
Thomas R Watters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/840522/publications.pdf Version: 2024-02-01

THOMAS P WATTERS

#	Article	IF	CITATIONS
1	Lunar Wrinkle Ridges and the Evolution of the Nearside Lithosphere. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	9
2	The Lunar Geophysical Network Landing Sites Science Rationale. Planetary Science Journal, 2022, 3, 40.	3.6	7
3	Topography of nearside mare graben: Implications for dike-induced or passive extension formation. Icarus, 2021, 354, 114039.	2.5	6
4	Dielectric Properties of the Medusae Fossae Formation and Implications for Ice Content. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006601.	3.6	15
5	A case for limited global contraction of Mercury. Communications Earth & Environment, 2021, 2, 9.	6.8	12
6	Mercury's Crustal Thickness and Contractional Strain. Geophysical Research Letters, 2021, 48, e2021GL093528.	4.0	7
7	Provenance of Block Fields Along Lunar Wrinkle Ridges. Journal of Geophysical Research E: Planets, 2019, 124, 2970-2982.	3.6	10
8	Shallow seismic activity and young thrust faults on the Moon. Nature Geoscience, 2019, 12, 411-417.	12.9	64
9	Wrinkle ridges on Mercury and the Moon within and outside of mascons. Icarus, 2019, 331, 226-237.	2.5	16
10	Evidence for recent and ancient faulting at Mare Frigoris and implications for lunar tectonic evolution. Icarus, 2019, 326, 151-161.	2.5	13
11	How old are lunar lobate scarps? 1. Seismic resetting of crater size-frequency distributions. Icarus, 2018, 306, 225-242.	2.5	39
12	Radar sounder evidence of thick, porous sediments in Meridiani Planum and implications for iceâ€filled deposits on Mars. Geophysical Research Letters, 2017, 44, 9208-9215.	4.0	12
13	Toward high-resolution global topography of Mercury from MESSENGER orbital stereo imaging: A prototype model for the H6 (Kuiper) quadrangle. Planetary and Space Science, 2017, 142, 26-37.	1.7	18
14	Recent tectonic activity on Mercury revealed by small thrust fault scarps. Nature Geoscience, 2016, 9, 743-747.	12.9	31
15	Faultâ€bound valley associated with the Rembrandt basin on Mercury. Geophysical Research Letters, 2016, 43, 11,536.	4.0	8
16	Phase compensation of MARSIS subsurface sounding data and estimation of ionospheric properties: New insights from SHARAD results. Journal of Geophysical Research E: Planets, 2016, 121, 180-193.	3.6	18
17	Distribution of largeâ€scale contractional tectonic landforms on Mercury: Implications for the origin of global stresses. Geophysical Research Letters, 2015, 42, 3755-3763.	4.0	29
18	Duration of activity on lobateâ€scarp thrust faults on Mercury. Journal of Geophysical Research E: Planets, 2015, 120, 1751-1762.	3.6	41

THOMAS R WATTERS

#	Article	IF	CITATIONS
19	Small-scale lunar graben: Distribution, dimensions, and formation processes. Icarus, 2015, 252, 95-106.	2.5	21
20	Global thrust faulting on the Moon and the influence of tidal stresses. Geology, 2015, 43, 851-854.	4.4	56
21	Stratigraphy of the Caloris basin, Mercury: Implications for volcanic history and basin impact melt. Icarus, 2015, 250, 413-429.	2.5	49
22	Mercury's global contraction much greater than earlier estimates. Nature Geoscience, 2014, 7, 301-307.	12.9	181
23	The distribution and origin of smooth plains on Mercury. Journal of Geophysical Research E: Planets, 2013, 118, 891-907.	3.6	193
24	Insights into the subsurface structure of the Caloris basin, Mercury, from assessments of mechanical layering and changes in longâ€wavelength topography. Journal of Geophysical Research E: Planets, 2013, 118, 2030-2044.	3.6	37
25	Deformation associated with ghost craters and basins in volcanic smooth plains on Mercury: Strain analysis and implications for plains evolution. Journal of Geophysical Research, 2012, 117, .	3.3	37
26	On the origin of graben and ridges within and near volcanically buried craters and basins in Mercury's northern plains. Journal of Geophysical Research, 2012, 117, .	3.3	30
27	Recent extensional tectonics on the Moon revealed by the Lunar Reconnaissance Orbiter Camera. Nature Geoscience, 2012, 5, 181-185.	12.9	83
28	Thrust faults and the near-surface strength of asteroid 433 Eros. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	20
29	Flood Volcanism in the Northern High Latitudes of Mercury Revealed by MESSENGER. Science, 2011, 333, 1853-1856.	12.6	225
30	Stereo topographic models of Mercury after three MESSENGER flybys. Planetary and Space Science, 2011, 59, 1910-1917.	1.7	57
31	The morphology of Mercury's Caloris basin as seen in MESSENGER stereo topographic models. Icarus, 2010, 209, 230-238.	2.5	41
32	Interpretation and analysis of planetary structures. Journal of Structural Geology, 2010, 32, 855-875.	2.3	71
33	Accommodation of lithospheric shortening on Mercury from altimetric profiles of ridges and lobate scarps measured during MESSENGER flybys 1 and 2. Icarus, 2010, 209, 247-255.	2.5	29
34	Evidence for Young Volcanism on Mercury from the Third MESSENGER Flyby. Science, 2010, 329, 668-671.	12.6	118
35	Geology of the Martian crustal dichotomy boundary: Age, modifications, and implications for modeling efforts. Journal of Geophysical Research, 2010, 115, .	3.3	16
36	Evidence of Recent Thrust Faulting on the Moon Revealed by the Lunar Reconnaissance Orbiter Camera. Science, 2010, 329, 936-940.	12.6	135

