List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8408189/publications.pdf Version: 2024-02-01

Svini Finn

#	Article	IF	CITATIONS
1	Polypyrrole-coated Pickering-type droplet as light-responsive carrier of oily material. Colloid and Polymer Science, 2022, 300, 255-265.	2.1	2
2	Morphological and chemical stabilities of polypyrrole in aqueous media for 1 year. Polymer Journal, 2022, 54, 169-178.	2.7	12
3	<scp>Preferredâ€handed</scp> helical conformation in organic–inorganic hybrid block copolymers with <scp>wellâ€controlled</scp> stereoregularity. Journal of Polymer Science, 2022, 60, 766-773.	3.8	2
4	Driving Droplets on Liquid Repellent Surfaces via Lightâ€Driven Marangoni Propulsion. Advanced Functional Materials, 2022, 32, .	14.9	35
5	Electroless nickel plating on a biomineral-based sponge structure. Materials Advances, 2022, 3, 931-936.	5.4	6
6	Alcohol as Hydrophobizer for Polypyrrole. Chemistry Letters, 2022, 51, 598-600.	1.3	2
7	Synthesis of Polypyrrole and Its Derivatives as a Liquid Marble Stabilizer via a Solvent-Free Chemical Oxidative Polymerization Protocol. ACS Omega, 2022, 7, 13010-13021.	3.5	9
8	Interparticle Repulsion of Microparticles Delivered to a Pendent Drop by an Electric Field. Langmuir, 2022, 38, 670-679.	3.5	3
9	"Foam Marble―Stabilized with One Type of Polymer Particle. Langmuir, 2022, 38, 7603-7610.	3.5	1
10	Particle-stabilized oil-in-water emulsions as a platform for topical lipophilic drug delivery. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111423.	5.0	21
11	Synthesis of poly(alkylaniline)s by aqueous chemical oxidative polymerization and their use as stimuli-responsive liquid marble stabilizer. Polymer, 2021, 212, 123295.	3.8	9
12	Ultrahighâ€5ensitive Compressionâ€5tress Sensor Using Integrated Stimuliâ€Responsive Materials. Advanced Materials, 2021, 33, e2008755.	21.0	47
13	Locomotion of a Nonaqueous Liquid Marble Induced by Near-Infrared-Light Irradiation. Langmuir, 2021, 37, 4172-4182.	3.5	11
14	Tack properties and adhesion mechanism of two different crosslinked polyacrylic pressureâ€sensitive adhesives. Journal of Applied Polymer Science, 2021, 138, 50767.	2.6	4
15	Preparation of pH-responsive Clear Liquid Marble. Chemistry Letters, 2021, 50, 1274-1277.	1.3	1
16	Chiral Silica with Preferred-Handed Helical Structure via Chiral Transfer. Jacs Au, 2021, 1, 375-379.	7.9	5
17	Monodispersed Nitrogen-Containing Carbon Capsules Fabricated from Conjugated Polymer-Coated Particles via Light Irradiation. Langmuir, 2021, 37, 4599-4610.	3.5	13
18	Facile preparation of water-soluble multiwalled carbon nanotubes bearing phosphorylcholine groups for heat generation under near-infrared irradiation. Polymer Journal, 2021, 53, 1001-1009.	2.7	1

#	Article	IF	CITATIONS
19	Synthesis of dioctyl sulfosuccinateâ€doped polypyrrole grains by aqueous chemical oxidative polymerization and their use as lightâ€responsive liquid marble stabilizer. Journal of Applied Polymer Science, 2021, 138, 51009.	2.6	9
20	Hairy Particles Synthesized by Living Anionic Polymerization-induced Self-assembly and Evaluation of Their Nanostructure. Chemistry Letters, 2021, 50, 920-923.	1.3	3
21	Cover Image, Volume 138, Issue 37. Journal of Applied Polymer Science, 2021, 138, 51311.	2.6	0
22	Increasing chemisorbed silane coupling agents in surfaceâ€ŧreated layer of silica particles. Journal of Applied Polymer Science, 2021, 138, 51297.	2.6	5
23	Phase structure and adhesion properties of acrylic block copolymer/tackifier blends as nanocompositeâ€like pressureâ€sensitive adhesives. Journal of Applied Polymer Science, 2021, 138, 51384.	2.6	1
24	Lanoconazole-loaded emulsion stabilized with cellulose nanocrystals decorated with polyphosphoesters reduced inflammatory edema in a mouse model. Polymer Journal, 2021, 53, 1493-1498.	2.7	2
25	How Liquid Marbles Break Down: Direct Evidence for Two Breakage Scenarios. Small, 2021, 17, e2102438.	10.0	17
26	Controllable Positive/Negative Phototaxis of Millimeter-Sized Objects with Sensing Function. Langmuir, 2021, 37, 11093-11101.	3.5	3
27	Box fabricated from plate-stabilized liquid marble. Materials Advances, 2021, 2, 4604-4609.	5.4	4
28	Multimotion of Marangoni Propulsion Ships Controlled by Two-Wavelength Near-Infrared Light. Langmuir, 2021, 37, 14597-14604.	3.5	5
29	Effects of silane coupling agent hydrophobicity and loading method on water absorption and mechanical strength of silica particleâ€filled epoxy resin. Journal of Applied Polymer Science, 2020, 137, 48615.	2.6	14
30	Light-Driven Locomotion of Bubbles. Langmuir, 2020, 36, 7021-7031.	3.5	11
31	CO ₂ -Gas-Responsive Liquid Marble. Langmuir, 2020, 36, 6971-6976.	3.5	14
32	Exploring the Impact of Particle Material Properties on Electrostatic Liquid Marble Formation. Journal of Physical Chemistry C, 2020, 124, 26258-26267.	3.1	11
33	Stimuli-responsive liquid foams: From design to applications. Current Opinion in Colloid and Interface Science, 2020, 50, 101380.	7.4	46
34	Effect of Stabilizing Particle Size on the Structure and Properties of Liquid Marbles. Langmuir, 2020, 36, 13274-13284.	3.5	43
35	Synthesis of Millimeter-sized Polymer Particles by Seeded Polymerization and Their Use as Shape-designable Liquid Marble Stabilizer. Chemistry Letters, 2020, 49, 1282-1285.	1.3	9
36	Anionic Polymerization of Methacrylate-functionalized Ionic Monomers in Ionic Liquid. Chemistry Letters, 2020, 49, 1459-1461.	1.3	2

