
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8408154/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adatom and Nanoparticle Dynamics on Single-Atom Catalyst Substrates. ACS Catalysis, 2022, 12, 4859-4871.	11.2	19
2	Oxidation of Gas-Phase and Supported Pt Nanoclusters: An <i>Ab Initio</i> Investigation. Journal of Physical Chemistry C, 2022, 126, 10880-10888.	3.1	4
3	CuFeO ₂ –Water Interface under Illumination: Structural, Electronic, and Catalytic Implications for the Hydrogen Evolution Reaction. ACS Catalysis, 2021, 11, 1897-1910.	11.2	20
4	Oxygen Evolution Reaction on the Fe ₃ O ₄ (001) Surface: Theoretical Insights into the Role of Terminal and Bridging Oxygen Atoms. Journal of Physical Chemistry C, 2021, 125, 18752-18761.	3.1	8
5	Unveiling Oxygen Vacancy Superstructures in Reduced Anatase Thin Films. Nano Letters, 2020, 20, 6444-6451.	9.1	20
6	Two different mechanisms of stabilization of regular π-stacks of radicals in switchable dithiazolyl-based materials. Journal of Materials Chemistry C, 2020, 8, 5437-5448.	5.5	7
7	Establishing best practices to model the electronic structure of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CuFeO</mml:mi><mml:mn>2from first principles. Physical Review B, 2020, 101, .</mml:mn></mml:msub></mml:math 	nml:3n2n> </td <td>mn8:msub><</td>	mn 8 :msub><
8	Quantitative Analysis of the Oxidation State of Cobalt Oxides by Resonant Photoemission Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 6129-6136.	4.6	39
9	Ultimate dispersion of metallic and ionic platinum on ceria. Journal of Materials Chemistry A, 2019, 7, 13019-13028.	10.3	21
10	Can Atomic Buckling Control a Chemical Reaction? The Case of Dehydrogenation of Phthalocyanine Molecules on GdAu ₂ /Au(111). Journal of Physical Chemistry C, 2019, 123, 6496-6501.	3.1	3
11	Structure of the catalytically active copper–ceria interfacial perimeter. Nature Catalysis, 2019, 2, 334-341.	34.4	368
12	Thermodynamic Stability and Native Point Defects of CuFeO ₂ Photocathodes in Dry and Electrochemical Environments. Journal of Physical Chemistry C, 2019, 123, 29589-29598.	3.1	17
13	Bulk Hydroxylation and Effective Water Splitting by Highly Reduced Cerium Oxide: The Role of O Vacancy Coordination. ACS Catalysis, 2018, 8, 4354-4363.	11.2	52
14	Heterogeneous reactions of SO2 on the hematite(0001) surface. Journal of Chemical Physics, 2018, 149, 194703.	3.0	10
15	Dynamical Solvent Effects on the Charge and Reactivity of Ceria-Supported Pt Nanoclusters. Journal of Physical Chemistry C, 2018, 122, 27507-27515.	3.1	10
16	Probing the Reactivity of Pt/Ceria Nanocatalysts toward Methanol Oxidation: From Ionic Single-Atom Sites to Metallic Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 17917-17927.	3.1	22
17	Oxide-based nanomaterials for fuel cell catalysis: the interplay between supported single Pt atoms and particles. Catalysis Science and Technology, 2017, 7, 4315-4345.	4.1	84
18	Self-texturizing electronic properties of a 2-dimensional GdAu ₂ layer on Au(111): the role of out-of-plane atomic displacement. Nanoscale, 2017, 9, 17342-17348.	5.6	6

#	Article	IF	CITATIONS
19	Effects of Thermal Electronic Excitations on the Diffusion of Oxygen Adatoms on Graphene. Journal of Physical Chemistry A, 2016, 120, 2607-2613.	2.5	11
20	Catalytic Proton Dynamics at the Water/Solid Interface of Ceria-Supported Pt Clusters. Journal of the American Chemical Society, 2016, 138, 11560-11567.	13.7	82
21	Creating single-atom Pt-ceria catalysts by surface step decoration. Nature Communications, 2016, 7, 10801.	12.8	388
22	Counting electrons on supported nanoparticles. Nature Materials, 2016, 15, 284-288.	27.5	469
23	Experimental and Theoretical Study on the Electronic Interaction between Rh Adatoms and CeOx Substrate in Dependence on a Degree of Cerium Oxide Reduction. Journal of Physical Chemistry C, 2016, 120, 5468-5476.	3.1	21
24	Reactivity of atomically dispersed Pt ²⁺ species towards H ₂ : model Pt–CeO ₂ fuel cell catalyst. Physical Chemistry Chemical Physics, 2016, 18, 7672-7679.	2.8	61
25	Water Oxidation by Ru-Polyoxometalate Catalysts: Overpotential Dependency on the Number and Charge of the Metal Centers. Inorganics, 2015, 3, 374-387.	2.7	8
26	QMMMW: A wrapper for QM/MM simulations with Quantum ESPRESSO Âand LAMMPS. Computer Physics Communications, 2015, 195, 191-198.	7.5	6
