
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8406142/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmental assessment of copper production in Europe: an LCA case study from Sweden conducted using two conventional software-database setups. International Journal of Life Cycle Assessment, 2022, 27, 255-266.	4.7	13
2	Life cycle assessmentâ€based Absolute Environmental Sustainability Assessment is also relative. Journal of Industrial Ecology, 2022, 26, 673-682.	5.5	13
3	Characterisation model approach for LCA to estimate land use impacts on pollinator abundance and illustrative characterisation factors. Journal of Cleaner Production, 2022, 346, 131043.	9.3	3
4	Assessing the use of land system archetypes to increase regional variability representation in country-specific characterization factors: a soil erosion case study. International Journal of Life Cycle Assessment, 2022, 27, 409.	4.7	1
5	Six areas of methodological debate on attributional life cycle assessment. E3S Web of Conferences, 2022, 349, 03007.	0.5	1
6	A rapid review of meta-analyses and systematic reviews of environmental footprints of food commodities and diets. Global Food Security, 2021, 28, 100508.	8.1	7
7	Waste is not a service. International Journal of Life Cycle Assessment, 2021, 26, 1538-1540.	4.7	1
8	Principles for the application of life cycle sustainability assessment. International Journal of Life Cycle Assessment, 2021, 26, 1900-1905.	4.7	53
9	Multifunctionality in Life Cycle Inventory Analysis: Approaches and Solutions. LCA Compendium, 2021, , 73-95.	0.8	4
10	When the Background Matters: Using Scenarios from Integrated Assessment Models in Prospective Life Cycle Assessment. Journal of Industrial Ecology, 2020, 24, 64-79.	5.5	134
11	Life cycle assessment of emerging technologies at the lab scale: The case of nanowireâ€based solar cells. Journal of Industrial Ecology, 2020, 24, 193-204.	5.5	34
12	Abiotic resource depletion potentials (ADPs) for elements revisited—updating ultimate reserve estimates and introducing time series for production data. International Journal of Life Cycle Assessment, 2020, 25, 294-308.	4.7	45
13	Abiotic resource use in life cycle impact assessment—Part I- towards a common perspective. Resources, Conservation and Recycling, 2020, 154, 104596.	10.8	33
14	Sensitivity to weighting in life cycle impact assessment (LCIA). International Journal of Life Cycle Assessment, 2020, 25, 2393-2406.	4.7	29
15	Environmental impacts of Ill–V/silicon photovoltaics: life cycle assessment and guidance for sustainable manufacturing. Energy and Environmental Science, 2020, 13, 4280-4290.	30.8	18
16	Ex ante life cycle assessment of GaAs/Si nanowire–based tandem solar cells: a benchmark for industrialization. International Journal of Life Cycle Assessment, 2020, 25, 1767-1782.	4.7	5
17	Upscaling methods used in ex ante life cycle assessment of emerging technologies: a review. International Journal of Life Cycle Assessment, 2020, 25, 1680-1692.	4.7	66
18	Top-down characterization of resource use in LCA: from problem definition of resource use to operational characterization factors for dissipation of elements to the environment. International Journal of Life Cycle Assessment, 2020, 25, 2255-2273.	4.7	21

#	Article	IF	CITATIONS
19	A critical view on the current application of LCA for new technologies and recommendations for improved practice. Journal of Cleaner Production, 2020, 259, 120904.	9.3	151
20	Assessing the sustainability of emerging technologies: A probabilistic LCA method applied to advanced photovoltaics. Journal of Cleaner Production, 2020, 259, 120968.	9.3	29
21	Abiotic resource use in life cycle impact assessment—Part II – Linking perspectives and modelling concepts. Resources, Conservation and Recycling, 2020, 155, 104595.	10.8	20