#	Article	IF	CITATIONS
37	Formation of liquid marbles & aggregates: rolling and electrostatic formation using conductive hexagonal plates. Materials Advances, 2020, 1, 3302-3313.	5.4	11
38	Shapeâ€Designable Polyhedral Liquid Marbles/Plasticines Stabilized with Polymer Plates. Advanced Materials Interfaces, 2020, 7, 2001573.	3.7	21
39	Composite Liquid Marbles as a Macroscopic Model System Representing Shedding of Enveloped Viruses. Journal of Physical Chemistry Letters, 2020, 11, 4279-4285.	4.6	13
40	High-performance, air-stable, n-type thermoelectric films from a water-dispersed nickel-ethenetetrathiolate complex and ethylene glycol. Journal of Materials Chemistry A, 2020, 8, 12319-12322.	10.3	7
41	Preparation of polymethyl methacrylate with wellâ€controlled stereoregularity by anionic polymerization in an ionic liquid solvent. Journal of Polymer Science, 2020, 58, 1960-1964.	3.8	4
42	pHâ€Responsive Catalytic Janus Motors with Autonomous Navigation and Cargoâ€Release Functions. Advanced Functional Materials, 2020, 30, 2000324.	14.9	16
43	Particle Monolayer-Stabilized Light-Sensitive Liquid Marbles from Polypyrrole-Coated Microparticles. Langmuir, 2020, 36, 2695-2706.	3.5	32
44	pH-Dependent Foam Formation Using Amphoteric Colloidal Polymer Particles. Polymers, 2020, 12, 511.	4.5	6
45	Polyaniline-coated bubbles as light-responsive carrier of gas. European Polymer Journal, 2020, 132, 109723.	5.4	4
46	Manufacture and properties of composite liquid marbles. Journal of Colloid and Interface Science, 2020, 575, 35-41.	9.4	30
47	Dodecyl sulfate-doped polypyrrole derivative grains as a light-responsive liquid marble stabilizer. Polymer Journal, 2020, 52, 589-599.	2.7	20
48	Interface and Adhesion of Composite. Nippon Gomu Kyokaishi, 2020, 93, 17-20.	0.0	0
49	Debonding Mechanism of Probe Tack Test forCrosslinked Polyacrylic Pressure-Sensitive Adhesive. Journal of the Adhesion Society of Japan, 2020, 56, 12-19.	0.0	0
50	Interface and Adhesion of Composite. Nippon Gomu Kyokaishi, 2020, 93, 91-94.	0.0	0
51	Interface and Adhesion of Composite. Nippon Gomu Kyokaishi, 2020, 93, 166-169.	0.0	0
52	Interface and Adhesion of Composite. Nippon Gomu Kyokaishi, 2020, 93, 243-247.	0.0	0
53	Delivery and Release of Materials Based on Particle–Stabilized Dispersed Systems. Membrane, 2020, 45, 108-114.	0.0	0
54	Interface and Adhesion of Composite. Nippon Gomu Kyokaishi, 2020, 93, 300-304.	0.0	0

#	Article	IF	CITATIONS
55	The Behavior of BZ Reaction in Small Space with Liquid Marble. Journal of the Society of Powder Technology, Japan, 2020, 57, 74-79.	0.1	0
56	Surface Grafting Polyphosphoesters on Cellulose Nanocrystals To Improve the Emulsification Efficacy. Langmuir, 2019, 35, 11443-11451.	3.5	37
57	Stimulus-responsive soft dispersed systems developed based on functional polymer particles: bubbles and liquid marbles. Polymer Journal, 2019, 51, 1081-1101.	2.7	17
58	Electrostatic formation of Liquid Marbles – Statistical model. Journal of Physics: Conference Series, 2019, 1322, 012006.	0.4	6
59	Preparation of polyhedral oligomeric silsesquioxaneâ€containing block copolymer with wellâ€controlled stereoregularity. Journal of Polymer Science Part A, 2019, 57, 2181-2189.	2.3	5
60	Poly(3,4-ethylenedioxythiophene) Grains Synthesized by Solvent-free Chemical Oxidative Polymerization. Chemistry Letters, 2019, 48, 968-970.	1.3	5
61	Synthesis of Near-monodisperse Polyacid Particles Containing Phosphate Groups by Free Radical Dispersion Polymerization. Chemistry Letters, 2019, 48, 730-733.	1.3	0
62	Influence of particle size on extraction from a charged bed – toward liquid marble formation. Soft Matter, 2019, 15, 7547-7556.	2.7	14
63	Shape-Designable Liquid Marbles Stabilized by Gel Layer. Langmuir, 2019, 35, 8950-8960.	3.5	25
64	The Principle and Physical Chemistry of Soft Interface. , 2019, , 3-25.		0
65	Liquid Marbles in Nature: Craft of Aphids for Survival. Langmuir, 2019, 35, 6169-6178.	3.5	27
66	Colloidal Stabilizer-Assisted Polymerization-Induced Precipitation Method for Colloidally Stable Polyacid Particles. Langmuir, 2019, 35, 6993-7002.	3.5	3
67	Electrostatic Formation of Liquid Marbles Using Thermo-responsive Polymer-coated Particles. Chemistry Letters, 2019, 48, 578-581.	1.3	8
68	Light-driven locomotion of a centimeter-sized object at the air–water interface: effect of fluid resistance. RSC Advances, 2019, 9, 8333-8339.	3.6	12
69	Quantitative detection of near-infrared (NIR) light using organic layered composites. Journal of Materials Chemistry C, 2019, 7, 4089-4095.	5.5	30
70	Polyhedral Liquid Marbles. Advanced Functional Materials, 2019, 29, 1808826.	14.9	64
71	Hydrophobic poly(3,4-ethylenedioxythiophene) particles synthesized by aqueous oxidative coupling polymerization and their use as near-infrared-responsive liquid marble stabilizer. Polymer Journal, 2019, 51, 761-770.	2.7	14
72	Ellipsoidal Artificial Melanin Particles as Building Blocks for Biomimetic Structural Coloration. Langmuir, 2019, 35, 5574-5580.	3.5	30

