Manuela Piazza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8405818/publications.pdf

Version: 2024-02-01

159585 182427 9,698 56 30 51 citations h-index g-index papers 63 63 63 4595 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	THREE PARIETAL CIRCUITS FOR NUMBER PROCESSING. Cognitive Neuropsychology, 2003, 20, 487-506.	1.1	2,143
2	Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 2005, 6, 435-448.	10.2	1,180
3	Tuning Curves for Approximate Numerosity in the Human Intraparietal Sulcus. Neuron, 2004, 44, 547-555.	8.1	1,032
4	A Magnitude Code Common to Numerosities and Number Symbols in Human Intraparietal Cortex. Neuron, 2007, 53, 293-305.	8.1	782
5	Distributed and Overlapping Cerebral Representations of Number, Size, and Luminance during Comparative Judgments. Neuron, 2004, 41, 983-993.	8.1	666
6	Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 2010, 116, 33-41.	2.2	634
7	Neurocognitive start-up tools for symbolic number representations. Trends in Cognitive Sciences, 2010, 14, 542-551.	7.8	388
8	Are Subitizing and Counting Implemented as Separate or Functionally Overlapping Processes?. Neurolmage, 2002, 15, 435-446.	4.2	293
9	Exact and approximate judgements of visual and auditory numerosity: An fMRI study. Brain Research, 2006, 1106, 177-188.	2.2	248
10	Education Enhances the Acuity of the Nonverbal Approximate Number System. Psychological Science, 2013, 24, 1037-1043.	3.3	238
11	Does Subitizing Reflect Numerical Estimation?. Psychological Science, 2008, 19, 607-614.	3.3	237
12	Numerical estimation in preschoolers Developmental Psychology, 2010, 46, 545-551.	1.6	211
13	Subitizing reflects visuo-spatial object individuation capacity. Cognition, 2011, 121, 147-153.	2.2	159
14	How Humans Count: Numerosity and the Parietal Cortex. Neuroscientist, 2009, 15, 261-273.	3.5	120
15	Single-trial classification of parallel pre-attentive and serial attentive processes using functional magnetic resonance imaging. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1237-1245.	2.6	113
16	Cortical route for facelike pattern processing in human newborns. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4625-4630.	7.1	112
17	Neural mechanisms of attentional shifts due to irrelevant spatial and numerical cues. Neuropsychologia, 2009, 47, 2615-2624.	1.6	78
18	Neural foundations and functional specificity of number representations. Neuropsychologia, 2016, 83, 257-273.	1.6	70

#	Article	IF	Citations
19	The Role of Attentional Priority and Saliency in Determining Capacity Limits in Enumeration and Visual Working Memory. PLoS ONE, 2011, 6, e29296.	2.5	70
20	A Shared, Flexible Neural Map Architecture Reflects Capacity Limits in Both Visual Short-Term Memory and Enumeration. Journal of Neuroscience, 2014, 34, 9857-9866.	3.6	66
21	Word meaning in the ventral visual path: a perceptual to conceptual gradient of semantic coding. Neurolmage, 2016, 143, 128-140.	4.2	62
22	Distance and Direction Codes Underlie Navigation of a Novel Semantic Space in the Human Brain. Journal of Neuroscience, 2020, 40, 2727-2736.	3.6	54
23	Attentional amplification of neural codes for number independent of other quantities along the dorsal visual stream. ELife, 2019, 8, .	6.0	52
24	What information is critical to elicit interference in number-form synaesthesia?. Cortex, 2009, 45, 1200-1216.	2.4	50
25	Mathematical difficulties in developmental coordination disorder: Symbolic and nonsymbolic number processing. Research in Developmental Disabilities, 2015, 43-44, 167-178.	2.2	48
26	Verbal numerosity estimation deficit in the context of spared semantic representation of numbers: A neuropsychological study of a patient with frontal lesions. Neuropsychologia, 2008, 46, 2463-2475.	1.6	41
27	Learning to focus on number. Cognition, 2018, 181, 35-45.	2.2	40
28	Objective correlates of an unusual subjective experience: A single-case study of number–form synaesthesia. Cognitive Neuropsychology, 2006, 23, 1162-1173.	1.1	38
29	Contribution of motor representations to action verb processing. Cognition, 2015, 134, 174-184.	2.2	38
30	Discriminability of numerosity-evoked fMRI activity patterns in human intra-parietal cortex reflects behavioral numerical acuity. Cortex, 2019, 114, 90-101.	2.4	37
31	Finger Tracking Reveals the Covert Stages of Mental Arithmetic. Open Mind, 2017, 1, 30-41.	1.7	36
32	The neuro-cognitive representations of symbols: the case of concrete words. Neuropsychologia, 2017, 105, 4-17.	1.6	36
33	Processing number and length in the parietal cortex: Sharing resources, not a common code. Cortex, 2019, 114, 17-27.	2.4	34
34	Neurocognitive Start-Up Tools for Symbolic Number Representations. , 2011, , 267-285.		30
35	Objects, numbers, fingers, space: clustering of ventral and dorsal functions in young children and adults. Developmental Science, 2013, 16, 377-393.	2.4	27
36	Asymmetrical interference between number and item size perception provides evidence for a domain specific impairment in dyscalculia. PLoS ONE, 2018, 13, e0209256.	2.5	26