22	Mineral resources in life cycle impact assessment: part II – recommendations on application-dependent use of existing methods and on future method development needs. International Journal of Life Cycle Assessment, 2020, 25, 798-813.	4.7	84
23	Mineral resources in life cycle impact assessment—part I: a critical review of existing methods. International Journal of Life Cycle Assessment, 2020, 25, 784-797.	4.7	95
24	The second green revolution: Innovative urban agriculture's contribution to food security and sustainability – A review. Global Food Security, 2019, 22, 13-24.	8.1	160
25	Everything is relative and nothing is certain. Toward a theory and practice of comparative probabilistic LCA. International Journal of Life Cycle Assessment, 2019, 24, 1573-1579.	4.7	18
26	Towards an optimal coverage of ecosystem services in LCA. Journal of Cleaner Production, 2019, 231, 714-722.	9.3	36
27	Towards product-oriented sustainability in the (primary) metal supply sector. Resources, Conservation and Recycling, 2019, 145, 40-48.	10.8	11
28	Life Cycle Assessment of Food Systems. One Earth, 2019, 1, 292-297.	6.8	83
29	The devil is in the details – the carbon footprint of a shrimp. Frontiers in Ecology and the Environment, 2018, 16, 10-11.	4.0	6
30	Quantified Uncertainties in Comparative Life Cycle Assessment: What Can Be Concluded?. Environmental Science & Technology, 2018, 52, 2152-2161.	10.0	87
31	Assessment of ecosystem productivity damage due to land use. Science of the Total Environment, 2018, 621, 1320-1329.	8.0	17
32	Ex-ante LCA of Emerging Technologies. Procedia CIRP, 2018, 69, 463-468.	1.9	180
33	Digesting the alphabet soup of LCA. International Journal of Life Cycle Assessment, 2018, 23, 1507-1511.	4.7	46
34	Green and Clean: Reviewing the Justification of Claims for Nanomaterials from a Sustainability Point of View. Sustainability, 2018, 10, 689.	3.2	25
35	Pre-calculated LCI systems with uncertainties cannot be used in comparative LCA. International Journal of Life Cycle Assessment, 2017, 22, 461-461.	4.7	15
36	Does ex ante application enhance the usefulness of LCA? A case study on an emerging technology for metal recovery from e-waste. International Journal of Life Cycle Assessment, 2017, 22, 1618-1633.	4.7	96

#	Article	IF	CITATIONS
37	Setting the stage for debating the roles of risk assessment and life-cycle assessment of engineered nanomaterials. Nature Nanotechnology, 2017, 12, 727-733.	31.5	78
38	Charting the Future of Life Cycle Sustainability Assessment: A Special Issue. Journal of Industrial Ecology, 2017, 21, 1449-1453.	5.5	20
39	Introduction to Life Cycle Assessment. Springer Series in Supply Chain Management, 2017, , 15-41.	0.7	7
40	Measures of Difference and Significance in the Era of Computer Simulations, Meta-Analysis, and Big Data. Entropy, 2016, 18, 361.	2.2	15
41	Abiotic Raw-Materials in Life Cycle Impact Assessments: An Emerging Consensus across Disciplines. Resources, 2016, 5, 12.	3.5	30
42	The Abiotic Depletion Potential: Background, Updates, and Future. Resources, 2016, 5, 16.	3.5	119
43	Applying an ex-ante life cycle perspective to metal recovery from e-waste using bioleaching. Journal of Cleaner Production, 2016, 129, 315-328.	9.3	57
44	Life Cycle Sustainability Assessment: What Is It and What Are Its Challenges?. , 2016, , 45-68.		74
45	A pseudo-statistical approach to treat choice uncertainty: the example of partitioning allocation methods. International Journal of Life Cycle Assessment, 2016, 21, 252-264.	4.7	28
46	Updated unit process data for coal-based energy in China including parameters for overall dispersions. International Journal of Life Cycle Assessment, 2015, 20, 185-195.	4.7	15
47	Comparison of Asian Aquaculture Products by Use of Statistically Supported Life Cycle Assessment. Environmental Science & Technology, 2015, 49, 14176-14183.	10.0	58