#	Article	IF	CITATIONS
73	Adhesion properties of polyacrylic block copolymer pressureâ€ s ensitive adhesives and analysis by pulse NMR and AFM force curve. Journal of Applied Polymer Science, 2019, 136, 47791.	2.6	14
74	Editorial: Particles at Fluid Interfaces. Frontiers in Chemistry, 2019, 7, 52.	3.6	0
75	Oxidation-responsive Liquid Marbles. Chemistry Letters, 2019, 48, 644-646.	1.3	4
76	Disruption of Liquid Marbles Induced by Host-Guest Interaction. Chemistry Letters, 2019, 48, 840-843.	1.3	1
77	Effects of the degree of crosslinking and test rate on the tensile properties of a crosslinked polyacrylic pressureâ€sensitive adhesive and vulcanized rubber. Journal of Applied Polymer Science, 2019, 136, 47272.	2.6	13
78	Effect of particle morphology on mechanical properties of liquid marbles. Advanced Powder Technology, 2019, 30, 330-335.	4.1	30
79	Poly(3-hexylthiophene) Grains Synthesized by Solvent-Free Oxidative Coupling Polymerization and Their Use as Light-Responsive Liquid Marble Stabilizer. Macromolecules, 2019, 52, 708-717.	4.8	23
80	Analysis of Crosslinking Structure of Vulcanized Rubber and Pressure-Sensitive Adhesive using Equilibrium Swelling Method, Mechanical Properties and Pulse NMR. Nippon Gomu Kyokaishi, 2019, 92, 174-181.	0.0	0
81	Cleaning Method of Stainless Steel Standard Adherendfor Peel Test of Pressure-Sensitive Adhesives. Journal of the Adhesion Society of Japan, 2019, 55, 88-96.	0.0	0
82	Surface treatment of CaCO ₃ with a mixture of amino- and mercapto-functional silane coupling agents and tensile properties of the rubber composites. Composite Interfaces, 2018, 25, 743-760.	2.3	4
83	Formation of Liquid Marbles Using pH-Responsive Particles: Rolling vs Electrostatic Methods. Langmuir, 2018, 34, 4970-4979.	3.5	13
84	Gas Bubbles Stabilized by Janus Particles with Varying Hydrophilic–Hydrophobic Surface Characteristics. Langmuir, 2018, 34, 933-942.	3.5	33
85	Stimulus-Responsive Soft Surface/Interface Toward Applications in Adhesion, Sensor and Biomaterial. Biologically-inspired Systems, 2018, , 287-397.	0.2	1
86	Electrostatic formation of polymer particle stabilised liquid marbles and metastable droplets – Effect of latex shell conductivity. Journal of Colloid and Interface Science, 2018, 529, 486-495.	9.4	23
87	pH-Responsive Aqueous Bubbles Stabilized With Polymer Particles Carrying Poly(4-vinylpyridine) Colloidal Stabilizer. Frontiers in Chemistry, 2018, 6, 269.	3.6	15
88	An Electrostatic Method for Manufacturing Liquid Marbles and Particle-Stabilized Aggregates. Frontiers in Chemistry, 2018, 6, 280.	3.6	28
89	pH-Responsive Particle-Liquid Aggregates—Electrostatic Formation Kinetics. Frontiers in Chemistry, 2018, 6, 215.	3.6	10
90	Synthesis of hydrophobic polyanilines as a light-responsive liquid marble stabilizer. Polymer, 2018, 148, 217-227.	3.8	24

#	Article	IF	CITATIONS
91	Coagulating Strength of Some Alkoxy Silanes forConservation of Stone Cultural Assets. Journal of the Adhesion Society of Japan, 2018, 54, 90-95.	0.0	0
92	Powdered Pressure-sensitive AdhesivesDeveloped Based on Biomimetics. Journal of the Adhesion Society of Japan, 2018, 54, 103-109.	0.0	0
93	J. Dow-type Rolling Ball Tack Test forCrosslinked Polyacrylic Pressure-Sensitive Adhesive. Journal of the Adhesion Society of Japan, 2018, 54, 287-293.	0.0	0
94	Structure of Surface-Treated Layer withGlycidoxy-Functional Silane Coupling Agenton Silica Particles. Journal of the Adhesion Society of Japan, 2018, 54, 324-330.	0.0	0
95	Physical properties of mixed Langmuir monolayers of polystyrene particles with poly(N,N-dimethylaminoethylmethacrylate) hairs and a poly(2-hydroxyethyl methacrylate) polymer at an air/water interface. Soft Matter, 2017, 13, 1583-1593.	2.7	4
96	pH-Sensitive Adsorption Behavior of Polymer Particles at the Air–Water Interface. Langmuir, 2017, 33, 1451-1459.	3.5	23
97	Effect of the degree of crosslinking on the interfacial layer structure of poly(vinyl chloride) dispersed with crosslinked poly(n-butyl methacrylate) particles. Composite Interfaces, 2017, 24, 761-778.	2.3	0
98	Controlling the Structure of Supraballs by pH-Responsive Particle Assembly. Langmuir, 2017, 33, 1995-2002.	3.5	32
99	Hydrophobic polypyrroles synthesized by aqueous chemical oxidative polymerization and their use as light-responsive liquid marble stabilizers. Polymer Chemistry, 2017, 8, 2609-2618.	3.9	52
100	Droplet size and morphology analyses of dry liquid. Advanced Powder Technology, 2017, 28, 1977-1981.	4.1	14
101	Stimuli-Responsive Bubbles and Foams Stabilized with Solid Particles. Langmuir, 2017, 33, 7365-7379.	3.5	53
102	Effects of pH on the structure and mechanical properties of dried pH-responsive latex particles. Soft Matter, 2017, 13, 7562-7570.	2.7	14
103	Transfer of Materials from Water to Solid Surfaces Using Liquid Marbles. ACS Applied Materials & Interfaces, 2017, 9, 33351-33359.	8.0	69
104	Periodic Motions of Solid Particles with Various Morphology under a DC Electrostatic Field. Chemistry Letters, 2017, 46, 1470-1472.	1.3	5
105	Fabrication of Powdered Pressure-Sensitive Adhesives Based on the Habits of Aphids. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2017, 68, 121-126.	0.2	0
106	Pressure-sensitive Adhesive Liquid Marble: Fabrication and Characterization of Structure and Adhesive Property. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2017, 64, 121-125.	0.2	1
107	Effect of Peel Angle on The Stringiness of CrosslinkedPolyacrylic Pressure-Sensitive Adhesives. Journal of the Adhesion Society of Japan, 2017, 53, 11-18.	0.0	0
108	Polyacrylic Pressure-Sensitive Adhesive. Journal of the Adhesion Society of Japan, 2017, 53, 268-275.	0.0	0