#	Article	IF	CITATIONS
37	Numerical abilities of school-age children with Developmental Coordination Disorder (DCD): A behavioral and eye-tracking study. Human Movement Science, 2017, 55, 315-326.	1.4	25
38	Grid-like and distance codes for representing word meaning in the human brain. NeuroImage, 2021, 232, 117876.	4.2	24
39	Decoding the processing stages of mental arithmetic with magnetoencephalography. Cortex, 2019, 114, 124-139.	2.4	23
40	Individual Brain Charting dataset extension, second release of high-resolution fMRI data for cognitive mapping. Scientific Data, 2020, 7, 353.	5. 3	21
41	Impaired large numerosity estimation and intact subitizing in developmental dyscalculia. PLoS ONE, 2020, 15, e0244578.	2.5	18
42	Numerical and Spatial Intuitions: A Role for Posterior Parietal Cortex?., 2009, , 221-246.		17
43	Probing the mental representation of quantifiers. Cognition, 2018, 181, 117-126.	2.2	14
44	Learning disabilities: Developmental dyscalculia. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 174, 61-75.	1.8	13
45	Symbolic categorization of novel multisensory stimuli in the human brain. Neurolmage, 2021, 235, 118016.	4.2	13
46	Infants' use of motion cues in object individuation processes. Journal of Experimental Child Psychology, 2020, 197, 104868.	1.4	8
47	Excessive visual crowding effects in developmental dyscalculia. Journal of Vision, 2020, 20, 7.	0.3	6
48	Mind, brain, and teaching: Some directions for future research. Behavioral and Brain Sciences, 2015, 38, e54.	0.7	5
49	Conceptual and Perceptual Dimensions of Word Meaning Are Recovered Rapidly and in Parallel during Reading. Journal of Cognitive Neuroscience, 2019, 31, 95-108.	2.3	5
50	The hippocampalâ€entorhinal system represents nested hierarchical relations between words during concept learning. Hippocampus, 2021, 31, 557-568.	1.9	5
51	Testing the role of symbols in preschool numeracy: An experimental computer-based intervention study. PLoS ONE, 2021, 16, e0259775.	2.5	4
52	The neural representation of absolute direction during mental navigation in conceptual spaces. Communications Biology, 2021, 4, 1294.	4.4	4
53	Comparing magnitudes across dimensions: a univariate and multivariate approach. , $2016, \ldots$		1
54	Resources Underlying Visuo-Spatial Working Memory Enable Veridical Large Numerosity Perception. Frontiers in Human Neuroscience, 2021, 15, 751098.	2.0	1

#	Article	IF	CITATIONS
55	What is an (abstract) neural representation of quantity?. Behavioral and Brain Sciences, 2009, 32, 348-349.	0.7	O
56	A perceptual-to-conceptual gradient of word coding along the ventral path. , 2014, , .		0