Daniel P Cahill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8403294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving Dâ€2â€hydroxyglutarate MR spectroscopic imaging in mutant isocitrate dehydrogenase glioma patients with multiplexed RFâ€receive/B ₀ â€shim array coils at 3 T. NMR in Biomedicine, 2022, e4621.	352.8	2
2	Implementation of <i>TERT</i> promoter mutations improve prognostication of the WHO classification in meningioma. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	8
3	Trabectedin for recurrent WHO grade 2 or 3 meningiomas—paving the road for new opportunities. Neuro-Oncology, 2022, , .	1.2	0
4	Phase 2 study of pembrolizumab in patients with recurrent and residual high-grade meningiomas. Nature Communications, 2022, 13, 1325.	12.8	31
5	HSP90 Inhibition Overcomes Resistance to Molecular Targeted Therapy in <i>BRAFV600E</i> -mutant High-grade Glioma. Clinical Cancer Research, 2022, 28, 2425-2439.	7.0	17
6	Enhancing demethylation-induced differentiation in IDH-mutant glioma. Neuro-Oncology, 2022, , .	1.2	0
7	In Vivo Absolute Metabolite Quantification Using a Multiplexed <scp>ERETICâ€RX</scp> Array Coil for Wholeâ€Brain <scp>MR</scp> Spectroscopic Imaging. Journal of Magnetic Resonance Imaging, 2022, 56, 121-133.	3.4	2
8	ATRX loss promotes immunosuppressive mechanisms in IDH1 mutant glioma. Neuro-Oncology, 2022, 24, 888-900.	1.2	20
9	Microenvironmental Landscape of Human Melanoma Brain Metastases in Response to Immune Checkpoint Inhibition. Cancer Immunology Research, 2022, 10, 996-1012.	3.4	18
10	Impact of Intraoperative Magnetic Resonance Imaging and Other Factors on Surgical Outcomes for Newly Diagnosed Grade II Astrocytomas and Oligodendrogliomas: A Multicenter Study. Neurosurgery, 2021, 88, 63-73.	1.1	15
11	Using Histopathology to Assess the Reliability of Intraoperative Magnetic Resonance Imaging in Guiding Additional Brain Tumor Resection: A Multicenter Study. Neurosurgery, 2021, 88, E49-E59.	1.1	8
12	Sirtuin activation targets IDH-mutant tumors. Neuro-Oncology, 2021, 23, 53-62.	1.2	15
13	Extent of Resection of Glioblastoma. Neurosurgery Clinics of North America, 2021, 32, 23-29.	1.7	12
14	TERT and DNMT1 expression predict sensitivity to decitabine in gliomas. Neuro-Oncology, 2021, 23, 76-87.	1.2	24
15	Craniopharyngiomas, including Recurrent Cases, Lack TERT Promoter Hotspot Mutations. Neurologia Medico-Chirurgica, 2021, 61, 385-391.	2.2	4
16	Sporadic multiple meningiomas harbor distinct driver mutations. Acta Neuropathologica Communications, 2021, 9, 8.	5.2	12
17	Neurosurgical involvement in clinical trials for CNS tumors. Journal of Neuro-Oncology, 2021, 151, 367-373.	2.9	1
18	BIMG-22. DEEP LEARNING SUPER-RESOLUTION MR SPECTROSCOPIC IMAGING TO MAP TUMOR METABOLISM IN MUTANT IDH GLIOMA PATIENTS. Neuro-Oncology Advances, 2021, 3, i5-i6.	0.7	0

#	Article	IF	CITATIONS
19	A rapid genotyping panel for detection of primary central nervous system lymphoma. Blood, 2021, 138, 382-386.	1.4	13
20	DDRE-03. IDH1-MUTANT GBM CELLS ARE HIGHLY SENSITIVE TO COMBINATION OF KDM6A/B AND HDAC INHIBITORS. Neuro-Oncology Advances, 2021, 3, i6-i7.	0.7	0
21	DDRE-29. DE NOVO PYRIMIDINE SYNTHESIS IS A TARGETABLE VULNERABILITY IN IDH-MUTANT GLIOMA. Neuro-Oncology Advances, 2021, 3, i12-i13.	0.7	1
22	Microscale Physiological Events on the Human Cortical Surface. Cerebral Cortex, 2021, 31, 3678-3700.	2.9	29
23	Inhibitory CD161 receptor identified in glioma-infiltrating TÂcells by single-cell analysis. Cell, 2021, 184, 1281-1298.e26.	28.9	210