#	Article	IF	CITATIONS
109	Polyion Complex Vesicles with Solvated Phosphobetaine Shells Formed from Oppositely Charged Diblock Copolymers. Polymers, 2017, 9, 49.	4.5	23
110	Halide-Enhanced Catalytic Activity of Palladium Nanoparticles Comes at the Expense of Catalyst Recovery. Catalysts, 2017, 7, 280.	3.5	10
111	Analysis of Thickness of Interfacial Layer Using Pulse NMRfor The Model System of Incompatible Polymer Blend. Journal of the Adhesion Society of Japan, 2017, 53, 202-209.	0.0	0
112	Effect of the Addition of a Cross-Linker and the Water pH on the Physical Properties of Films of pH-Responsive Polymer Particles at Air/Water Interfaces. ACS Omega, 2017, 2, 7837-7848.	3.5	3
113	Structural Analysis of Pressure-Sensitive Adhesive using Pulse NMR. Journal of the Adhesion Society of Japan, 2016, 52, 236-243.	0.0	0
114	Polydopamine Particle as a Particulate Emulsifier. Polymers, 2016, 8, 62.	4.5	48
115	Quantitative measurement of physisorbed silane on a silica particle surface treated with silane coupling agents by thermogravimetric analysis. Journal of Applied Polymer Science, 2016, 133, .	2.6	26
116	Lightâ€Driven Delivery and Release of Materials Using Liquid Marbles. Advanced Functional Materials, 2016, 26, 3199-3206.	14.9	168
117	Liquid Marbles: Light-Driven Delivery and Release of Materials Using Liquid Marbles (Adv. Funct. Mater.) Tj ETQq1	1 0,78431 14.9	l4 ₅ rgBT /O₩
118	Foams stabilized with solid particles carrying stimuli-responsive polymer hairs. Soft Matter, 2016, 12, 4794-4804.	2.7	29
119	Electrostatic formation of liquid marbles - Influence of drop and particle size. Powder Technology, 2016, 303, 55-58.	4.2	30
120	Stimuliâ€Responsive Liquid Marbles: Controlling Structure, Shape, Stability, and Motion. Advanced Functional Materials, 2016, 26, 7206-7223.	14.9	140
121	Polystyrene–Polyhedral Oligomeric Silsesquioxane Core–Shell Element-block Polymer Particles Fabricated via Heterocoagulation Method. Chemistry Letters, 2016, 45, 1168-1170.	1.3	1
122	pH-responsive Liquid Marbles Prepared Using Fluorinated Fatty Acid. Chemistry Letters, 2016, 45, 547-549.	1.3	18
123	Aqueous Foams Stabilized with Several Tens of Micrometer-sized Polymer Particles: Effects of Surface Hydrophilic–Hydrophobic Balance on Foamability and Foam Stability. Chemistry Letters, 2016, 45, 667-669.	1.3	11
124	Synthesis of silsesquioxane-based element-block amphiphiles and their self-assembly in water. RSC Advances, 2016, 6, 73006-73012.	3.6	31
125	Liquid Marbles: Stimuliâ€Responsive Liquid Marbles: Controlling Structure, Shape, Stability, and Motion (Adv. Funct. Mater. 40/2016). Advanced Functional Materials, 2016, 26, 7198-7198.	14.9	1
126	Influence of Molecular Structure on The Wetting Behavior during Probe Tack Testfor Crosslinked Polyacrylic Pressure-Sensitive Adhesives. Journal of the Adhesion Society of Japan, 2016, 52, 59-69.	0.0	0

#	Article	IF	CITATIONS
127	Liquid marble containing degradable polyperoxides for adhesion force-changeable pressure-sensitive adhesives. RSC Advances, 2016, 6, 56475-56481.	3.6	24
128	Effect of adhesive thickness on the wettability and deformability of polyacrylic pressure-sensitive adhesives during probe tack test. Journal of Applied Polymer Science, 2016, 133, .	2.6	11
129	Pressure-sensitive adhesive powder. Materials Horizons, 2016, 3, 47-52.	12.2	83
130	Stimulus-Sensitive Liquid Marble. Journal of the Japan Society of Colour Material, 2016, 89, 75-80.	0.1	1
131	Hollow Microspheres Fabricated from Aqueous Bubbles Stabilized with Latex Particles. Chemistry Letters, 2015, 44, 773-775.	1.3	9
132	Effect of adhesive thickness on the stringiness of crosslinked polyacrylic pressureâ€sensitive adhesives. Journal of Applied Polymer Science, 2015, 132, .	2.6	9
133	Measurement of Physically Adsorbed Percent in Silane Coupling Agent-Treated Layer by Thermogravimetric Analysis. Journal of the Adhesion Society of Japan, 2015, 51, 42-48.	0.0	Ο
134	The Adhesive Thickness Dependence of Adhesion Strengthfor Pressure-Sensitive Adhesive:Interpretation from Stringiness Behavior. Journal of the Adhesion Society of Japan, 2015, 51, 184-191.	0.0	2
135	Temperature Dependence of Tack for Polyacrylic Block Copolymer/Tackifier Blend. Polymers and Polymer Composites, 2015, 23, 121-128.	1.9	4
136	Liquid marble and water droplet interactions and stability. Soft Matter, 2015, 11, 7728-7738.	2.7	23
137	Self-setting particle-stabilized emulsion for hard-tissue engineering. Colloids and Surfaces B: Biointerfaces, 2015, 126, 394-400.	5.0	14
138	The forces and physical properties of polymer particulate monolayers at air/aqueous interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470, 322-332.	4.7	7
139	Sawtooth-shaped stringiness with front frame formation for polyacrylic pressure-sensitive adhesives with two different molecular structures. Journal of Adhesion Science and Technology, 2015, 29, 609-624.	2.6	3
140	Tripodal polyhedral oligomeric silsesquioxanes as a novel class of three-dimensional emulsifiers. Polymer Journal, 2015, 47, 609-615.	2.7	40
141	Soft polymer-silica nanocomposite particles as filler for pressure-sensitive adhesives. Polymer, 2015, 70, 77-87.	3.8	25
142	Contact time dependence of tack for crosslinked polyacrylic pressure-sensitive adhesives with two different molecular structures. International Journal of Adhesion and Adhesives, 2015, 60, 75-82.	2.9	15
143	Synthesis and characterization of polypyrrole-platinum nanocomposite-coated latex particles. Colloid and Polymer Science, 2015, 293, 1483-1493.	2.1	8
144	Drying structures of micrometer-sized cationic gel spheres of lightly cross-linked poly(2-vinyl) Tj ETQq0 0 0 rgBT	/Overlock	10 ₁ Tf 50 62 T

