Qingbin Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8407416/publications.pdf Version: 2024-02-01

OINCRIN CIII

#	Article	IF	CITATIONS
1	Paclitaxel and chemoresistance. , 2022, , 251-267.		1
2	Overexpression of ABCB1 Associated With the Resistance to the KRAS-G12C Specific Inhibitor ARS-1620 in Cancer Cells. Frontiers in Pharmacology, 2022, 13, 843829.	3.5	5
3	Editorial: Novel Small-Molecule Agents in Overcoming Multidrug Resistance in Cancers. Frontiers in Chemistry, 2022, 10, .	3.6	4
4	A novel survivin dimerization inhibitor without a labile hydrazone linker induces spontaneous apoptosis and synergizes with docetaxel in prostate cancer cells. Bioorganic and Medicinal Chemistry, 2022, 65, 116761.	3.0	8
5	Therapeutic implication of carbon monoxide in drug resistant cancers. Biochemical Pharmacology, 2022, 201, 115061.	4.4	4
6	elF3i regulation of protein synthesis, cell proliferation, cell cycle progression, and tumorigenesis. Cancer Letters, 2021, 500, 11-20.	7.2	14
7	Multidrug resistance proteins (MRPs): Structure, function and the overcoming of cancer multidrug resistance. Drug Resistance Updates, 2021, 54, 100743.	14.4	107
8	The Novel Benzamide Derivative, VKNG-2, Restores the Efficacy of Chemotherapeutic Drugs in Colon Cancer Cell Lines by Inhibiting the ABCG2 Transporter. International Journal of Molecular Sciences, 2021, 22, 2463.	4.1	10
9	Insights on the structure–function relationship of human multidrug resistance protein 7 (MRP7/ABCC10) from molecular dynamics simulations and docking studies. MedComm, 2021, 2, 221-235.	7.2	7
10	Navigating Calcium and Reactive Oxygen Species by Natural Flavones for the Treatment of Heart Failure. Frontiers in Pharmacology, 2021, 12, 718496.	3.5	3
11	Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resistance Updates, 2020, 48, 100663.	14.4	180
12	Repositioning Lidocaine as an Anticancer Drug: The Role Beyond Anesthesia. Frontiers in Cell and Developmental Biology, 2020, 8, 565.	3.7	30
13	NVP-CGM097, an HDM2 Inhibitor, Antagonizes ATP-Binding Cassette Subfamily B Member 1-Mediated Drug Resistance. Frontiers in Oncology, 2020, 10, 1219.	2.8	11
14	Reversal of Cancer Multidrug Resistance (MDR) Mediated by ATP-Binding Cassette Transporter G2 (ABCG2) by AZ-628, a RAF Kinase Inhibitor. Frontiers in Cell and Developmental Biology, 2020, 8, 601400.	3.7	18
15	Sapitinib Reverses Anticancer Drug Resistance in Colon Cancer Cells Overexpressing the ABCB1 Transporter. Frontiers in Oncology, 2020, 10, 574861.	2.8	16
16	Modulating the function of ABCB1: <i>in vitro</i> and <i>in vivo</i> characterization of sitravatinib, a tyrosine kinase inhibitor. Cancer Communications, 2020, 40, 285-300.	9.2	24
17	Reversal Effect of ALK Inhibitor NVP-TAE684 on ABCG2-Overexpressing Cancer Cells. Frontiers in Oncology, 2020, 10, 228.	2.8	15
18	Erdafitinib Antagonizes ABCB1-Mediated Multidrug Resistance in Cancer Cells. Frontiers in Oncology, 2020, 10, 955.	2.8	31

QINGBIN CUI

#	Article	IF	CITATIONS
19	Venetoclax, a BCL-2 Inhibitor, Enhances the Efficacy of Chemotherapeutic Agents in Wild-Type ABCG2-Overexpression-Mediated MDR Cancer Cells. Cancers, 2020, 12, 466.	3.7	37
20	The targeting of non‑coding RNAs by curcumin: Facts and hopes for cancer therapy (Review). Oncology Reports, 2019, 42, 20-34.	2.6	38
21	Midostaurin Reverses ABCB1-Mediated Multidrug Resistance, an in vitro Study. Frontiers in Oncology, 2019, 9, 514.	2.8	29
22	Chk1 Inhibitor MK-8776 Restores the Sensitivity of Chemotherapeutics in P-glycoprotein Overexpressing Cancer Cells. International Journal of Molecular Sciences, 2019, 20, 4095.	4.1	19
23	Glesatinib, a c-MET/SMO Dual Inhibitor, Antagonizes P-glycoprotein Mediated Multidrug Resistance in Cancer Cells. Frontiers in Oncology, 2019, 9, 313.	2.8	28
24	Gaseous signaling molecules and their application in resistant cancer treatment: from invisible to visible. Future Medicinal Chemistry, 2019, 11, 323-336.	2.3	31
25	BCR-ABL Inhibitors as Sensitizing Agents for Cancer Chemotherapy. , 2019, , 13-27.		0
26	Dacomitinib antagonizes multidrug resistance (MDR) in cancer cells by inhibiting the efflux activity of ABCB1 and ABCG2 transporters. Cancer Letters, 2018, 421, 186-198.	7.2	96
27	Modulating ROS to overcome multidrug resistance in cancer. Drug Resistance Updates, 2018, 41, 1-25.	14.4	420
28	lcotinib improves progression free survival in epidermal growth factor receptor positive non-small cell lung cancer patients. Translational Cancer Research, 2018, 7, S26-S30.	1.0	0
29	Targeting cancer cell mitochondria as a therapeutic approach: recent updates. Future Medicinal Chemistry, 2017, 9, 929-949.	2.3	64
30	Design, Synthesis and Biological Evaluations of Novel Conjugates of Danshensu, Tetramethylpyrazine and Hydrogen Sulfide Donors as Cardioprotective Agents. Asian Journal of Chemistry, 2016, 28, 2555-2561.	0.3	3
31	A Novel Danshensu Derivative Prevents Cardiac Dysfunction and Improves the Chemotherapeutic Efficacy of Doxorubicin in Breast Cancer Cells. Journal of Cellular Biochemistry, 2016, 117, 94-105.	2.6	29
32	<i>Nâ€</i> Benzyldithiocarbamate Salts as Sulfur Sources to Access Tricyclic Thioheterocycles Mediated by Copper Species. Advanced Synthesis and Catalysis, 2016, 358, 2733-2738.	4.3	40
33	Design, Synthesis, and Preliminary Cardioprotective Effect Evaluation of Danshensu Derivatives. Chemical Biology and Drug Design, 2014, 84, 282-291.	3.2	24