24	Palbociclib demonstrates intracranial activity in progressive brain metastases harboring cyclin-dependent kinase pathway alterations. Nature Cancer, 2021, 2, 498-502.	13.2	26
25	Advanced imaging to assess longitudinal vascular changes in brain metastases treated with checkpoint inhibition Journal of Clinical Oncology, 2021, 39, 3059-3059.	1.6	0
26	Evidence-based recommendations on categories for extent of resection in diffuse glioma. European Journal of Cancer, 2021, 149, 23-33.	2.8	97
27	Alliance A071601: Phase II trial of BRAF/MEK inhibition in newly diagnosed papillary craniopharyngiomas Journal of Clinical Oncology, 2021, 39, 2000-2000.	1.6	18
28	Evolution of delayed resistance to immunotherapy in a melanoma responder. Nature Medicine, 2021, 27, 985-992.	30.7	67
29	Intraoperative thalamocortical tract monitoring via direct cortical recordings during craniotomy. Clinical Neurophysiology, 2021, 132, 1416-1432.	1.5	6
30	Detection of Leptomeningeal Disease Using Cell-Free DNA From Cerebrospinal Fluid. JAMA Network Open, 2021, 4, e2120040.	5.9	27
31	Microscale dynamics of electrophysiological markers of epilepsy. Clinical Neurophysiology, 2021, 132, 2916-2931.	1.5	20
32	IMMU-08. PHASE II TRIAL OF PEMBROLIZUMAB AND LENVATINIB FOR LEPTOMENINGEAL METASTASES. Neuro-Oncology Advances, 2021, 3, iv6-iv6.	0.7	0
33	Phase II study of ipilimumab and nivolumab in leptomeningeal carcinomatosis. Nature Communications, 2021, 12, 5954.	12.8	35
34	Commentary: The Glioma-Network Interface: A Review of the Relationship Between Glioma Molecular Subtype and Intratumoral Function. Neurosurgery, 2021, 88, E273-E274.	1.1	0
35	PATH-37. DISTINCT GENOMIC SUBCLASSES OF HIGH-GRADE/PROGRESSIVE MENINGIOMAS: NF2-ASSOCIATED, NF2-EXCLUSIVE, AND NF2-AGNOSTIC. Neuro-Oncology, 2021, 23, vi123-vi123.	1.2	0
36	EXTH-55. TARGETING RECURRENT IDH MUTANT GLIOMA WITH CDK4/6 INHIBITION. Neuro-Oncology, 2021, 23, vi175-vi175.	1.2	0

#	Article	IF	CITATIONS
37	IMMU-02. GENOMIC AND TRANSCRIPTOMIC CORRELATES OF IMMUNOTHERAPY RESPONSE WITHIN THE TUMOR MICROENVIRONMENT OF LEPTOMENINGEAL METASTASES. Neuro-Oncology, 2021, 23, vi92-vi92.	1.2	0
38	CBIO-20. HIGH LEVELS OF TERT CONFER SENSITIVITY TO THE DNA HYPOMETHYLATING AGENT DECITABINE (DAC) IN GLIOMAS. Neuro-Oncology, 2021, 23, vi31-vi31.	1.2	0
39	CTIM-30. PHASE II TRIAL OF PEMBROLIZUMAB IN RECURRENT AND RESIDUAL HIGH-GRADE MENINGIOMAS. Neuro-Oncology, 2021, 23, vi57-vi57.	1.2	0
40	BIOM-04. SENSITIVE DETECTION OF LEPTOMENINGEAL DISEASE USING CELL-FREE DNA FROM CEREBROSPINAL FLUID. Neuro-Oncology, 2021, 23, vi10-vi10.	1.2	0
41	CTNI-53. RADIATION TREATMENT VOLUMES BEFORE AND AFTER BRAF/MEK THERAPY IN NEWLY DIAGNOSED PAPILLARY CRANIOPHARYNGIOMAS: A CORRELATIVE ANALYSIS OF THE ALLIANCE A071601 PHASE II TRIAL. Neuro-Oncology, 2021, 23, vi72-vi72.	1.2	0
42	CTIM-01. PHASE II TRIAL OF PEMBROLIZUMAB AND LENVATINIB FOR LEPTOMENINGEAL METASTASES. Neuro-Oncology, 2021, 23, vi48-vi49.	1.2	0
43	CTIM-02. PHASE II STUDY OF IPILIMUMAB AND NIVOLUMAB IN LEPTOMENINGEAL CARCINOMATOSIS. Neuro-Oncology, 2021, 23, vi49-vi49.	1.2	0
44	PATH-40. SPORADIC NF2 WILD-TYPE MULTIPLE MENINGIOMAS HARBOR DISTINCT DRIVER MUTATIONS. Neuro-Oncology, 2021, 23, vi124-vi124.	1.2	0
45	Neurologic complications of melanoma. Cancer, 2020, 126, 477-486.	4.1	0
46	A Multi-Institutional Analysis of Factors Influencing Surgical Outcomes for Patients with Newly Diagnosed Grade I Gliomas. World Neurosurgery, 2020, 135, e754-e764.	1.3	14
