Aviva J Symes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8405829/publications.pdf

Version: 2024-02-01

172457 197818 2,566 60 29 49 citations h-index g-index papers 61 61 61 3418 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Iron Deposition in the Spleen in a Murine Model of Acute Radiation Syndrome. FASEB Journal, 2022, 36, .	0.5	O
2	Comparison of the effects of osmotic pump implantation with subcutaneous injection for administration of drugs after total body irradiation in mice. Laboratory Animals, 2021, 55, 142-149.	1.0	0
3	Transcriptomic Analysis of Mouse Brain After Traumatic Brain Injury Reveals That the Angiotensin Receptor Blocker Candesartan Acts Through Novel Pathways. Frontiers in Neuroscience, 2021, 15, 636259.	2.8	13
4	The extended renin-angiotensin system: a promising target for traumatic brain injury therapeutics. Neural Regeneration Research, 2020, 15, 1025.	3.0	6
5	Subcutaneous Administration of Angiotensin-(1-7) Improves Recovery after Traumatic Brain Injury in Mice. Journal of Neurotrauma, 2019, 36, 3115-3131.	3.4	26
6	WWL70 protects against chronic constriction injury-induced neuropathic pain in mice by cannabinoid receptor-independent mechanisms. Journal of Neuroinflammation, 2018, 15, 9.	7.2	29
7	WWL70 attenuates PGE2 production derived from 2-arachidonoylglycerol in microglia by ABHD6-independent mechanism. Journal of Neuroinflammation, 2017, 14, 7.	7.2	25
8	Microglial Activation Results in Inhibition of TGF- \hat{l}^2 -Regulated Gene Expression. Journal of Molecular Neuroscience, 2017, 63, 308-319.	2.3	10
9	Bone morphogenetic protein-2-mediated pain and inflammation in a rat model of posterolateral arthrodesis. BMC Neuroscience, 2016, 17, 80.	1.9	12
10	Introduction to special issue on traumatic brain injury. Experimental Neurology, 2016, 275, 303-304.	4.1	0
11	Runx1 promotes proliferation and neuronal differentiation in adult mouse neurosphere cultures. Stem Cell Research, 2015, 15, 554-564.	0.7	35
12	Histone Deacetylase Inhibition Rescues Maternal Deprivation-Induced GABAergic Metaplasticity through Restoration of AKAP Signaling. Neuron, 2015, 86, 1240-1252.	8.1	47
13	Neurorestoration after traumatic brain injury through angiotensin II receptor blockage. Brain, 2015, 138, 3299-3315.	7.6	110
14	Hepatic Expression of Serum Amyloid A1 Is Induced by Traumatic Brain Injury and Modulated by Telmisartan. American Journal of Pathology, 2015, 185, 2641-2652.	3.8	33
15	Temporal Patterns of Cortical Proliferation of Glial Cell Populations after Traumatic Brain Injury in Mice. ASN Neuro, 2014, 6, AN20130034.	2.7	80
16	Temporal Dynamics of Cerebral Blood Flow, Cortical Damage, Apoptosis, Astrocyteââ,¬â€œVasculature Interaction and Astrogliosis in the Pericontusional Region after Traumatic Brain Injury. Frontiers in Neurology, 2014, 5, 82.	2.4	97
17	LPS antagonism of TGF $\hat{\mathbf{a}}\in\hat{\mathbf{l}}^2$ signaling results in prolonged survival and activation of rat primary microglia. Journal of Neurochemistry, 2014, 129, 155-168.	3.9	31
18	Receptor protein tyrosine phosphatase \hat{I}_f binds to neurons in the adult mouse brain. Experimental Neurology, 2014, 255, 12-18.	4.1	9