48	Selection of Impact Categories and Classification of LCI Results to Impact Categories. LCA Compendium, 2015, , 17-37.	0.8	6
49	Product Carbon Footprints and Their Uncertainties in Comparative Decision Contexts. PLoS ONE, 2015, 10, e0121221.	2.5	93
50	Maximizing affluence within the planetary boundaries. International Journal of Life Cycle Assessment, 2014, 19, 1331.	4.7	22
51	A protocol for horizontal averaging of unit process data—including estimates for uncertainty. International Journal of Life Cycle Assessment, 2014, 19, 429-436.	4.7	70
52	Toward a computational structure for life cycle sustainability analysis: unifying LCA and LCC. International Journal of Life Cycle Assessment, 2013, 18, 1722-1733.	4.7	125
53	Identifying best existing practice for characterization modeling in life cycle impact assessment. International Journal of Life Cycle Assessment, 2013, 18, 683-697.	4.7	515
54	Towards application of life cycle sustainability analysis. Revue De Metallurgie, 2013, 110, 29-36.	0.3	8

#	Article	IF	CITATIONS
55	Lights and shadows in consequential LCA. International Journal of Life Cycle Assessment, 2012, 17, 904-918.	4.7	248
56	Differences between LCA for analysis and LCA for policy: a case study on the consequences of allocation choices in bio-energy policies. International Journal of Life Cycle Assessment, 2012, 17, 1059-1067.	4.7	86
57	Life Cycle Assessment: Past, Present, and Future. Environmental Science & Technology, 2011, 45, 90-96.	10.0	1,090
58	Life Cycle Sustainability Analysis. Journal of Industrial Ecology, 2011, 15, 656-658.	5.5	23
59	Implications of geographic variability on Comparative Toxicity Potentials of Cu, Ni and Zn in freshwaters of Canadian ecoregions. Chemosphere, 2011, 82, 268-277.	8.2	31
60	Implications of considering metal bioavailability in estimates of freshwater ecotoxicity: examination of two case studies. International Journal of Life Cycle Assessment, 2011, 16, 774.	4.7	48
61	Uncertainties in a carbon footprint model for detergents; quantifying the confidence in a comparative result. International Journal of Life Cycle Assessment, 2010, 15, 79.	4.7	67
62	The clearwater consensus: the estimation of metal hazard in fresh water. International Journal of Life Cycle Assessment, 2010, 15, 143-147.	4.7	48
63	Life cycle assessment and sustainability analysis of products, materials and technologies. Toward a scientific framework for sustainability life cycle analysis. Polymer Degradation and Stability, 2010, 95, 422-428.	5.8	266
64	New Method for Calculating Comparative Toxicity Potential of Cationic Metals in Freshwater: Application to Copper, Nickel, and Zinc. Environmental Science & Technology, 2010, 44, 5195-5201.	10.0	71
65	Recent developments in Life Cycle Assessment. Journal of Environmental Management, 2009, 91, 1-21.	7.8	2,163
66	A greenhouse gas indicator for bioenergy: some theoretical issues with practical implications. International Journal of Life Cycle Assessment, 2009, 14, 328-339.	4.7	72
67	Normalisation in product life cycle assessment: An LCA of the global and European economic systems in the year 2000. Science of the Total Environment, 2008, 390, 227-240.	8.0	399
68	Allocation and â€~what-if' scenarios in life cycle assessment of waste management systems. Waste Management, 2007, 27, 997-1005.	7.4	197
69	Calculating the influence of alternative allocation scenarios in fossil fuel chains. International Journal of Life Cycle Assessment, 2007, 12, 173-180.	4.7	18
70	Bias in normalization: Causes, consequences, detection and remedies. International Journal of Life Cycle Assessment, 2007, 12, 211-216.	4.7	80
71	Calculating the influence of alternative allocation scenarios in fossil fuel chains. International Journal of Life Cycle Assessment, 2007, 12, 173-180.	4.7	14