47	Restoration of Temozolomide Sensitivity by PARP Inhibitors in Mismatch Repair Deficient Glioblastoma is Independent of Base Excision Repair. Clinical Cancer Research, 2020, 26, 1690-1699.	7.0	76
48	Super-Resolution Whole-Brain 3D MR Spectroscopic Imaging for Mapping D-2-Hydroxyglutarate and Tumor Metabolism in Isocitrate Dehydrogenase 1–mutated Human Gliomas. Radiology, 2020, 294, 589-597.	7.3	18
49	A Hyperactive RelA/p65-Hexokinase 2 Signaling Axis Drives Primary Central Nervous System Lymphoma. Cancer Research, 2020, 80, 5330-5343.	0.9	19
50	Distinct genomic subclasses of high-grade/progressive meningiomas: NF2-associated, NF2-exclusive, and NF2-agnostic. Acta Neuropathologica Communications, 2020, 8, 171.	5.2	58
51	An integrated RF-receive/B0-shim array coil boosts performance of whole-brain MR spectroscopic imaging at 7ÂT. Scientific Reports, 2020, 10, 15029.	3.3	12
52	MGMT promoter methylation and hypermutant recurrence in IDH mutant lower-grade glioma. Neuro-Oncology, 2020, 22, 1553-1554.	1.2	2
53	IDH-mutant gliomas harbor fewer regulatory T cells in humans and mice. OncoImmunology, 2020, 9, 1806662.	4.6	26
54	Frequent inactivating mutations of the PBAF complex gene PBRM1 in meningioma with papillary features. Acta Neuropathologica, 2020, 140, 89-93.	7.7	32

#	Article	IF	CITATIONS
55	Repeat Radiation in the Brain: Managing Patients With Locally Recurrent Glioma. Seminars in Radiation Oncology, 2020, 30, 218-222.	2.2	1
56	Single-arm, open-label phase 2 trial of pembrolizumab in patients with leptomeningeal carcinomatosis. Nature Medicine, 2020, 26, 1280-1284.	30.7	83
57	Genomic characterization of human brain metastases identifies drivers of metastatic lung adenocarcinoma. Nature Genetics, 2020, 52, 371-377.	21.4	177
58	Poly(ADP-ribose) Glycohydrolase Inhibition Sequesters NAD+ to Potentiate the Metabolic Lethality of Alkylating Chemotherapy in IDH-Mutant Tumor Cells. Cancer Discovery, 2020, 10, 1672-1689.	9.4	30
59	Poor prognosis associated with TERT gene alterations in meningioma is independent of the WHO classification: an individual patient data meta-analysis. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 378-387.	1.9	75
60	"Real world―use of a highly reliable imaging sign: "T2-FLAIR mismatch―for identification of IDH mutant astrocytomas. Neuro-Oncology, 2020, 22, 936-943.	1.2	77
61	Local Targeting of NAD+ Salvage Pathway Alters the Immune Tumor Microenvironment and Enhances Checkpoint Immunotherapy in Glioblastoma. Cancer Research, 2020, 80, 5024-5034.	0.9	28
62	Alliance A071401: Phase II trial of FAK inhibition in meningiomas with somatic NF2 mutations Journal of Clinical Oncology, 2020, 38, 2502-2502.	1.6	17
63	Intraoperative MRI for newly diagnosed supratentorial glioblastoma: a multicenter-registry comparative study to conventional surgery. Journal of Neurosurgery, 2020, , 1-10.	1.6	20
64	Advanced imaging to assess longitudinal vascular changes in brain metastases treated with immune checkpoint inhibition Journal of Clinical Oncology, 2020, 38, 2529-2529.	1.6	0
65	TAMI-30. LOCAL TARGETING OF NAD+ SALVAGE PATHWAY ALTERS THE IMMUNE TUMOR MICROENVIRONMENT AND ENHANCES CHECKPOINT IMMUNOTHERAPY IN GLIOBLASTOMA. Neuro-Oncology, 2020, 22, ii219-ii219.	1.2	0
66	IMMU-01. SINGLE CELL SEQUENCING OF MELANOMA BRAIN METASTASES UNVEILS HETEROGENEITY OF THE TUMOR MICROENVIRONMENT IN RESPONSE TO IMMUNE CHECKPOINT BLOCKADE. Neuro-Oncology, 2020, 22, ii104-ii104.	1.2	1