#	Article	IF	CITATIONS
19	Smad3 deficiency increases cortical and hippocampal neuronal loss following traumatic brain injury. Experimental Neurology, 2013, 250, 353-365.	4.1	18
20	TGF- \hat{l}^2 Superfamily Gene Expression and Induction of the Runx1 Transcription Factor in Adult Neurogenic Regions after Brain Injury. PLoS ONE, 2013, 8, e59250.	2.5	75
21	Commercially Available Angiotensin II At2 Receptor Antibodies Are Nonspecific. PLoS ONE, 2013, 8, e69234.	2.5	65
22	Candesartan, an Angiotensin II AT1-Receptor Blocker and PPAR-Î ³ Agonist, Reduces Lesion Volume and Improves Motor and Memory Function After Traumatic Brain Injury in Mice. Neuropsychopharmacology, 2012, 37, 2817-2829.	5.4	101
23	Alterations in sulfated chondroitin glycosaminoglycans following controlled cortical impact injury in mice. Journal of Comparative Neurology, 2012, 520, 3295-3313.	1.6	86
24	Alterations in sulfated chondroitin glycosaminoglycans following controlled cortical impact injury in mice. Journal of Comparative Neurology, 2012, 520, Spc1-Spc1.	1.6	0
25	Bone morphogenetic protein-2 and spinal arthrodesis: the basic science perspective on protein interaction with the nervous system. Spine Journal, 2011, 11, 500-505.	1.3	58
26	Dmitriev et al. respond. Spine Journal, 2011, 11, 802-803.	1.3	0
27	Postoperative Hyperalgesia and Nerve Root Inflammation Following Posterolateral Arthrodesis with rhBMP-2: An In Vivo Rat Study. Spine Journal, 2011, 11, S55-S56.	1.3	O
28	Alterations in Recovery from Spinal Cord Injury in Rats Treated with Recombinant Human Bone Morphogenetic Protein-2 for Posterolateral Arthrodesis. Journal of Bone and Joint Surgery - Series A, 2011, 93, 1488-1499.	3.0	12
29	Smad proteins differentially regulate transforming growth factor $\hat{a} \in \hat{r}^2 \hat{a} \in \hat{r}^2$ induction of chondroitin sulfate proteoglycans. Journal of Neurochemistry, 2011, 119, 868-878.	3.9	64
30	Transforming growth factor \hat{l}^2 controls CCN3 expression in nucleus pulposus cells of the intervertebral disc. Arthritis and Rheumatism, 2011, 63, 3022-3031.	6.7	25
31	Smad3 Deficiency Reduces Neurogenesis in Adult Mice. Journal of Molecular Neuroscience, 2010, 41, 383-396.	2.3	15
32	Regulation of CCN2/Connective tissue growth factor expression in the nucleus pulposus of the intervertebral disc: Role of Smad and activator protein 1 signaling. Arthritis and Rheumatism, 2010, 62, 1983-1992.	6.7	54
33	Bone morphogenetic protein-2 used in spinal fusion with spinal cord injury penetrates intrathecally and elicits a functional signaling cascade. Spine Journal, 2010, 10, 16-25.	1.3	39
34	Regulation of Nociceptin/Orphanin FQ Gene Expression by Neuropoietic Cytokines and Neurotrophic Factors in Neurons and Astrocytes. Journal of Neurochemistry, 2008, 72, 1882-1889.	3.9	42
35	Chondroitin-4-sulfation negatively regulates axonal guidance and growth. Journal of Cell Science, 2008, 121, 3083-3091.	2.0	211
36	Smad3 null mice display more rapid wound closure and reduced scar formation after a stab wound to the cerebral cortex. Experimental Neurology, 2007, 203, 168-184.	4.1	79

