
Vasilis Vasiliou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8403128/publications.pdf Version: 2024-02-01

ΜΑΣΗ ΙΟ ΜΑΣΗ ΟΗ

#	Article	IF	CITATIONS
1	Oxidative stress and genotoxicity in 1,4-dioxane liver toxicity as evidenced in a mouse model of glutathione deficiency. Science of the Total Environment, 2022, 806, 150703.	8.0	15
2	SARS-CoV-2 wastewater surveillance data can predict hospitalizations and ICU admissions. Science of the Total Environment, 2022, 804, 150151.	8.0	116
3	Alcohol and Cancer: Existing Knowledge and Evidence Gaps across the Cancer Continuum. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 5-10.	2.5	13
4	Lipidomics and Redox Lipidomics Indicate Early Stage Alcoholâ€Induced Liver Damage. Hepatology Communications, 2022, 6, 513-525.	4.3	6
5	Binge Ethanol Exposure in Mice Represses Expression of Genes Involved in Osteoblast Function and Induces Expression of Genes Involved in Osteoclast Differentiation Independently of Endogenous Catalase. Toxicological Sciences, 2022, 185, 232-245.	3.1	2
6	Update of the keratin gene family: evolution, tissue-specific expression patterns, and relevance to clinical disorders. Human Genomics, 2022, 16, 1.	2.9	32
7	Prenatal Exposure to Per- and Polyfluoroalkyl Substances and Facial Features at 5 Years of Age: A Study from the Danish National Birth Cohort. Environmental Health Perspectives, 2022, 130, 17006.	6.0	5
8	Oxidative stress induces inflammation of lens cells and triggers immune surveillance of ocular tissues. Chemico-Biological Interactions, 2022, 355, 109804.	4.0	7
9	Non-targeted metabolomics and associations with per- and polyfluoroalkyl substances (PFAS) exposure in humans: A scoping review. Environment International, 2022, 162, 107159.	10.0	43
10	Glutathione-dependent redox balance characterizes the distinct metabolic properties of follicular and marginal zone B cells. Nature Communications, 2022, 13, 1789.	12.8	18
11	Liver metabolomics identifies bile acid profile changes at early stages of alcoholic liver disease in mice. Chemico-Biological Interactions, 2022, 360, 109931.	4.0	6
12	Exposure to per- and Polyfluoroalkyl Substances and Markers of Liver Injury: A Systematic Review and Meta-Analysis. Environmental Health Perspectives, 2022, 130, 46001.	6.0	128
13	Auto-deconvolution and molecular networking of gas chromatography–mass spectrometry data. Nature Biotechnology, 2021, 39, 169-173.	17.5	78
14	Overview of PAX gene family: analysis of human tissue-specific variant expression and involvement in human disease. Human Genetics, 2021, 140, 381-400.	3.8	25
15	Acetaminophen Attenuates invasion and alters the expression of extracellular matrix enzymes and vascular factors in human first trimester trophoblast cells. Placenta, 2021, 104, 146-160.	1.5	6
16	Standardized nomenclature and open science in Human Genomics. Human Genomics, 2021, 15, 13.	2.9	8
17	Alcohol consumption and risk of stomach cancer: A meta-analysis. Chemico-Biological Interactions, 2021, 336, 109365.	4.0	43
18	Identification of Dose-Dependent DNA Damage and Repair Responses From Subchronic Exposure to 1,4-Dioxane in Mice Using a Systems Analysis Approach. Toxicological Sciences, 2021, 183, 338-351.	3.1	10