67	NIMG-05. ADVANCED IMAGING TO ASSESS LONGITUDINAL VASCULAR CHANGES IN BRAIN METASTASES TREATED WITH CHECKPOINT INHIBITION. Neuro-Oncology, 2020, 22, ii147-ii147.	1.2	0
68	EXTH-10. COMBINATION OF EPIGENETIC ENZYME INHIBITORS, GSK-J4 AND BELINOSTAT, REVEALS HIGH EFFICACY IN IDH1 MUTANT GLIOMAS. Neuro-Oncology, 2020, 22, ii88-ii89.	1.2	0
69	TMOD-13. RESEARCH RESOURCES FOR OLIGODENDROGLIOMA NOW AVAILABLE TO RESEARCH COMMUNITY. Neuro-Oncology, 2020, 22, ii230-ii230.	1.2	0
70	SURG-12. PREDICTORS OF SURVIVAL AND UTILITY OF INTRAOPERATIVE MRI FOR RESECTION OF GRADE II ASTROCYTOMAS AND OLIGODENDROGLIOMAS: A MULTICENTER ANALYSIS. Neuro-Oncology, 2020, 22, ii205-ii206.	1.2	0
71	TMOD-14. CREATION OF A GENETICALLY ENGINEERED MOUSE MODEL OF ANAPLASTIC ASTROCYTOMA DRIVEN BY THE IDH1-R132H ONCOGENE. Neuro-Oncology, 2020, 22, ii230-ii231.	1.2	1
72	CSIG-19. THE DEUBIQUITINASE BRCC3 LINKS ALT TELOMERES TO SUPPRESSION OF INNATE IMMUNITY IN IDH1-MUTANT GLIOMA. Neuro-Oncology, 2020, 22, ii31-ii32.	1.2	0

#	Article	IF	CITATIONS
73	BIOM-54. A RAPID GENOTYPING PANEL FOR SENSITIVE AND SPECIFIC SEGREGATION OF CNS PATHOLOGIES. Neuro-Oncology, 2020, 22, ii13-ii13.	1.2	0
74	TAMI-36. CONNEXIN 43 BLOCKADE INHIBITS PROLIFERATION IN IDH1-MUTANT GLIOMA CELLS. Neuro-Oncology, 2020, 22, ii220-ii221.	1.2	0
75	TAMI-20. POLY(ADP-RIBOSE) GLYCOHYDROLASE INHIBITION SEQUESTERS NAD+ TO POTENTIATE THE METABOLIC LETHALITY OF ALKYLATING CHEMOTHERAPY IN IDH MUTANT TUMOR CELLS. Neuro-Oncology, 2020, 22, ii217-ii217.	1.2	0
76	Isocitrate Dehydrogenase Mutations in Low-Grade Gliomas Correlate With Prolonged Overall Survival in Older Patients. Neurosurgery, 2019, 84, 519-528.	1.1	11
77	Targeted treatment of papillary craniopharyngiomas harboring BRAF V600E mutations. Cancer, 2019, 125, 2910-2914.	4.1	58
78	An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell, 2019, 178, 835-849.e21.	28.9	1,408
79	A Monoclonal Antibody Against β1 Integrin Inhibits Proliferation and Increases Survival in an Orthotopic Model of High-Grade Meningioma. Targeted Oncology, 2019, 14, 479-489.	3.6	12
80	Accelerated progression of IDH mutant glioma after first recurrence. Neuro-Oncology, 2019, 21, 669-677.	1.2	38
81	Genomic Analysis of Posterior Fossa Meningioma Demonstrates Frequent AKT1 E17K Mutations in Foramen Magnum Meningiomas. Journal of Neurological Surgery, Part B: Skull Base, 2019, 80, 562-567.	0.8	18
82	Targeting the PI3K/Akt/mTOR pathway with the pan-Akt inhibitor GDC-0068 in PIK3CA-mutant breast cancer brain metastases. Neuro-Oncology, 2019, 21, 1401-1411.	1.2	70
83	Management for Different Glioma Subtypes: Are All Low-Grade Gliomas Created Equal?. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2019, 39, 133-145.	3.8	65
84	PI3K/AKT/mTOR Pathway Alterations Promote Malignant Progression and Xenograft Formation in Oligodendroglial Tumors. Clinical Cancer Research, 2019, 25, 4375-4387.	7.0	26
85	Factors that modify the risk of intraoperative seizures triggered by electrical stimulation during supratentorial functional mapping. Clinical Neurophysiology, 2019, 130, 1058-1065.	1.5	22
86	The Dual PI3K/mTOR Pathway Inhibitor GDC-0084 Achieves Antitumor Activity in <i>PIK3CA</i> -Mutant Breast Cancer Brain Metastases. Clinical Cancer Research, 2019, 25, 3374-3383.	7.0	57
87	INNV-27. THE IMPACT OF A DEDICATED MULTIDISCIPLINARY TUMOR BOARD ON CARE FOR PATIENTS WITH BRAIN METASTASES. Neuro-Oncology, 2019, 21, vi135-vi136.	1.2	1