9

144

#	Article	IF	CITATIONS
145	Thermoresponsive Liquid Marbles Prepared with Low Melting Point Powder. Chemistry Letters, 2015, 44, 1077-1079.	1.3	20
146	Influences of debonding rate and temperature on tack properties and peel behavior of polyacrylic block copolymer/tackifier system. Journal of Adhesion Science and Technology, 2015, 29, 821-838.	2.6	2
147	Aqueous foams stabilized by temperature-sensitive hairy polymer particles. Soft Matter, 2015, 11, 9099-9106.	2.7	20
148	Liquid marbles as a micro-reactor for efficient radical alternating copolymerization of diene monomer and oxygen. Chemical Communications, 2015, 51, 17241-17244.	4.1	67
149	pH- and temperature-responsive aqueous foams stabilized by hairy latex particles. Soft Matter, 2015, 11, 572-579.	2.7	45
150	Aspects of Interfacial Structure of Silane Coupling Agents in Particulate-Filled Polymer Composites and the Reinforcement Effect: A Critical Review. Reviews of Adhesion and Adhesives, 2015, 3, 188-215.	3.4	2
151	Structure of silane layer formed on silica particle surfaces by treatment with silane coupling agents having various functional groups. Journal of Adhesion Science and Technology, 2014, 28, 1895-1906.	2.6	14
152	Drying dissipative structures of cationic gel spheres of lightly cross-linked poly(2-vinylpyridine) in deionized aqueous suspension. Colloid and Polymer Science, 2014, 292, 2621-2631.	2.1	6
153	Influence of the interfacial adhesion on the stringiness of crosslinked polyacrylic pressureâ€ s ensitive adhesives. Journal of Applied Polymer Science, 2014, 131, .	2.6	7
154	Stardust Interstellar Preliminary Examination <scp>IX</scp> : Highâ€speed interstellar dust analog capture in Stardust flightâ€spare aerogel. Meteoritics and Planetary Science, 2014, 49, 1666-1679.	1.6	19
155	Pickering emulsion engineering: fabrication of materials with multiple cavities. RSC Advances, 2014, 4, 32534-32537.	3.6	14
156	On the mechanisms of colloidal self-assembly during spin-coating. Soft Matter, 2014, 10, 8804-8812.	2.7	51
157	Nanomorphology characterization of sterically stabilized polypyrrole-palladium nanocomposite particles. Polymer Journal, 2014, 46, 704-709.	2.7	13
158	Microcapsules Fabricated from Liquid Marbles Stabilized with Latex Particles. Langmuir, 2014, 30, 3051-3059.	3.5	53
159	Cationic gel crystals and amorphous solids of lightly cross-linked poly(2-vinylpyridine) spheres in the deionized aqueous suspension. Colloid and Polymer Science, 2014, 292, 1627-1637.	2.1	7
160	Colloidal crystallization of poly(n-butyl acrylate) spheres in deionized aqueous suspension and the melting during dryness. Colloid and Polymer Science, 2014, 292, 2303-2310.	2.1	3
161	Thermo-responsive liquid marbles. Polymer Journal, 2014, 46, 145-148.	2.7	58
162	Electroless nickel plating on polymer particles. Journal of Colloid and Interface Science, 2014, 430, 47-55.	9.4	25

#	Article	IF	CITATIONS
163	Arrangement and Periodic Motion of Microparticles in an Oil Phase under a DC Electric Field. Journal of the Society of Powder Technology, Japan, 2014, 51, 823-827.	0.1	3
164	Rising of tack with cintact time for crosslinked polyacrylic pressure-sennsitive adheasives with two different molecular structures. Journal of the Adhesion Society of Japan, 2014, 50, 252-259.	0.0	2
165	Retardation of Peeling by Cavitation in Pressure Sensitive Adhesive Layer. Journal of the Adhesion Society of Japan, 2014, 50, 420-427.	0.0	1
166	Influence of the degree of crosslinking on the stringiness of crosslinked polyacrylic pressureâ€sensitive adhesives. Journal of Applied Polymer Science, 2014, 131, .	2.6	8
167	Effect of interfacial serum proteins on melanoma cell adhesion to biodegradable poly(l-lactic acid) microspheres coated with hydroxyapatite. Colloids and Surfaces B: Biointerfaces, 2013, 108, 8-15.	5.0	21
168	Thiol-terminated hydroxy-functional polymer as a transtab toward polymer latex particles. Colloid and Polymer Science, 2013, 291, 1171-1180.	2.1	3
169	Colloidal crystallization of cationic gel spheres of lightly cross-linked poly(2-vinylpyridine) in the deionized aqueous suspension. Colloid and Polymer Science, 2013, 291, 1201-1210.	2.1	10
170	Drying dissipative structures of lightly cross-linked poly(2-vinyl pyridine) cationic gel spheres stabilized with poly(ethylene glycol) in the deionized aqueous suspension. Colloid and Polymer Science, 2013, 291, 1019-1030.	2.1	17
171	InÂvitro degradation of hydroxyapatite nanoparticle-coated biodegradable microspheres. Polymer Degradation and Stability, 2013, 98, 377-386.	5.8	4
172	Temperature dependence of tack and pulse NMR analysis of polystyrene block copolymer/tackifier system. Journal of Adhesion Science and Technology, 2013, 27, 2727-2740.	2.6	11
173	Mechanical properties of silaneâ€treated silica particleâ€filled polyisoprene composites: Influence of the alkoxy group mixing ratio in silane coupling agent containing mercapto group. Journal of Applied Polymer Science, 2013, 128, 2548-2555.	2.6	22
174	One-step synthesis of magnetic iron–conducting polymer–palladium ternary nanocomposite microspheres with applications as a recyclable catalyst. Journal of Materials Chemistry A, 2013, 1, 4427.	10.3	22
175	Adhesion properties of polyurethane pressure-sensitive adhesive. Journal of Adhesion Science and Technology, 2013, 27, 263-277.	2.6	20
176	Sterically stabilized polypyrrole–palladium nanocomposite particles synthesized by aqueous chemical oxidative dispersion polymerization. Colloid and Polymer Science, 2013, 291, 223-230.	2.1	18
177	Micrometer-Sized Gold–Silica Janus Particles as Particulate Emulsifiers. Langmuir, 2013, 29, 5457-5465.	3.5	53
178	Drying dissipative structures of cationic gel spheres of lightly cross-linked poly(2-vinyl pyridine) (170 â^¼â€‰180Ânm in diameter) in the deionized aqueous suspension. Colloid and Polymer Science, 201 2805-2813.	3,291,	13
179	Cationic gel crystals of lightly cross-linked poly(2-vinylpyridine) spheres (170â^1⁄4180Ânm in diameter) in the deionized aqueous suspension. Colloid and Polymer Science, 2013, 291, 2569-2577.	2.1	11
180	Hydroxyapatite-coated poly(ϵ-caprolactone) microspheres fabricated via a Pickering emulsion route: effect of fabrication parameters on diameter and chemical composition. Composite Interfaces, 2013, 20, 45-56.	2.3	9