#	Article	IF	CITATIONS
37	The tectonics of Mercury. , 2009, , 15-80.		13
38	Lunar tectonics. , 2009, , 121-182.		13
39	Shallow radar (SHARAD) sounding observations of the Medusae Fossae Formation, Mars. Icarus, 2009, 199, 295-302.	2.5	102
40	The tectonics of Mercury: The view after MESSENGER's first flyby. Earth and Planetary Science Letters, 2009, 285, 283-296.	4.4	135
41	Could Pantheon Fossae be the result of the Apollodorus crater-forming impact within the Caloris basin, Mercury?. Earth and Planetary Science Letters, 2009, 285, 320-327.	4.4	27
42	Emplacement and tectonic deformation of smooth plains in the Caloris basin, Mercury. Earth and Planetary Science Letters, 2009, 285, 309-319.	4.4	53
43	Evolution of the Rembrandt Impact Basin on Mercury. Science, 2009, 324, 618-621.	12.6	46
44	The Evolution of Mercury's Crust: A Global Perspective from MESSENGER. Science, 2009, 324, 613-618.	12.6	194
45	Geology of the Caloris Basin, Mercury: A View from MESSENGER. Science, 2008, 321, 73-76.	12.6	140
46	Reflectance and Color Variations on Mercury: Regolith Processes and Compositional Heterogeneity. Science, 2008, 321, 66-69.	12.6	167
47	Volcanism on Mercury: Evidence from the First MESSENGER Flyby. Science, 2008, 321, 69-72.	12.6	169
48	Return to Mercury: A Global Perspective on MESSENGER's First Mercury Flyby. Science, 2008, 321, 59-62.	12.6	170
49	Radar Sounding of the Medusae Fossae Formation Mars: Equatorial Ice or Dry, Low-Density Deposits?. Science, 2007, 318, 1125-1128.	12.6	143
50	Subsurface Radar Sounding of the South Polar Layered Deposits of Mars. Science, 2007, 316, 92-95.	12.6	330
51	Hemispheres Apart: The Crustal Dichotomy on Mars. Annual Review of Earth and Planetary Sciences, 2007, 35, 621-652.	11.0	83
52	The Mercury Dual Imaging System on the MESSENGER Spacecraft. Space Science Reviews, 2007, 131, 247-338.	8.1	242
53	MARSIS radar sounder evidence of buried basins in the northern lowlands of Mars. Nature, 2006, 444, 905-908.	27.8	55
54	Radar Soundings of the Subsurface of Mars. Science, 2005, 310, 1925-1928.	12.6	327

THOMAS R WATTERS

#	Article	IF	CITATIONS
55	Extensional troughs in the Caloris Basin of Mercury: Evidence of lateral crustal flow. Geology, 2005, 33, 669.	4.4	34
56	Elastic dislocation modeling of wrinkle ridges on Mars. Icarus, 2004, 171, 284-294.	2.5	61
57	Thrust faults and the global contraction of Mercury. Geophysical Research Letters, 2004, 31, .	4.0	70
58	Thrust faults along the dichotomy boundary in the eastern hemisphere of Mars. Journal of Geophysical Research, 2003, 108, .	3.3	106
59	The mechanical and thermal structure of Mercury's early lithosphere. Geophysical Research Letters, 2002, 29, 37-1.	4.0	79
60	Forward mechanical modeling of the Amenthes Rupes Thrust Fault on Mars. Geophysical Research Letters, 2001, 28, 4659-4662.	4.0	99
61	Displacement-length relations of thrust faults associated with lobate scarps on Mercury and Mars: Comparison with terrestrial faults. Geophysical Research Letters, 2000, 27, 3659-3662.	4.0	75
62	Topography of lobate scarps on Mercury: New constraints on the planet's contraction. Geology, 1998, 26, 991.	4.4	123
63	Radar and photoclinometric studies of wrinkle ridges on Mars. Journal of Geophysical Research, 1997, 102, 10889-10903.	3.3	37
64	Compressional tectonism on Mars. Journal of Geophysical Research, 1993, 98, 17049-17060.	3.3	210
65	System of tectonic features common to Earth, Mars, and Venus. Geology, 1992, 20, 609.	4.4	31
66	Origin of periodically spaced wrinkle ridges on the Tharsis Plateau of Mars. Journal of Geophysical Research, 1991, 96, 15599-15616.	3.3	109
67	Wrinkle ridge assemblages on the terrestrial planets. Journal of Geophysical Research, 1988, 93, 10236-10254.	3.3	186