88	CBMT-19. THE ALTERNATIVE LENGTHENING OF TELOMERE (ALT) MECHANISM PROVIDES COLLATERAL SENSITIVITY TO LETHAL TELOMERIC FUSION INDUCED BY TRAPPING PARP INHIBITORS. Neuro-Oncology, 2019, 21, vi37-vi37.	1.2	1
89	CBMT-47. MODULATION OF NAD PATHWAYS AS A THERAPEUTIC STRATEGY FOR TARGETING IDH MUTANT GLIOMA. Neuro-Oncology, 2019, 21, vi43-vi43.	1.2	0
90	DRES-05. PREDICTORS OF SENSITIVITY TO COMBINED TEMOZOLOMIDE AND PARP INHIBITOR IN GLIOMA. Neuro-Oncology, 2019, 21, vi72-vi72.	1.2	0

#	Article	IF	CITATIONS
91	RARE-04. TARGETED TREATMENT OF PAPILLARY CRANIOPHARYNGIOMAS HARBORING BRAFV600E MUTATIONS. Neuro-Oncology, 2019, 21, vi222-vi222.	1.2	0
92	Upfront Surgical Resection of Melanoma Brain Metastases Provides a Bridge Toward Immunotherapy-Mediated Systemic Control. Oncologist, 2019, 24, 671-679.	3.7	36
93	MYD88 L265P mutation and CDKN2A loss are early mutational events in primary central nervous system diffuse large B-cell lymphomas. Blood Advances, 2019, 3, 375-383.	5.2	77
94	GENE-63. GENOMIC CHARACTERIZATION OF HUMAN BRAIN METASTASES IDENTIFIES NOVEL DRIVERS OF LUNG ADENOCARCINOMA PROGRESSION. Neuro-Oncology, 2019, 21, vi111-vi111.	1.2	1
95	NIMG-09. NONINVASIVE PERFUSION IMAGING BIOMARKER OF MALIGNANT GENOTYPE IN ISOCITRATE DEHYDROGENASE MUTANT GLIOMAS. Neuro-Oncology, 2019, 21, vi163-vi163.	1.2	0
96	CMET-33. PHASE II STUDY OF PALBOCICLIB IN BRAIN METASTASES HARBORING CDK PATHWAY ALTERATIONS. Neuro-Oncology, 2019, 21, vi58-vi59.	1.2	0
97	Cell Surface Notch Ligand DLL3 is a Therapeutic Target in Isocitrate Dehydrogenase–mutant Glioma. Clinical Cancer Research, 2019, 25, 1261-1271.	7.0	50
98	Extent of Resection Versus Molecular Classification. Neurosurgery Clinics of North America, 2019, 30, 95-101.	1.7	18
99	Genetically distinct glioma stem-like cell xenografts established from paired glioblastoma samples harvested before and after molecularly targeted therapy. Scientific Reports, 2019, 9, 139.	3.3	9
100	Radiographic assessment of contrast enhancement and T2/FLAIR mismatch sign in lower grade gliomas: correlation with molecular groups. Journal of Neuro-Oncology, 2019, 141, 327-335.	2.9	72
101	A Clinical Rule for Preoperative Prediction of BRAF Mutation Status in Craniopharyngiomas. Neurosurgery, 2019, 85, 204-210.	1.1	28
102	Wide Range of Clinical Outcomes in Patients with Gliomatosis Cerebri Growth Pattern: A Clinical, Radiographic, and Histopathologic Study. Oncologist, 2019, 24, 402-413.	3.7	3
103	The impact of a dedicated multidisciplinary tumor board on care for patients with brain metastases Journal of Clinical Oncology, 2019, 37, e13585-e13585.	1.6	1
104	Pharmacodynamics of mutant-IDH1 inhibitors in glioma patients probed by in vivo 3D MRS imaging of 2-hydroxyglutarate. Nature Communications, 2018, 9, 1474.	12.8	106
105	Origin of Gliomas. Seminars in Neurology, 2018, 38, 005-010.	1.4	52
106	Molecular pathogenesis and therapeutic implications in pediatric high-grade gliomas. , 2018, 182, 70-79.		25
107	CMET-20. EVIDENCE OF CNS RESPONSE OF PEMBROLIZUMAB FOR LEPTOMENINGEAL CARCINOMATOSIS AT A SINGLE CELL RESOLUTION. Neuro-Oncology, 2018, 20, vi57-vi58.	1.2	1
108	EPID-11. PROGRESSION OF IDH MUTANT GLIOMA AFTER FIRST RECURRENCE: DEVELOPMENT OF A FEASIBLE CLINICAL TRIAL ENDPOINT IN THE RECURRENT SETTING. Neuro-Oncology, 2018, 20, vi82-vi82.	1.2	0

#	Article	IF	CITATIONS
109	GENE-18. DIVERGENT CLONAL EVOLUTION OF MELANOMA BRAIN METASTASES DURING TREATMENT WITH IMMUNOTHERAPY. Neuro-Oncology, 2018, 20, vi106-vi107.	1.2	0
110	MNGI-37. DMD GENOMIC DELETIONS CHARACTERIZE A SUBSET OF PROGRESSIVE/HIGHER-GRADE MENINGIOMAS WITH POOR OUTCOME. Neuro-Oncology, 2018, 20, vi157-vi157.	1.2	0