27	Water Adsorption and Dissociation at Metal-Supported Ceria Thin Films: Thickness and Interface-Proximity Effects Studied with DFT+U Calculations. Journal of Physical Chemistry C, 2015, 119, 2537-2544.	3.1	16
28	Adsorption of alkali adatoms on graphene supported by the Au/Ni(111) surface. Physical Review B, 2015, 92, .	3.2	30
29	Effects of Thermal Fluctuations on the Hydroxylation and Reduction of Ceria Surfaces by Molecular H ₂ . Journal of Physical Chemistry C, 2015, 119, 21567-21573.	3.1	50
30	Interface structure and reactivity of water-oxidation Ru–polyoxometalate catalysts on functionalized graphene electrodes. Physical Chemistry Chemical Physics, 2014, 16, 5333-5341.	2.8	3
31	Role of Cluster Morphology in the Dynamics and Reactivity of Subnanometer Pt Clusters Supported on Ceria Surfaces. Journal of Physical Chemistry C, 2014, 118, 21014-21020.	3.1	47
32	Copper-ceria interaction: A combined photoemission and DFT study. Applied Surface Science, 2013, 267, 12-16.	6.1	37
33	Programming Hierarchical Supramolecular Nanostructures by Molecular Design. Journal of Physical Chemistry C, 2013, 117, 3440-3445.	3.1	20
34	Spin and orbital configuration of metal phthalocyanine chains assembled on the Au(110) surface. Physical Review B, 2013, 87, .	3.2	67
35	Fluxionality of Au Clusters at Ceria Surfaces during CO Oxidation: Relationships among Reactivity, Size, Cohesion, and Surface Defects from DFT Simulations. Journal of Physical Chemistry Letters, 2013, 4, 2256-2263.	4.6	76
36	Energetics of Water Oxidation Catalyzed by Cobalt Oxide Nanoparticles: Assessing the Accuracy of DFT and DFT+U Approaches against Coupled Cluster Methods. Journal of Physical Chemistry Letters, 2013, 4, 4223-4230.	4.6	42

#	Article	IF	CITATIONS
37	Water oxidation surface mechanisms replicated by a totally inorganic tetraruthenium–oxo molecular complex. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4917-4922.	7.1	80
38	Atomistic Structure of Cobalt-Phosphate Nanoparticles for Catalytic Water Oxidation. ACS Nano, 2012, 6, 10497-10504.	14.6	62
39	Varying molecular interactions by coverage in supramolecular surface chemistry. Chemical Communications, 2012, 48, 534-536.	4.1	34
40	Distinct Physicochemical Properties of the First Ceria Monolayer on Cu(111). Journal of Physical Chemistry C, 2012, 116, 6677-6684.	3.1	40
41	Molecule-Driven Substrate Reconstruction in the Two-Dimensional Self-Organization of Fe-Phthalocyanines on Au(110). Journal of Physical Chemistry C, 2012, 116, 6251-6258.	3.1	38
42	Nanometer-Range Strain Distribution in Layered Incommensurate Systems. Physical Review Letters, 2012, 109, 266102.	7.8	15
43	Formation of Hybrid Electronic States in FePc Chains Mediated by the Au(110) Surface. Journal of Physical Chemistry C, 2012, 116, 8657-8663.	3.1	20
44	Importance of semicore states in GW calculations for simulating accurately the photoemission spectra of metal phthalocyanine molecules. Journal of Chemical Physics, 2012, 136, 174310.	3.0	23
45	Reaction Mechanisms of Water Splitting and H ₂ Evolution by a Ru(II)-Pincer Complex Identified with Ab Initio Metadynamics Simulations. ACS Catalysis, 2012, 2, 1500-1506.	11.2	39
46	Mechanisms for Oxidative Unzipping and Cutting of Graphene. Nano Letters, 2012, 12, 17-21.	9.1	129
47	Structural Phases of Ordered FePc-Nanochains Self-Assembled on Au(110). Langmuir, 2012, 28, 13232-13240.	3.5	26
48	A first principles study of water oxidation catalyzed by a tetraruthenium-oxo core embedded in polyoxometalate ligands. Physical Chemistry Chemical Physics, 2011, 13, 7666.	2.8	31
49	Structure and Molecule–Substrate Interaction in a Co-octaethyl Porphyrin Monolayer on the Ag(110) Surface. Journal of Physical Chemistry C, 2011, 115, 11560-11568.	3.1	19
50	Surface Precursors and Reaction Mechanisms for the Thermal Reduction of Graphene Basal Surfaces Oxidized by Atomic Oxygen. Journal of Physical Chemistry C, 2011, 115, 4730-4737.	3.1	101
51	Oxygen Dissociation by Concerted Action of Di-Iron Centers in Metal–Organic Coordination Networks at Surfaces: Modeling Non-Heme Iron Enzymes. Nano Letters, 2011, 11, 5414-5420.	9.1	66
52	Dual Path Mechanism in the Thermal Reduction of Graphene Oxide. Journal of the American Chemical Society, 2011, 133, 17315-17321.	13.7	426
53	Metallization of the C60/Rh(100) interface revealed by valence photoelectron spectroscopy and density functional theory calculations. Journal of Chemical Physics, 2010, 132, 234710.	3.0	5