#	Article	IF	CITATIONS
19	In Silico Exploration of the Potential Role of Acetaminophen and Pesticides in the Etiology of Autism Spectrum Disorder. Toxics, 2021, 9, 97.	3.7	0
20	Evolution of the liver biopsy and its future. Translational Gastroenterology and Hepatology, 2021, 6, 20-20.	3.0	18
21	COVID-19 one year into the pandemic: from genetics and genomics to therapy, vaccination, and policy. Human Genomics, 2021, 15, 27.	2.9	39
22	A Novel Technique for Redox Lipidomics Using Mass Spectrometry: Application on Vegetable Oils Used to Fry Potatoes. Journal of the American Society for Mass Spectrometry, 2021, 32, 1798-1809.	2.8	5
23	Yale School of Public Health Symposium: An overview of the challenges and opportunities associated with per- and polyfluoroalkyl substances (PFAS). Science of the Total Environment, 2021, 778, 146192.	8.0	22
24	Exposure to perfluoroalkyl substances (PFAS) and liver injury: a systematic review and meta-analysis. ISEE Conference Abstracts, 2021, 2021, .	0.0	1
25	Molecular Mechanisms of Alcohol-Induced Colorectal Carcinogenesis. Cancers, 2021, 13, 4404.	3.7	18
26	Association between per- and polyfluoroalkyl substances and liver function biomarkers and daily alcohol consumption in a sample of U.S. adults. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
27	Non-targeted metabolomics in evaluating alterations associated with per-fluoroalkyl and polyfluoroalkyl substances (PFAS) exposure in human studies: a scoping review. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
28	Update on human genetic susceptibility to COVID-19: susceptibility to virus and response. Human Genomics, 2021, 15, 57.	2.9	15
29	Impaired GSH biosynthesis disrupts eye development, lens morphogenesis and PAX6 function. Ocular Surface, 2021, 22, 190-203.	4.4	10
30	The exposome in practice: an exploratory panel study of biomarkers of air pollutant exposure in Chinese people aged 60–69 years (China BAPE Study). Environment International, 2021, 157, 106866.	10.0	21
31	Use of Untargeted Metabolomics to Explore the Air Pollution-Related Disease Continuum. Current Environmental Health Reports, 2021, 8, 7-22.	6.7	19
32	Network machine learning maps phytochemically rich "Hyperfoods―to fight COVID-19. Human Genomics, 2021, 15, 1.	2.9	28
33	AMPK activators for the prevention and treatment of neurodegenerative diseases. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 1199-1210.	3.3	5
34	Prevalence and significance of race and ethnicity subgroup analyses in Cochrane intervention reviews. Clinical Trials, 2020, 17, 231-234.	1.6	10
35	Regularized Multivariate Analysis of Variance. , 2020, , 479-494.		0
36	Molecular Pathway Analysis Indicates a Distinct Metabolic Phenotype in Women With Right-Sided Colon Cancer. Translational Oncology, 2020, 13, 42-56.	3.7	14

#	Article	IF	CITATIONS
37	Interplay between APC and ALDH1B1 in a newly developed mouse model of colorectal cancer. Chemico-Biological Interactions, 2020, 331, 109274.	4.0	7
38	Toward Comprehensive Per- and Polyfluoroalkyl Substances Annotation Using FluoroMatch Software and Intelligent High-Resolution Tandem Mass Spectrometry Acquisition. Analytical Chemistry, 2020, 92, 11186-11194.	6.5	63
39	COVID-19 vulnerability: the potential impact of genetic susceptibility and airborne transmission. Human Genomics, 2020, 14, 17.	2.9	95
40	Genomics of COVID-19: molecular mechanisms going from susceptibility to severity of the disease. Human Genomics, 2020, 14, 22.	2.9	4
41	Lipid Annotator: Towards Accurate Annotation in Non-Targeted Liquid Chromatography High-Resolution Tandem Mass Spectrometry (LC-HRMS/MS) Lipidomics Using a Rapid and User-Friendly Software. Metabolites, 2020, 10, 101.	2.9	69
42	Evaluation of confounding in epidemiologic studies assessing alcohol consumption on the risk of ischemic heart disease. BMC Medical Research Methodology, 2020, 20, 64.	3.1	25
43	Nutrient Composition and Fatty Acid and Protein Profiles of Selected Fish By-Products. Foods, 2020, 9, 190.	4.3	40
44	Antiproliferative activity of protein hydrolysates derived from fish by-products on human colon and breast cancer cells Proceedings of the Nutrition Society, 2020, 79, .	1.0	4
45	Vibration of effects in epidemiologic studies of alcohol consumption and breast cancer risk. International Journal of Epidemiology, 2020, 49, 608-618.	1.9	15
46	Glutathione Restricts Serine Metabolism to Preserve Regulatory T Cell Function. Cell Metabolism, 2020, 31, 920-936.e7.	16.2	109
47	Environmental lipidomics: understanding the response of organisms and ecosystems to a changing world. Metabolomics, 2020, 16, 56.	3.0	24
48	Zinc Levels and Birth Weight in Pregnant Women with Gestational Diabetes Mellitus: A Matched Cohort Study in China. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e2337-e2345.	3.6	10
49	Summary of the 2019 alcohol and immunology research interest group (AIRIC) meeting: Alcohol-mediated mechanisms of multiple organ injury. Alcohol, 2020, 87, 89-95.	1.7	9
50	COVID-19 update: the first 6 months of the pandemic. Human Genomics, 2020, 14, 48.	2.9	30
51	Bringing Big Data to Bear in Environmental Public Health: Challenges and Recommendations. Frontiers in Artificial Intelligence, 2020, 3, .	3.4	5
52	1,4-Dioxane as an emerging water contaminant: State of the science and evaluation of research needs. Science of the Total Environment, 2019, 690, 853-866.	8.0	85
53	Determining the endocrine disruption potential of industrial chemicals using an integrative approach: Public databases, in vitro exposure, and modeling receptor interactions. Environment International, 2019, 131, 104969.	10.0	22
54	Glutathione deficiency-elicited reprogramming of hepatic metabolism protects against alcohol-induced steatosis. Free Radical Biology and Medicine, 2019, 143, 127-139.	2.9	18