111	CMET-16. THE ROLE OF SURGICAL RESECTION OF MELANOMA BRAIN METASTASES IN THE IMMUNOTHERAPY ERA. Neuro-Oncology, 2018, 20, vi56-vi57.	1.2	Ο
112	CSIG-34. PI3 KINASE PATHWAY ACTIVATION PROMOTES MALIGNANT PROGRESSION IN OLIGODENDROGLIAL TUMORS. Neuro-Oncology, 2018, 20, vi50-vi50.	1.2	0
113	Updates in prognostic markers for gliomas. Neuro-Oncology, 2018, 20, vii17-vii26.	1.2	78
114	NIMG-63. ADVANCED IMAGING FOR ASSESSING VOLUMETRIC RESPONSES IN BRAIN METASTASES TREATED WITH CHECKPOINT BLOCKADE. Neuro-Oncology, 2018, 20, vi190-vi190.	1.2	0
115	Exploiting MCL1 Dependency with Combination MEK + MCL1 Inhibitors Leads to Induction of Apoptosis and Tumor Regression in <i>KRAS</i> -Mutant Non–Small Cell Lung Cancer. Cancer Discovery, 2018, 8, 1598-1613.	9.4	71
116	TERT promoter wild-type glioblastomas show distinct clinical features and frequent PI3K pathway mutations. Acta Neuropathologica Communications, 2018, 6, 106.	5.2	18
117	PLK1 Inhibition Targets Myc-Activated Malignant Glioma Cells Irrespective of Mismatch Repair Deficiency–Mediated Acquired Resistance to Temozolomide. Molecular Cancer Therapeutics, 2018, 17, 2551-2563.	4.1	28
118	Transaminase Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in Glioma. Cell, 2018, 175, 101-116.e25.	28.9	234
119	The prognostic value of maximal surgical resection is attenuated in oligodendroglioma subgroups of adult diffuse glioma: a multicenter retrospective study. Journal of Neuro-Oncology, 2018, 140, 591-603.	2.9	38
120	ABT-888 restores sensitivity in temozolomide resistant glioma cells and xenografts. PLoS ONE, 2018, 13, e0202860.	2.5	28
121	Genotype-targeted local therapy of glioma. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8388-E8394.	7.1	40
122	Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nature Medicine, 2018, 24, 1192-1203.	30.7	359
123	TERT Alterations in Progressive Treatment-Resistant Meningiomas. Neurosurgery, 2018, 65, 66-68.	1.1	8
124	DMD genomic deletions characterize a subset of progressive/higher-grade meningiomas with poor outcome. Acta Neuropathologica, 2018, 136, 779-792.	7.7	66
125	Phase II study of pembrolizumab in leptomeningeal carcinomatosis Journal of Clinical Oncology, 2018, 36, 2007-2007.	1.6	19
126	MYD88 L265P mutation and CDKN2A loss as early mutational events in primary central nervous system lymphomas Journal of Clinical Oncology, 2018, 36, e14041-e14041.	1.6	1

#	Article	IF	CITATIONS
127	TERT rearrangements to identify a subset of aggressive meningiomas Journal of Clinical Oncology, 2018, 36, e14028-e14028.	1.6	2
128	Germline and somatic BAP1 mutations in high-grade rhabdoid meningiomas. Neuro-Oncology, 2017, 19, now235.	1.2	99
129	Defining Glioblastoma Resectability Through the Wisdom of the Crowd: A Proof-of-Principle Study. Neurosurgery, 2017, 80, 590-601.	1.1	34
130	The Alkylating Chemotherapeutic Temozolomide Induces Metabolic Stress in <i>IDH1</i> -Mutant Cancers and Potentiates NAD+ Depletion–Mediated Cytotoxicity. Cancer Research, 2017, 77, 4102-4115.	0.9	74
131	Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science, 2017, 355, .	12.6	743
132	Isocitrate dehydrogenaseâ€mutant glioma: Evolving clinical and therapeutic implications. Cancer, 2017, 123, 4535-4546.	4.1	103
133	Coordinated Splicing of Regulatory Detained Introns within Oncogenic Transcripts Creates an Exploitable Vulnerability in Malignant Glioma. Cancer Cell, 2017, 32, 411-426.e11.	16.8	161