#	Article	IF	CITATIONS
181	Tensile properties of styrene-butadiene rubber/silica composites with mercapto functional silane coupling agents: influences of loading method and alkoxy group number. Composite Interfaces, 2013, 20, 635-646.	2.3	17
182	Influence of crosslinking and peeling rate on tack properties of polyacrylic pressure-sensitive adhesives. Journal of Adhesion Science and Technology, 2013, 27, 1951-1965.	2.6	36
183	Influences of the alkoxy group number and treatment condition on the structure of glycidoxy functional silane-treated layer on silica particles analyzed by1H pulse NMR. Journal of Adhesion Science and Technology, 2013, 27, 1641-1651.	2.6	8
184	Near-infrared-responsive Liquid Marbles Stabilized with Carbon Nanotubes. Chemistry Letters, 2013, 42, 719-721.	1.3	45
185	Ultraviolet-light-responsive Liquid Marbles. Chemistry Letters, 2013, 42, 586-588.	1.3	62
186	Influence of Loading Method of Silane Coupling Agent on The Mechanical Properties of Silica Particle-Filled Styrene-Butadiene Rubber and Analysis of Interfacial Layer Using Pulse NMR: Comparison of Pre-Treatment and Integral Blend Methods. Journal of the Adhesion Society of Japan, 2013, 49, 112-119.	0.0	0
187	Mechanical properties of silica particleâ€filled styreneâ€butadiene rubber composites containing polysulfideâ€type silane coupling agents: Influence of loading method of silane. Journal of Applied Polymer Science, 2013, 130, 322-329.	2.6	27
188	Influence of diblock addition on tack in a polyacrylic triblock copolymer/tackifier system measured using a probe tack test. Journal of Applied Polymer Science, 2013, 129, 1008-1018.	2.6	26
189	Glass Transition Behaviour of PMMA/PVA Incompatible Blend. Polymers and Polymer Composites, 2013, 21, 367-376.	1.9	14
190	¹ H pulse NMR analysis of silane-treated layers on glass fiber surfaces. Composite Interfaces, 2012, 19, 353-364.	2.3	4
191	DEVELOPMENT OF MICROSPHERES COVERED WITH HYDROXYAPATITE NANOCRYSTALS AS CELL SCAFFOLD FOR ANGIOGENESIS. Functional Materials Letters, 2012, 05, 1260010.	1.2	5
192	One-step Synthesis of Conducting Polymer–Palladium Nanocomposite Fibers by Aqueous Chemical Oxidative Polymerization. Chemistry Letters, 2012, 41, 982-983.	1.3	3
193	Synthesis of Poly(3,4-ethylenedioxythiophene)–Palladium Nanocomposite-coated Polymer Particles by Chemical Oxidative Seeded Dispersion Polymerization. Chemistry Letters, 2012, 41, 1658-1659.	1.3	5
194	Contact Time and Temperature Dependencies of Tack in Polyacrylic Block Copolymer Pressure-Sensitive Adhesives Measured by the Probe Tack Test. Journal of Adhesion Science and Technology, 2012, 26, 231-249.	2.6	28
195	pH-Responsive Hairy Particles Synthesized by Dispersion Polymerization with a Macroinitiator as an Inistab and Their Use as a Gas-Sensitive Liquid Marble Stabilizer. Macromolecules, 2012, 45, 2863-2873.	4.8	60
196	Soft Janus Colloidal Crystal Film. Angewandte Chemie - International Edition, 2012, 51, 9809-9813.	13.8	50
197	Formation of Pickering Emulsions Stabilized via Interaction between Nanoparticles Dispersed in Aqueous Phase and Polymer End Groups Dissolved in Oil Phase. Langmuir, 2012, 28, 9405-9412.	3.5	59
198	Polypyrrole–Palladium Nanocomposite Coating of Micrometer-Sized Polymer Particles Toward a Recyclable Catalyst. Langmuir, 2012, 28, 2436-2447.	3.5	74

#	Article	IF	CITATIONS
199	pH-responsive flocculation and dispersion behavior of Janus particles in water. Polymer Journal, 2012, 44, 181-188.	2.7	8
200	Solvent-free formation of hydroxyapatite coated biodegradable particles via nanoparticle-stabilized emulsion route. Applied Surface Science, 2012, 262, 39-44.	6.1	13
201	Hydroxyapatite-armored poly(ε-caprolactone) microspheres and hydroxyapatite microcapsules fabricated via a Pickering emulsion route. Journal of Colloid and Interface Science, 2012, 374, 1-8.	9.4	33
202	Effects of the compatibility of a polyacrylic block copolymer/tackifier blend on the phase structure and tack of a pressureâ€sensitive adhesive. Journal of Applied Polymer Science, 2012, 123, 2883-2893.	2.6	41
203	Morphology and Surface Analysis Using 1H Pulse NMR of Glass Fiber Treated with Mercapto Group Containing Silane Coupling Agents. Journal of the Adhesion Society of Japan, 2012, 48, 4-9.	0.0	0
204	Liquid Marbles Prepared from pH-Responsive Sterically Stabilized Latex Particles. Langmuir, 2011, 27, 8067-8074.	3.5	107
205	Effects of Polystyrene Block Content on Morphology and Adhesion Property of Polystyrene Block Copolymer. Journal of Adhesion Science and Technology, 2011, 25, 869-881.	2.6	12
206	Surface Analysis of Silane Nanolayer on Silica Particles Using 1H Pulse NMR. Journal of Adhesion Science and Technology, 2011, 25, 2703-2716.	2.6	29
207	pH-Responsive Aqueous Foams Stabilized by Hairy Latex Particles. Langmuir, 2011, 27, 12902-12909.	3.5	54
208	pH-responsive disruption of â€~liquid marbles' prepared from water and poly(6-(acrylamido) hexanoic) Tj ETÇ	9q0.0.0 rgl 2.7	3T /Overlock
209	Toughening of Polymer Composites by Incorporation and Surface Treatment of Filler. Journal of the Adhesion Society of Japan, 2011, 47, 354-360.	0.0	2
210	Polymer Particle Adsorbed at Air-water Interface towards Material Chemistry. Journal of the Adhesion Society of Japan, 2011, 47, 67-76.	0.0	0
211	Polypyrrole–Palladium Nanocomposite-Coated Latex Particles as a Heterogeneous Catalyst in Water. Catalysis Letters, 2011, 141, 1097-1103.	2.6	27
212	Mass spectrometry of impact fragmented polymers: The role of target properties. International Journal of Impact Engineering, 2011, 38, 486-494.	5.0	9
213	Dispersion polymerization using hydroxyâ€functional macroazoinitiators as an inistab. Journal of Polymer Science Part A, 2011, 49, 1633-1643.	2.3	2
214	Effects of compatibility between tackifier and polymer on adhesion property and phase structure: Tackifierâ€added polystyreneâ€based triblock/diblock copolymer blend system. Journal of Applied Polymer Science, 2011, 120, 2251-2260.	2.6	32
215	Hydroxyapatite/biodegradable poly(l-lactide–co-ε-caprolactone) composite microparticles as injectable scaffolds by a Pickering emulsion route. Acta Biomaterialia, 2011, 7, 821-828.	8.3	48
216	Influence of Phase Structure on Tack Properties of Polyacrylic Block Copolymer/Tackifier System. Journal of the Adhesion Society of Japan, 2011, 47, 344-353.	0.0	0