54	Enhanced Oxygen Buffering by Substitutional and Interstitial Ni Point Defects in Ceria: A First-Principles DFT+U Study. Journal of Physical Chemistry C, 2010, 114, 10221-10228.	3.1	52

#	Article	IF	CITATIONS
55	Tertiary Chiral Domains Assembled by Achiral Metalâ^'Organic Complexes on Cu(110). Journal of Physical Chemistry C, 2010, 114, 13020-13025.	3.1	26
56	Thermodynamic, electronic and structural properties of Cu/CeO \$_2\$2 surfaces and interfaces from first-principles DFT+U calculations. Journal of Chemical Physics, 2010, 133, 234705.	3.0	83
57	Nanofaceted PdO Sites in PdCe Surface Superstructures: Enhanced Activity in Catalytic Combustion of Methane. Angewandte Chemie - International Edition, 2009, 48, 8481-8484.	13.8	256
58	QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics Condensed Matter, 2009, 21, 395502.	1.8	18,183
59	Reaction Mechanisms for the CO Oxidation on Au/CeO ₂ Catalysts: Activity of Substitutional Au ³⁺ /Au ⁺ Cations and Deactivation of Supported Au ⁺ Adatoms. Journal of the American Chemical Society, 2009, 131, 10473-10483.	13.7	304
60	Initial Stages of Oxidation on Graphitic Surfaces: Photoemission Study and Density Functional Theory Calculations. Journal of Physical Chemistry C, 2009, 113, 9009-9013.	3.1	224
61	CO Adsorption and Oxidation on Ceria Surfaces from DFT+U Calculations. Journal of Physical Chemistry C, 2008, 112, 8643-8648.	3.1	264
62	Electronic Structure of Surface-supported Bis(phthalocyaninato) terbium(III) Single Molecular Magnets. Nano Letters, 2008, 8, 3364-3368.	9.1	183
63	Properties of Pt-supported Co nanomagnets from relativistic density functional theory calculations. Physical Review B, 2008, 78, .	3.2	26
64	Three-Dimensional Tomography of the Beryllium Fermi Surface: Surface Charge Redistribution. Physical Review Letters, 2007, 99, 166403.	7.8	9
65	Defect-Controlled Transport Properties of Metallic Atoms along Carbon Nanotube Surfaces. Physical Review Letters, 2007, 99, 046803.	7.8	31
66	Hydrogen and Coordination Bonding Supramolecular Structures of Trimesic Acid on Cu(110). Journal of Physical Chemistry A, 2007, 111, 12589-12603.	2.5	118
67	Role of surface peroxo and superoxo species in the low-temperature oxygen buffering of ceria: Density functional theory calculations. Physical Review B, 2007, 75, .	3.2	112
68	Interaction of Hydrogen with Cerium Oxide Surfaces:  a Quantum Mechanical Computational Study. Journal of Physical Chemistry B, 2006, 110, 19380-19385.	2.6	85
69	Monitoring Two-Dimensional Coordination Reactions:Â Directed Assembly of Coâ^'Terephthalate Nanosystems on Au(111). Journal of Physical Chemistry B, 2006, 110, 5627-5632.	2.6	74
70	Electron Localization Determines Defect Formation on Ceria Substrates. Science, 2005, 309, 752-755.	12.6	1,211
71	Templated Growth of Metal-Organic Coordination Chains at Surfaces. Angewandte Chemie - International Edition, 2005, 44, 6142-6145.	13.8	125
72	Taming multiple valency with density functionals: A case study of defective ceria. Physical Review B, 2005, 71, .	3.2	383

#	Article	IF	CITATIONS
73	Electronic and Atomistic Structures of Clean and Reduced Ceria Surfaces. Journal of Physical Chemistry B, 2005, 109, 22860-22867.	2.6	358
74	Reply to "Comment on â€~Taming multiple valency with density functionals: A case study of defective ceria' ― Physical Review B, 2005, 72, .	3.2	177
75	First-principles analysis of cation segregation at grain boundaries in α-Al2O3. Acta Materialia, 2003, 51, 71-86.	7.9	49
76	Ab-Initio Theory of Grain-Boundary Segregation in α-Alumina: Energetics, Atomistic and Electronic Structures. Materials Research Society Symposia Proceedings, 2002, 751, 1.	0.1	1
77	PrismaticΣ3(101Â⁻0)twin boundary inαⰒAl2O3investigated by density functional theory and transmission electron microscopy. Physical Review B, 2002, 66, .	3.2	31
78	A stabilization mechanism of zirconia based on oxygen vacancies only. Acta Materialia, 2002, 50, 5171-5178.	7.9	330
79	Σ13(101Â ⁻ 4)twin inαâ^Al2O3:A model for a general grain boundary. Physical Review B, 2001, 64, .	3.2	59
80	Free energy and molecular dynamics calculations for the cubic-tetragonal phase transition in zirconia. Physical Review B, 2001, 63, .	3.2	64
81	Relative energetics and structural properties of zirconia using a self-consistent tight-binding model. Physical Review B, 2000, 61, 6617-6630.	3.2	82