134	Clinical and radiographic response following targeting of BCAN-NTRK1 fusion in glioneuronal tumor. Npj Precision Oncology, 2017, 1, 5.	5.4	49
135	Blockade of transforming growth factorâ€Î² signaling enhances oncolytic herpes simplex virus efficacy in patientâ€derived recurrent glioblastoma models. International Journal of Cancer, 2017, 141, 2348-2358.	5.1	33
136	The effect of IDH1 mutation on the structural connectome in malignant astrocytoma. Journal of Neuro-Oncology, 2017, 131, 565-574.	2.9	57
137	IDH1 Mutation and World Health Organization 2016 Diagnostic Criteria for Adult Diffuse Gliomas. Neurosurgery, 2017, 64, 134-138.	1.1	27
138	Reply to Freyschlag et al. Neuro-Oncology, 2017, 19, 598-599.	1.2	0
139	DRES-16. PARP INHIBITORS RESTORE TEMOZOLOMIDE SENSITIVITY IN MSH6-DEFICIENT TEMOZOLOMIDE-RESISTANT GLIOMA MODELS. Neuro-Oncology, 2017, 19, vi67-vi67.	1.2	0
140	EXTH-14. THE ALKYLATING CHEMOTHERAPEUTIC TEMOZOLOMIDE INDUCES METABOLIC STRESS AND POTENTIATES NAD+ DEPLETION-MEDIATED CELL DEATH IN IDH1 MUTANT CANCERS. Neuro-Oncology, 2017, 19, vi75-vi75.	1.2	0
141	Clinically-actionable Mutations in Posterior Skull Base Meningiomas. Journal of Neurological Surgery, Part B: Skull Base, 2017, 78, S1-S156.	0.8	1
142	Intratumoral heterogeneity and <i>TERT</i> promoter mutations in progressive/higher-grade meningiomas. Oncotarget, 2017, 8, 109228-109237.	1.8	89
143	Characterizing glioma microenvironment with ultra-high gradient diffusion MRI Journal of Clinical Oncology, 2017, 35, 2050-2050.	1.6	0
144	<i>TERT</i> promoter mutations in progressive treatment-resistant meningiomas Journal of Clinical Oncology, 2017, 35, 2047-2047.	1.6	2

#	Article	IF	CITATIONS
145	Treatment of Adult Lower-Grade Glioma in the Era of Genomic Medicine. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 35, 75-81.	3.8	17
146	Clioblastoma care in the elderly. Cancer, 2016, 122, 189-197.	4.1	53
147	Volumetric relationship between 2-hydroxyglutarate and FLAIR hyperintensity has potential implications for radiotherapy planning of mutant <i>IDH</i> glioma patients. Neuro-Oncology, 2016, 18, now100.	1.2	30
148	Diagnosis and management of craniopharyngiomas in the era of genomics and targeted therapy. Neurosurgical Focus, 2016, 41, E2.	2.3	28
149	Case 38-2016. New England Journal of Medicine, 2016, 375, 2381-2389.	27.0	3
150	Myc-Driven Glycolysis Is a Therapeutic Target in Glioblastoma. Clinical Cancer Research, 2016, 22, 4452-4465.	7.0	112
151	Spatial Proximity to Fibroblasts Impacts Molecular Features and Therapeutic Sensitivity of Breast Cancer Cells Influencing Clinical Outcomes. Cancer Research, 2016, 76, 6495-6506.	0.9	105
152	Neurocognitive function varies by IDH1 genetic mutation status in patients with malignant glioma prior to surgical resection. Neuro-Oncology, 2016, 18, 1656-1663.	1.2	110
153	Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature, 2016, 539, 309-313.	27.8	875
154	Impact of histopathological transformation and overall survival in patients with progressive anaplastic glioma. Journal of Clinical Neuroscience, 2016, 31, 99-105.	1.5	8
155	A new patient-derived orthotopic malignant meningioma model treated with oncolytic herpes simplex virus. Neuro-Oncology, 2016, 18, 1278-1287.	1.2	25
156	Dramatic Response of BRAF V600E Mutant Papillary Craniopharyngioma to Targeted Therapy. Journal of the National Cancer Institute, 2016, 108, djv310.	6.3	182
