
Solomon Z Dobrowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8407463/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific Data, 2018, 5, 170191.	5.3	1,300
2	A climatic basis for microrefugia: the influence of terrain on climate. Global Change Biology, 2011, 17, 1022-1035.	9.5	685
3	Changes in Climatic Water Balance Drive Downhill Shifts in Plant Species' Optimum Elevations. Science, 2011, 331, 324-327.	12.6	466
4	Relationships among net primary productivity, nutrients and climate in tropical rain forest: a panâ€ŧropical analysis. Ecology Letters, 2011, 14, 939-947.	6.4	379
5	Climate refugia: joint inference from fossil records, species distribution models and phylogeography. New Phytologist, 2014, 204, 37-54.	7.3	361
6	Managing Climate Change Refugia for Climate Adaptation. PLoS ONE, 2016, 11, e0159909.	2.5	324
7	Wildfire-Driven Forest Conversion in Western North American Landscapes. BioScience, 2020, 70, 659-673.	4.9	323
8	Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6193-6198.	7.1	307
9	Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects. Remote Sensing of Environment, 2003, 84, 283-294.	11.0	297
10	The climate velocity of the contiguous <scp>U</scp> nited <scp>S</scp> tates during the 20th century. Global Change Biology, 2013, 19, 241-251.	9.5	267
11	Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale. Remote Sensing of Environment, 2005, 97, 403-414.	11.0	259
12	Microclimatic buffering in forests of the future: the role of local water balance. Ecography, 2019, 42, 1-11.	4.5	253
13	Spectral and Structural Measures of Northwest Forest Vegetation at Leaf to Landscape Scales. Ecosystems, 2004, 7, 545.	3.4	218
14	The theory behind, and the challenges of, conserving nature's stage in a time of rapid change. Conservation Biology, 2015, 29, 618-629.	4.7	188
15	Modeling plant ranges over 75 years of climate change in California, USA: temporal transferability and species traits. Ecological Monographs, 2011, 81, 241-257.	5.4	156
16	How much influence does landscape-scale physiography have on air temperature in a mountain environment?. Agricultural and Forest Meteorology, 2009, 149, 1751-1758.	4.8	144
17	Artificial amplification of warming trends across the mountains of the western United States. Geophysical Research Letters, 2015, 42, 153-161.	4.0	136
18	Spatial variability in wildfire probability across the western United States. International Journal of Wildland Fire, 2012, 21, 313.	2.4	135

SOLOMON Z DOBROWSKI

#	Article	IF	CITATIONS
19	Adapting western North American forests to climate change and wildfires: 10 common questions. Ecological Applications, 2021, 31, e02433.	3.8	133
20	Forest structure and species traits mediate projected recruitment declines in western <scp>US</scp> tree species. Global Ecology and Biogeography, 2015, 24, 917-927.	5.8	129
21	High-severity fire: evaluating its key drivers and mapping its probability across western US forests. Environmental Research Letters, 2018, 13, 044037.	5.2	129
22	Wildland fire deficit and surplus in the western United States, 1984–2012. Ecosphere, 2015, 6, 1-13.	2.2	114
23	How will climate change affect wildland fire severity in the western US?. Environmental Research Letters, 2016, 11, 035002.	5.2	111
24	Temperature and rainfall interact to control carbon cycling in tropical forests. Ecology Letters, 2017, 20, 779-788.	6.4	107
25	Climate change velocity underestimates climate change exposure in mountainous regions. Nature Communications, 2016, 7, 12349.	12.8	93
26	Grapevine dormant pruning weight prediction using remotely sensed data. Australian Journal of Grape and Wine Research, 2003, 9, 177-182.	2.1	84
27	Plant water content integrates hydraulics and carbon depletion to predict drought-induced seedling mortality. Tree Physiology, 2019, 39, 1300-1312.	3.1	79
28	Climatic, topographic, and anthropogenic factors determine connectivity between current and future climate analogs in North America. Global Change Biology, 2018, 24, 5318-5331.	9.5	75
29	Fire Activity and Severity in the Western US Vary along Proxy Gradients Representing Fuel Amount and Fuel Moisture. PLoS ONE, 2014, 9, e99699.	2.5	75
30	Shadow allometry: Estimating tree structural parameters using hyperspatial image analysis. Remote Sensing of Environment, 2005, 97, 15-25.	11.0	74
31	Living on the edge: trailing edge forests at risk of fireâ€facilitated conversion to nonâ€forest. Ecosphere, 2019, 10, e02651.	2.2	73
32	Remotely Sensed Land Skin Temperature as a Spatial Predictor of Air Temperature across the Conterminous United States. Journal of Applied Meteorology and Climatology, 2016, 55, 1441-1457.	1.5	68
33	Evaluating ensemble forecasts of plant species distributions under climate change. Ecological Modelling, 2013, 266, 126-130.	2.5	57
34	Challenges to the Reforestation Pipeline in the United States. Frontiers in Forests and Global Change, 2021, 4, .	2.3	55
35	Mapping mountain vegetation using species distribution modeling, imageâ€based texture analysis, and objectâ€based classification. Applied Vegetation Science, 2008, 11, 499-508.	1.9	53
36	Distribution of Y chromosomes among native North Americans: A study of Athapaskan population history. American Journal of Physical Anthropology, 2008, 137, 412-424.	2.1	49