4

#	Article	IF	CITATIONS
55	Age-treatment subgroup analyses in Cochrane intervention reviews: a meta-epidemiological study. BMC Medicine, 2019, 17, 188.	5.5	8
56	Ethanol sensitizes skeletal muscle to ammonia-induced molecular perturbations. Journal of Biological Chemistry, 2019, 294, 7231-7244.	3.4	31
57	Integrated multi-omics approach reveals a role of ALDH1A1 in lipid metabolism in human colon cancer cells. Chemico-Biological Interactions, 2019, 304, 88-96.	4.0	15
58	Expression, purification and crystallization of the novel Xenopus tropicalis ALDH16B1, a homologue of human ALDH16A1. Chemico-Biological Interactions, 2019, 304, 168-172.	4.0	2
59	Hepatic metabolic adaptation in a murine model of glutathione deficiency. Chemico-Biological Interactions, 2019, 303, 1-6.	4.0	10
60	Update on the human and mouse lipocalin (LCN) gene family, including evidence the mouse Mup cluster is result of an "evolutionary bloom― Human Genomics, 2019, 13, 11.	2.9	58
61	Ethanol induces skin hyperpigmentation in mice with aldehyde dehydrogenase 2 deficiency. Chemico-Biological Interactions, 2019, 302, 61-66.	4.0	7
62	Genetics and functions of the retinoic acid pathway, with special emphasis on the eye. Human Genomics, 2019, 13, 61.	2.9	23
63	Evaluation of potential carcinogenicity of organic chemicals in synthetic turf crumb rubber. Environmental Research, 2019, 169, 163-172.	7.5	48
64	Nitrogen mustard-induced corneal injury involves the sphingomyelin-ceramide pathway. Ocular Surface, 2018, 16, 154-162.	4.4	18
65	Engineered Animal Models Designed for Investigating Ethanol Metabolism, Toxicity and Cancer. Advances in Experimental Medicine and Biology, 2018, 1032, 203-221.	1.6	4
66	Glutathione and Transsulfuration in Alcohol-Associated Tissue Injury and Carcinogenesis. Advances in Experimental Medicine and Biology, 2018, 1032, 37-53.	1.6	17
67	Prioritization of reproductive toxicants in unconventional oil and gas operations using a multi-country regulatory data-driven hazard assessment. Environment International, 2018, 117, 348-358.	10.0	9
68	Discovery of Orally Bioavailable, Quinoline-Based Aldehyde Dehydrogenase 1A1 (ALDH1A1) Inhibitors with Potent Cellular Activity. Journal of Medicinal Chemistry, 2018, 61, 4883-4903.	6.4	61
69	Beyond genomics: understanding exposotypes through metabolomics. Human Genomics, 2018, 12, 4.	2.9	73
70	Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation. ELife, 2018, 7, .	6.0	116
71	Transcriptomic analysis and plasma metabolomics in Aldh16a1 -null mice reveals a potential role of ALDH16A1 in renal function. Chemico-Biological Interactions, 2017, 276, 15-22.	4.0	17
72	Environmental Influences in the Etiology of Colorectal Cancer: the Premise of Metabolomics. Current Pharmacology Reports, 2017, 3, 114-125.	3.0	46