#	Article	IF	CITATIONS
37	Vasoactive intestinal peptide induction by ciliary neurotrophic factor in donor human corneal endothelium in situ. Neuroscience Letters, 2007, 423, 89-94.	2.1	13
38	The cAMP response element binding protein modulates expression of the transient outward current: Implications for cardiac memory. Cardiovascular Research, 2005, 68, 259-267.	3.8	35
39	Activation of Protein Kinase C ϵ Inhibits the Two-pore Domain K+ Channel, TASK-1, Inducing Repolarization Abnormalities in Cardiac Ventricular Myocytes. Journal of Biological Chemistry, 2004, 279, 33154-33160.	3.4	50
40	NFAT4 is expressed in primary astrocytes and activated by glutamate. Journal of Neuroscience Research, 2003, 72, 191-197.	2.9	20
41	Transforming Growth Factor \hat{I}^2 and Ciliary Neurotrophic Factor Synergistically Induce Vasoactive Intestinal Peptide Gene Expression through the Cooperation of Smad, STAT, and AP-1 Sites. Journal of Biological Chemistry, 2001, 276, 19966-19973.	3.4	33
42	Leptin and TGF- \hat{l}^2 synergistically regulate VIP cytokine response element transcription. NeuroReport, 2000, 11, 4049-4053.	1.2	3
43	Synergy of Activin and Ciliary Neurotrophic Factor Signaling Pathways in the Induction of Vasoactive Intestinal Peptide Gene Expression. Molecular Endocrinology, 2000, 14, 429-439.	3.7	10
44	Identification of a Novel gp130-responsive Site in the Vasoactive Intestinal Peptide Cytokine Response Element. Journal of Biological Chemistry, 2000, 275, 36013-36020.	3.4	14
45	NFAT interactions with the vasoactive intestinal peptide cytokine response element., 1998, 52, 93-104.		6
46	Enhancing leptin response by preventing SH2-containing phosphatase 2 interaction with Ob receptor. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 6061-6066.	7.1	157
47	Coordinate Regulation of STAT Signaling and c-fosExpression by the Tyrosine Phosphatase SHP-2. Journal of Biological Chemistry, 1998, 273, 6233-6241.	3.4	58
48	A Sweat Gland-derived Differentiation Activity Acts through Known Cytokine Signaling Pathways. Journal of Biological Chemistry, 1997, 272, 30421-30428.	3.4	59
49	Integration of Jak-Stat and AP-1 Signaling Pathways at the Vasoactive Intestinal Peptide Cytokine Response Element Regulates Ciliary Neurotrophic Factor-dependent Transcription. Journal of Biological Chemistry, 1997, 272, 9648-9654.	3.4	53
50	The protein tyrosine phosphatase SHP-2 negatively regulates ciliary neurotrophic factor induction of gene expression. Current Biology, 1997, 7, 697-700.	3.9	107
51	STAT proteins are activated by ciliary neurotrophic factor in cells of central nervous system origin. , 1996, 43, 403-411.		42
52	A Minimal CGRP Gene Promoter is Inducible by Nerve Growth Factor in Adult Rat Dorsal Root Ganglion Neurons But Not in PC12 Phaeochromocytoma Cells. European Journal of Neuroscience, 1995, 7, 394-400.	2.6	34
53	C/EBP-related Sites in Addition to a Stat Site Are Necessary for Ciliary Neurotrophic Factor-Leukemia Inhibitory Factor-dependent Transcriptional Activation by the Vasoactive Intestinal Peptide Cytokine Response Element. Journal of Biological Chemistry, 1995, 270, 8068-8075.	3.4	24
54	Differences in Nuclear Signaling by Leukemia Inhibitory Factor and Interferonâ€Ĵ3: The Role of STAT Proteins in Regulating Vasoactive Intestinal Peptide Gene Expression. Journal of Neurochemistry, 1995, 65, 1926-1933.	3.9	19

#	ARTICLE	IF	CITATION
55	STAT proteins participate in the regulation of the vasoactive intestinal peptide gene by the ciliary neurotrophic factor family of cytokines. Molecular Endocrinology, 1994, 8, 1750-1763.	3.7	58
56	Coordinate Regulation of Choline Acetyltransferase, Tyrosine Hydroxylase, and Neuropeptide mRNAs by Ciliary Neurotrophic Factor and Leukemia Inhibitory Factor in Cultured Sympathetic Neurons. Journal of Neurochemistry, 1994, 63, 429-438.	3.9	60
57	Ciliary neurotrophic factor coordinately activates transcription of neuropeptide genes in a neuroblastoma cell line Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 572-576.	7.1	57
58	Oncostatin M regulates VIP expression in a human neuroblastoma cell line. NeuroReport, 1992, 3, 865-868.	1.2	49
59	Loss of transcriptional repression contributes to the ectopic expression of the calcitonin/l±-CGRP gene in a human lung carcinoma cell line. FEBS Letters, 1992, 306, 229-233.	2.8	16
60	Structure and methylation of the human calcitonin/α-CGRP gene. Nucleic Acids Research, 1989, 17, 6999-7011.	14.5	82