#	Article	IF	CITATIONS
217	Synthesis of pH-Responsive Nanocomposite Microgels with Size-Controlled Gold Nanoparticles from Ion-Doped, Lightly Cross-Linked Poly(vinylpyridine). Langmuir, 2010, 26, 1254-1259.	3.5	60
218	AFM Observation of a Mica Surface Treated with Silane Coupling Agent Having a Mercapto Group. Composite Interfaces, 2010, 17, 395-404.	2.3	9
219	Adhesion property and morphology of styrene triblock/diblock copolymer blends. Journal of Applied Polymer Science, 2010, 118, 1766-1773.	2.6	7
220	Surface characterization of nanoparticles carrying pH-responsive polymer hair. Polymer, 2010, 51, 6240-6247.	3.8	21
221	Characterisation of the dispersion stability of a stimulus responsive core–shell colloidal latex. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 353, 210-215.	4.7	23
222	Biomimetic synthesis of raspberry-like hybrid polymer–silica core–shell nanoparticles by templating colloidal particles with hairy polyamine shell. Colloids and Surfaces B: Biointerfaces, 2010, 78, 193-199.	5.0	54
223	Synthesis and Characterization of Polypyrroleâ^Palladium Nanocomposite-Coated Latex Particles and Their Use as a Catalyst for Suzuki Coupling Reaction in Aqueous Media. Langmuir, 2010, 26, 6230-6239.	3.5	124
224	pH-responsive liquid marbles stabilized with poly(2-vinylpyridine) particles. Soft Matter, 2010, 6, 635-640.	2.7	136
225	One-pot synthesis of conducting polymer-coated latex particles: ammonium persulfate as free radical initiator and chemical oxidant. Chemical Communications, 2010, 46, 7217.	4.1	20
226	Facile one-step route to polyaniline–silver nanocomposite particles and their application as a colored particulate emulsifier. Synthetic Metals, 2010, 160, 1433-1437.	3.9	28
227	Responsive Coreâ^'Shell Latex Particles as Colloidosome Microcapsule Membranes. Langmuir, 2010, 26, 18408-18414.	3.5	60
228	Pickering-Type Water-in-Oil-in-Water Multiple Emulsions toward Multihollow Nanocomposite Microspheres. Langmuir, 2010, 26, 13727-13731.	3.5	55
229	Mechanical properties of silane-treated, silica-particle-filled polyisoprene rubber composites: Effects of the loading amount and alkoxy group numbers of a silane coupling agent containing mercapto groups. Journal of Applied Polymer Science, 2009, 113, 1507-1514.	2.6	51
230	Mass spectrometry of hyperâ€velocity impacts of organic micrograins. Rapid Communications in Mass Spectrometry, 2009, 23, 3895-3906.	1.5	39
231	Synthesis of stimuliâ€responsive macroazoinitiators and their use as an inistab toward hairy polymer latex particles. Journal of Polymer Science Part A, 2009, 47, 3431-3443.	2.3	37
232	Tack and viscoelastic properties of an acrylic block copolymer/tackifier system. International Journal of Adhesion and Adhesives, 2009, 29, 806-811.	2.9	38
233	Ferritin as a bionano-particulate emulsifier. Journal of Colloid and Interface Science, 2009, 338, 222-228.	9.4	54
234	First Direct Imaging of Electrolyte-Induced Deswelling Behavior of pH-Responsive Microgels in Aqueous Media Using Scanning Transmission X-ray Microscopy. Langmuir, 2009, 25, 2588-2592.	3.5	37

#	Article	IF	CITATIONS
235	Stimulus-Responsive Liquid Marbles. Journal of the American Chemical Society, 2009, 131, 5386-5387.	13.7	199
236	Fabrication of highly ordered, macroporous Na2W4O13 arrays by spray pyrolysis using polystyrene colloidal crystals as templates. Physical Chemistry Chemical Physics, 2009, 11, 3628.	2.8	20
237	Hydroxyapatite Nanoparticles as Particulate Emulsifier: Fabrication of Hydroxyapatite-Coated Biodegradable Microspheres. Langmuir, 2009, 25, 9759-9766.	3.5	99
238	Synthesis of porous carbon materials utilizing polymer particles. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2009, 17, 97-102.	0.0	0
239	The effect of tackifier on phase structure and peel adhesion of a triblock copolymer pressure-sensitive adhesive. International Journal of Adhesion and Adhesives, 2008, 28, 372-381.	2.9	72
240	Effects of Compatibility of Acrylic Block Copolymer and Tackifier on Phase Structure and Peel Adhesion of Their Blend. Journal of Adhesion Science and Technology, 2008, 22, 1313-1331.	2.6	36
241	Report of the 43rd Meeting of the German Colloid Society. Journal of the Society of Powder Technology, Japan, 2008, 45, 337-338.	0.1	0
242	Smart Particles as Foam and Liquid Marble Stabilizers. KONA Powder and Particle Journal, 2008, 26, 153-166.	1.7	53
243	微粒åð͡§å®‰å®šåŒ–ã•ã,ŒãŸæ³¡. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2008, 59,	M B8.	3
244	Synthesis of Polypyrrole-gold Nanocomposite-coated Polystyrene Latex Particles by Simultaneous Organic-inorganic Deposition Method. Journal of the Adhesion Society of Japan, 2008, 44, 12-18.	0.0	4
245	Smart particles as a foam stabilizer. KONA Powder and Particle Journal, 2008, 26, 2-2.	1.7	1
246	pH-Responsive Aqueous Foams Stabilized by Ionizable Latex Particles. Langmuir, 2007, 23, 8691-8694.	3.5	111
247	Is Latex Surface Charge an Important Parameter for Foam Stabilization?. Langmuir, 2007, 23, 11381-11386.	3.5	69
248	Synthesis of poly(2-hydroxypropyl methacrylate) latex particles via aqueous dispersion polymerization. Soft Matter, 2007, 3, 1003.	2.7	66
249	Polystyreneâ~'Silica Colloidal Nanocomposite Particles Prepared by Alcoholic Dispersion Polymerization. Chemistry of Materials, 2007, 19, 2435-2445.	6.7	112
250	One-step synthesis of polypyrrole-coated silver nanocomposite particles and their application as a coloured particulate emulsifier. Journal of Materials Chemistry, 2007, 17, 3777.	6.7	92
251	Morphology and Viscoelastic Properties of Poly(Vinyl Chloride)/ Poly(Vinyl Alcohol) Incompatible Blends. Polymers and Polymer Composites, 2007, 15, 371-377.	1.9	5
252	Hydroxyapatite nanoparticles as stimulus-responsive particulate emulsifiers and building block for porous materials. Journal of Colloid and Interface Science, 2007, 315, 287-296.	9.4	117