#	Article	IF	CITATIONS
37	Protected-area targets could be undermined by climate change-driven shifts in ecoregions and biomes. Communications Earth & Environment, 2021, 2, .	6.8	49
38	Average Stand Age from Forest Inventory Plots Does Not Describe Historical Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America. PLoS ONE, 2016, 11, e0147688.	2.5	48
39	Remote estimation of vine canopy density in vertically shoot-positioned vineyards: determining optimal vegetation indices. Australian Journal of Grape and Wine Research, 2002, 8, 117-125.	2.1	47
40	Changing forest structure across the landscape of the Sierra Nevada, CA, USA, since the 1930s. Ecosphere, 2014, 5, 1-26.	2.2	47
41	Human land uses reduce climate connectivity across North America. Global Change Biology, 2020, 26, 2944-2955.	9.5	45
42	Simulated Effects of Stream Restoration on the Distribution of Wet-Meadow Vegetation. Restoration Ecology, 2010, 18, 882-893.	2.9	44
43	Understanding relationships among abundance, extirpation, and climate at ecoregional scales. Ecology, 2013, 94, 1563-1571.	3.2	43
44	Twentieth century shifts in abundance and composition of vegetation types of the <scp>S</scp> ierra <scp>N</scp> evada, CA, <scp>US</scp> . Applied Vegetation Science, 2014, 17, 442-455.	1.9	41
45	Coupled ecohydrology and plant hydraulics modeling predicts ponderosa pine seedling mortality and lower treeline in the <scp>US</scp> Northern Rocky Mountains. New Phytologist, 2019, 221, 1814-1830.	7.3	37
46	Wildfire impacts on forest microclimate vary with biophysical context. Ecosphere, 2021, 12, e03467.	2.2	37
47	Avian community responses to postâ€fire forest structure: implications for fire management in mixed conifer forests. Animal Conservation, 2016, 19, 256-264.	2.9	35
48	A 2.5-million-year perspective on coarse-filter strategies for conserving nature's stage. Conservation Biology, 2015, 29, 640-648.	4.7	34
49	Topographic, soil, and climate drivers of drought sensitivity in forests and shrublands of the Pacific Northwest, USA. Scientific Reports, 2020, 10, 18486.	3.3	34
50	Impacts of growingâ€season climate on tree growth and postâ€fire regeneration in ponderosa pine and Douglasâ€fir forests. Ecosphere, 2019, 10, e02679.	2.2	33
51	Development of highâ€resolution (250 m) historical daily gridded air temperature data using reanalysis and distributed sensor networks for the <scp>US</scp> Northern Rocky Mountains. International Journal of Climatology, 2016, 36, 3620-3632.	3.5	32
52	Spatial regression methods capture prediction uncertainty in species distribution model projections through time. Global Ecology and Biogeography, 2013, 22, 242-251.	5.8	29
53	Fire-catalyzed vegetation shifts in ponderosa pine and Douglas-fir forests of the western United States. Environmental Research Letters, 2020, 15, 1040b8.	5.2	29
54	Predicting the impacts of global change on species, communities and ecosystems: it takes time. Global Ecology and Biogeography, 2013, 22, 261-263.	5.8	28

