Archiv European Journal of Physiology, 2000, 441, 65-68.	2.8	5