157	Treatment Response Assessment in IDH-Mutant Clioma Patients by Noninvasive 3D Functional Spectroscopic Mapping of 2-Hydroxyglutarate. Clinical Cancer Research, 2016, 22, 1632-1641.	7.0	127
158	ATPS-852-HYDROXYGLUTARATE DEPLETION IS NOT SUFFICIENT TO INHIBIT GROWTH OF SEVERAL PROGRESSIVE IDH1 MUTANT SOLID CANCER TYPES. Neuro-Oncology, 2015, 17, v37.2-v37.	1.2	2
159	MPTH-17CLINICAL AND MOLECULAR CHARACTERIZATION OF LONG-TERM GLIOBLASTOMA SURVIVORS. Neuro-Oncology, 2015, 17, v141.4-v142.	1.2	0
160	BMET-04LEPTOMENINGEAL CARCINOMATOSIS IN MELANOMA. Neuro-Oncology, 2015, 17, v45.4-v45.	1.2	0
161	Extreme Vulnerability of IDH1 Mutant Cancers to NAD+ Depletion. Cancer Cell, 2015, 28, 773-784.	16.8	327
162	IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II–III diffuse gliomas. Acta Neuropathologica, 2015, 129, 585-596.	7.7	272

#	Article	IF	CITATIONS
163	Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets. Cancer Discovery, 2015, 5, 1164-1177.	9.4	821
164	The role of biopsy in the management of patients with presumed diffuse low grade glioma. Journal of Neuro-Oncology, 2015, 125, 481-501.	2.9	30
165	The role of neuropathology in the management of patients with diffuse low grade glioma. Journal of Neuro-Oncology, 2015, 125, 531-549.	2.9	120
166	Rapid Intraoperative Molecular Characterization of Glioma. JAMA Oncology, 2015, 1, 662.	7.1	68
167	Molecular background of oligodendroglioma: 1p/19q, IDH, TERT, CIC and FUBP1. CNS Oncology, 2015, 4, 287-294.	3.0	48
168	IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. Neuro-Oncology, 2014, 16, 81-91.	1.2	370
169	Targetable Signaling Pathway Mutations Are Associated with Malignant Phenotype in <i>IDH</i> -Mutant Gliomas. Clinical Cancer Research, 2014, 20, 2898-2909.	7.0	146
170	Diagnostic discrepancies in malignant astrocytoma due to limited small pathological tumor sample can be overcome by IDH1 testing. Journal of Neuro-Oncology, 2014, 118, 405-412.	2.9	28
171	Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science, 2014, 344, 1396-1401.	12.6	3,648
172	Targetable signaling pathway mutations and progression of <i>IDH</i> -mutant glioma Journal of Clinical Oncology, 2014, 32, 2061-2061.	1.6	0
173	ONC201, a small molecule Foxo3a activator, activity against patient-derived glioblastoma tumor-initiating cells Journal of Clinical Oncology, 2014, 32, e13022-e13022.	1.6	0
174	Mesenchymal Differentiation Mediated by NF-κB Promotes Radiation Resistance in Glioblastoma. Cancer Cell, 2013, 24, 331-346.	16.8	856
175	Association of PIK3CA-activating mutations with more disseminated disease at presentation and earlier recurrence in glioblastoma Journal of Clinical Oncology, 2013, 31, 2029-2029.	1.6	7
176	IDH1 status and survival benefit from surgical resection of enhancing and nonenhancing tumor in malignant astrocytomas Journal of Clinical Oncology, 2012, 30, 2019-2019.	1.6	4
177	Case 10-2010. New England Journal of Medicine, 2010, 362, 1326-1333.	27.0	10
178	Mismatch repair defects underlying temozolomide chemoresistance in recurrent glioblastomas. FASEB Journal, 2008, 22, 172.2.	0.5	0
179	MSH6 inactivation and emergent temozolomide resistance in human glioblastomas. Clinical Neurosurgery, 2008, 55, 165-71.	0.2	22
180	A Hypermutation Phenotype and Somatic <i>MSH6</i> Mutations in Recurrent Human Malignant Gliomas after Alkylator Chemotherapy. Cancer Research, 2006, 66, 3987-3991.	0.9	383

#	Article	IF	CITATIONS
181	Deep Learning Super-resolution MR Spectroscopic Imaging of Brain Metabolism and Mutant IDH Glioma. Neuro-Oncology Advances, 0, , .	0.7	2