SOLOMON Z DOBROWSKI

#	Article	IF	CITATIONS
55	The effects of seed source health on whitebark pine (<i>Pinus albicaulis</i>) regeneration density after wildfire. Canadian Journal of Forest Research, 2015, 45, 1597-1606.	1.7	25
56	Soil moisture variation drives canopy water content dynamics across the western U.S Remote Sensing of Environment, 2021, 253, 112233.	11.0	25
57	Multivariate climate departures have outpaced univariate changes across global lands. Scientific Reports, 2020, 10, 3891.	3.3	23
58	A Bottom-up Approach to Vegetation Mapping of the Lake Tahoe Basin Using Hyperspatial Image Analysis. Photogrammetric Engineering and Remote Sensing, 2006, 72, 581-589.	0.6	22
59	A climatic dipole drives short- and long-term patterns of postfire forest recovery in the western United States. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29730-29737.	7.1	22
60	Limitations on maximum tree density using hyperspatial remote sensing and environmental gradient analysis. Remote Sensing of Environment, 2009, 113, 94-101.	11.0	21
61	Variation in tree mortality and regeneration affect forest carbon recovery following fuel treatments and wildfire in the Lake Tahoe Basin, California, USA. Carbon Balance and Management, 2012, 7, 7.	3.2	18
62	The Topographic Signature of Ecosystem Climate Sensitivity in the Western United States. Geophysical Research Letters, 2019, 46, 14508-14520.	4.0	18
63	Sensitivity of berry productivity to climatic variation in the Cabinet–Yaak grizzly bear recovery zone, Northwest United States, 1989–2010. Wildlife Society Bulletin, 2012, 36, 226-231.	1.6	17
64	Engaging Communities and Climate Change Futures with Multi-Scale, Iterative Scenario Building (MISB) in the Western United States. Human Organization, 2016, 75, 33-46.	0.3	17
65	Accuracy of node and bud-scar counts for aging two dominant conifers in western North America. Forest Ecology and Management, 2018, 427, 365-371.	3.2	17
66	What Drives Low-Severity Fire in the Southwestern USA?. Forests, 2018, 9, 165.	2.1	17
67	Improving image derived vegetation maps with regression based distribution modeling. Ecological Modelling, 2006, 192, 126-142.	2.5	15
68	Can fire atlas data improve species distribution model projections?. , 2014, 24, 1057-1069.		14
69	Quantifying Environmental Limiting Factors on Tree Cover Using Geospatial Data. PLoS ONE, 2015, 10, e0114648.	2.5	12
70	Ecological history of a longâ€lived conifer in a disjunct population. Journal of Ecology, 2018, 106, 319-332.	4.0	12
71	Response to Comments on "Changes in Climatic Water Balance Drive Downhill Shifts in Plant Species' Optimum Elevations― Science, 2011, 334, 177-177.	12.6	11
72	Conifer Seedling Survival in Response to High Surface Temperature Events of Varying Intensity and Duration. Frontiers in Forests and Global Change, 2022, 4, .	2.3	10

#	Article	IF	CITATIONS
73	A PRACTICAL LOOK AT THE VARIABLE AREA TRANSECT. Ecology, 2006, 87, 1856-1860.	3.2	8
74	Greater stem growth, woody allocation, and aboveground biomass in Paleotropical forests than in Neotropical forests. Ecology, 2019, 100, e02589.	3.2	7
75	Estimating Forest Characteristics for Longleaf Pine Restoration Using Normalized Remotely Sensed Imagery in Florida USA. Forests, 2020, 11, 426.	2.1	5
76	Efficacy of the global protected area network is threatened by disappearing climates and potential transboundary range shifts. Environmental Research Letters, 2022, 17, 054016.	5.2	4
77	Climate Refugia: Joint Inference from Fossils, Genetics and Models. PAGES News, 2012, 20, 105-105.	0.1	2
78	Bioclimatic limitations on global forests as measured by a fused remote sensing-climate approach. , 2012, , .		0