72	Bias in normalization: Causes, consequences, detection and remedies. International Journal of Life Cycle Assessment, 2007, 12, 211-216.	4.7	29

#	Article	IF	CITATIONS
73	Social Indicators for Sustainable Project and Technology Life Cycle Management in the Process Industry (13 pp + 4). International Journal of Life Cycle Assessment, 2006, 11, 3-15.	4.7	187
74	Helias A. Udo De Haes: A Practical Scientist. International Journal of Life Cycle Assessment, 2006, 11, 3-3.	4.7	59
75	Human and Ecological Life Cycle Tools for the Integrated Assessment of Systems (HELIAS). International Journal of Life Cycle Assessment, 2006, 11, 19-28.	4.7	7
76	Environmental Impacts of Consumption in the European Union:High-Resolution Input-Output Tables with Detailed Environmental Extensions. Journal of Industrial Ecology, 2006, 10, 129-146.	5.5	125
77	Economic allocation: Examples and derived decision tree. International Journal of Life Cycle Assessment, 2004, 9, 23.	4.7	178
78	OMNIITOX - operational life-cycle impact assessment models and information tools for practitioners. International Journal of Life Cycle Assessment, 2004, 9, 282.	4.7	35
79	Evaluation of selection methods for toxicological impacts in LCA recommendations for OMNIITOX. International Journal of Life Cycle Assessment, 2004, 9, 307.	4.7	14
80	Bringing science and pragmatism together a tiered approach for modelling toxicological impacts in LCA. International Journal of Life Cycle Assessment, 2004, 9, 320.	4.7	18
81	Environmental life cycle assessment of linoleum. International Journal of Life Cycle Assessment, 2002, 7, 158-166.	4.7	29
82	Risks of metal flows and accumulation. , 2002, , .		0
83	Priority assessment of toxic substances in life cycle assessment. III: Export of potential impact over time and space. Chemosphere, 2001, 44, 59-65.	8.2	42
84	Handbook on life cycle assessment — operational guide to the ISO standards. International Journal of Life Cycle Assessment, 2001, 6, 255-255.	4.7	269
85	Developing an LCA guide for decision support. Management of Environmental Quality, 2001, 12, 301-311.	0.4	46
86	Priority assessment of toxic substances in life cycle assessment. Part I: Calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES–LCA. Chemosphere, 2000, 41, 541-573.	8.2	247
87	Using SFA indicators to support environmental policy. Environmental Science and Pollution Research, 1999, 6, 49-58.	5.3	19
88	Evaluation of risks of metal flows and accumulation in economy and environment. Ecological Economics, 1999, 30, 47-65.	5.7	100
89	6th SETAC-Europe Meeting: LCA - Selected Papers uses. International Journal of Life Cycle Assessment, 1996, 1, 133-138.	4.7	30
90	Resource depletion in life ycle assessment. Environmental Toxicology and Chemistry, 1996, 15, 1442-1444.	4.3	4

#	Article	IF	CITATIONS
91	On the usefulness of life cycle assessment of packaging. Environmental Management, 1995, 19, 665-668.	2.7	10
92	A proposal for the definition of resource equivalency factors for use in product life ycle assessment. Environmental Toxicology and Chemistry, 1995, 14, 917-925.	4.3	134
93	A PROPOSAL FOR THE DEFINITION OF RESOURCE EQUIVALENCY FACTORS FOR USE IN PRODUCT LIFE-CYCLE ASSESSMENT. Environmental Toxicology and Chemistry, 1995, 14, 917.	4.3	7
94	Software as a bridge between theory and practice in life cycle assessment. Journal of Cleaner Production, 1993, 1, 185-189.	9.3	3
95	Quantitative life cycle assessment of products. Journal of Cleaner Production, 1993, 1, 3-13.	9.3	162
96	Quantitative life cycle assessment of products. Journal of Cleaner Production, 1993, 1, 81-91.	9.3	158
97	A proposal for the classification of toxic substances within the framework of life cycle assessment of products. Chemosphere, 1993, 26, 1925-1944.	8.2	114