#	Article	IF	CITATIONS
253	Effects of pH and Salt Concentration on Oil-in-Water Emulsions Stabilized Solely by Nanocomposite Microgel Particles. Langmuir, 2006, 22, 2050-2057.	3.5	150
254	Polystyreneâ^'Silica Nanocomposite Particles via Alcoholic Dispersion Polymerization Using a Cationic Azo Initiator. Langmuir, 2006, 22, 4923-4927.	3.5	123
255	Efficient Synthesis of Sterically Stabilized pH-Responsive Microgels of Controllable Particle Diameter by Emulsion Polymerization. Langmuir, 2006, 22, 3381-3387.	3.5	175
256	Synthesis and Characterization of Polypyrrole-Coated Sulfur-Rich Latex Particles:Â New Synthetic Mimics for Sulfur-Based Micrometeorites. Chemistry of Materials, 2006, 18, 2758-2765.	6.7	56
257	Long-Range Structural Order, Moiré Patterns, and Iridescence in Latex-Stabilized Foams. Journal of the American Chemical Society, 2006, 128, 7882-7886.	13.7	111
258	Aqueous Particulate Foams Stabilized Solely with Polymer Latex Particles. Langmuir, 2006, 22, 7512-7520.	3.5	130
259	Stimulus-Responsive Particulate Emulsifiers Based on Lightly Cross-Linked Poly(4-vinylpyridine)â^'Silica Nanocomposite Microgels. Langmuir, 2006, 22, 6818-6825.	3.5	132
260	Temperature-Induced Inversion of Nanoparticle-Stabilized Emulsions. Angewandte Chemie - International Edition, 2005, 44, 4795-4798.	13.8	192
261	Stimulus-Responsive Emulsifiers Based on Nanocomposite Microgel Particles. Advanced Materials, 2005, 17, 1014-1018.	21.0	302
262	Preparation of poly(methyl methacrylate) particles by dispersion polymerization with organic peroxide in the presence of trimethylsiloxy terminated poly(dimethylsiloxane) in supercritical carbon dioxide. Colloid and Polymer Science, 2005, 284, 327-333.	2.1	9
263	Synthesis of Micrometer-Sized Silica-Stabilized Polystyrene Latex Particles. Langmuir, 2005, 21, 8103-8105.	3.5	46
264	Direct Imaging and Spectroscopic Characterization of Stimulus-Responsive Microgels. Journal of the American Chemical Society, 2005, 127, 16808-16809.	13.7	48
265	Syntheses of Shell Cross-Linked Micelles Using Acidic ABC Triblock Copolymers and Their Application as pH-Responsive Particulate Emulsifiers. Journal of the American Chemical Society, 2005, 127, 7304-7305.	13.7	218
266	Dispersion atom transfer radical polymerization of methyl methacrylate with bromo-terminated poly(dimethylsiloxane) in supercritical carbon dioxide. Designed Monomers and Polymers, 2004, 7, 553-562.	1.6	41
267	Production of poly(methyl methacrylate) particles by dispersion polymerization with mercaptopropyl terminated poly(dimethylsiloxane) stabilizer in supercritical carbon dioxide. Colloid and Polymer Science, 2004, 282, 569-574.	2.1	15
268	Synthesis of Polystyrene/Poly[2-(Dimethylamino)ethyl Methacrylate-stat-Ethylene Glycol Dimethacrylate] Coreâ^'Shell Latex Particles by Seeded Emulsion Polymerization and Their Application as Stimulus-Responsive Particulate Emulsifiers for Oil-in-Water Emulsions. Langmuir, 2004, 20, 11329-11335.	3.5	69
269	Effect of Varying the Oil Phase on the Behavior of pH-Responsive Latex-Based Emulsifiers:Â Demulsification versus Transitional Phase Inversion. Langmuir, 2004, 20, 7422-7429.	3.5	112
270	Production of polyacrylonitrile particles by precipitation polymerization in supercritical carbon dioxide. Colloid and Polymer Science, 2003, 281, 964-972.	2.1	27

#	Article	IF	CITATIONS
271	Production of polydivinylbiphenyl particles by precipitation polymerization in supercritical carbon dioxide. Colloid and Polymer Science, 2002, 280, 1084-1090.	2.1	12
272	Production of submicron-sized poly(methyl methacrylate) particles by dispersion polymerization with a poly(dimethylsiloxane)-based azoinitiator in supercritical carbon dioxide. Colloid and Polymer Science, 2002, 280, 183-187.	2.1	49
273	Production of electrically conductive, core/shell polystyrene/polyaniline composite particles by chemical oxidative seeded dispersion polymerization. Colloid and Polymer Science, 2001, 279, 139-145.	2.1	61
274	Rheological studies on the phase separation of hydroxypropylcellulose solution systems. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 1976-1986.	2.1	19
275	Production of micron-sized, monodispersed, multihollow polystyrene/poly(3,5-xylidine) composite particles by chemical oxidative seeded polymerization. Colloid and Polymer Science, 2000, 278, 275-279.	2.1	5
276	Production of core/shell polystyrene/poly(3,5-xylidine) composite particles by chemical oxidative seeded dispersion polymerization. Colloid and Polymer Science, 1999, 277, 895-899.	2.1	13
277	Distributed simulation model for computer integrated manufacturing. , 0, , .		0
278	Acquisition and refinement of scheduling rules for job shop problems. , 0, , .		2
279	A basic study on autonomous characterization of square array machining cells for agile manufacturing. , 0, , .		1
280	A study on partnering algorithm based on N-person cooperative game in virtual enterprise. , 0, , .		0
281	Conducting Polymer-Metal Nanocomposite Coating on Fibers. , 0, , .		4
282	Hydroxyapatite-Biodegradable Polymer Nanocomposite Microspheres toward Injectable Cell Scaffold. , 0, , 221-241.		0