#	Article	IF	CITATIONS
73	Glutathione Primes T Cell Metabolism for Inflammation. Immunity, 2017, 46, 675-689.	14.3	318
74	Targeted therapy for a subset of acute myeloid leukemias that lack expression of aldehyde dehydrogenase 1A1. Haematologica, 2017, 102, 1054-1065.	3.5	16
75	Corneal haze phenotype in Aldh3a1 -null mice: InÂvivo confocal microscopy and tissue imaging mass spectrometry. Chemico-Biological Interactions, 2017, 276, 9-14.	4.0	17
76	Catalase deletion promotes prediabetic phenotype in mice. Free Radical Biology and Medicine, 2017, 103, 48-56.	2.9	50
77	Aldehyde dehydrogenase 1B1: a novel immunohistological marker for colorectal cancer. British Journal of Cancer, 2017, 117, 1537-1543.	6.4	32
78	A High-Content Assay Enables the Automated Screening and Identification of Small Molecules with Specific ALDH1A1-Inhibitory Activity. PLoS ONE, 2017, 12, e0170937.	2.5	25
79	Aldehyde Dehydrogenase 1B1 as a Modulator of Pancreatic Adenocarcinoma. Pancreas, 2016, 45, 117-122.	1.1	24
80	Letter to the editor for "Update of the human and mouse Fanconi anemia genes― Human Genomics, 2016, 10, 25.	2.9	2
81	Chronic Glutathione Depletion Confers Protection against Alcohol-induced Steatosis: Implication for Redox Activation of AMP-activated Protein Kinase Pathway. Scientific Reports, 2016, 6, 29743.	3.3	33
82	Heme oxygenase 1 protects ethanol-administered liver tissue in Aldh2 knockout mice. Alcohol, 2016, 52, 49-54.	1.7	12
83	Roles of defective ALDH2 polymorphism on liver protection and cancer development. Environmental Health and Preventive Medicine, 2016, 21, 395-402.	3.4	20
84	Quantification of Neural Ethanol and Acetaldehyde Using Headspace <scp>GC</scp> â€ <scp>MS</scp> . Alcoholism: Clinical and Experimental Research, 2016, 40, 1825-1831.	2.4	15
85	ALDH3A1 Plays a Functional Role in Maintenance of Corneal Epithelial Homeostasis. PLoS ONE, 2016, 11, e0146433.	2.5	20
86	Hepatic and Extrahepatic Malignancies in Alcoholic Liver Disease. , 2016, , 249-269.		0
87	Update of the human and mouse Fanconi anemia genes. Human Genomics, 2015, 9, 32.	2.9	122
88	Dead enzymes in the aldehyde dehydrogenase gene family: role in drug metabolism and toxicology. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11, 1839-1847.	3.3	12
89	Accuracy of Electronic Medical Record Medication Reconciliation in Emergency Department Patients. Journal of Emergency Medicine, 2015, 49, 78-84.	0.7	31
90	Discovery of NCT-501, a Potent and Selective Theophylline-Based Inhibitor of Aldehyde Dehydrogenase 1A1 (ALDH1A1). Journal of Medicinal Chemistry, 2015, 58, 5967-5978.	6.4	52

#	Article	IF	CITATIONS
91	Human ALDH1B1 Polymorphisms may Affect the Metabolism of Acetaldehyde and All-trans retinaldehyde—In Vitro Studies and Computational Modeling. Pharmaceutical Research, 2015, 32, 1648-1662.	3.5	22
92	ALDH1B1 links alcohol consumption and diabetes. Biochemical and Biophysical Research Communications, 2015, 463, 768-773.	2.1	28
93	The Effects of Alcohol and Aldehyde Dehydrogenases on Disorders of Hematopoiesis. Advances in Experimental Medicine and Biology, 2015, 815, 349-359.	1.6	39
94	Transgenic Mouse Models for Alcohol Metabolism, Toxicity, and Cancer. Advances in Experimental Medicine and Biology, 2015, 815, 375-387.	1.6	22
95	ALDH1B1 Is Crucial for Colon Tumorigenesis by Modulating Wnt/β-Catenin, Notch and PI3K/Akt Signaling Pathways. PLoS ONE, 2015, 10, e0121648.	2.5	61
96	Ethanol Reduces Lifespan, Body Weight, and Serum Alanine Aminotransferase Level of <i>Aldehyde Dehydrogenase 2</i> Knockout Mouse. Alcoholism: Clinical and Experimental Research, 2014, 38, 1883-1893.	2.4	13
97	Improved drug therapy: triangulating phenomics with genomics and metabolomics. Human Genomics, 2014, 8, 16.	2.9	26
98	Aldehyde dehydrogenase 2 deficiency ameliorates alcoholic fatty liver but worsens liver inflammation and fibrosis in mice. Hepatology, 2014, 60, 146-157.	7.3	149
99	Aldehyde dehydrogenases in cellular responses to oxidative/electrophilicstress. Free Radical Biology and Medicine, 2013, 56, 89-101.	2.9	500
100	Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics. Planta, 2013, 237, 189-210.	3.2	150
101	Retinoic acid biosynthesis catalyzed by retinal dehydrogenases relies on a rate-limiting conformational transition associated with substrate recognition. Chemico-Biological Interactions, 2013, 202, 78-84.	4.0	26
102	ALDH1B1 is a potential stem/progenitor marker for multiple pancreas progenitor pools. Developmental Biology, 2013, 374, 153-163.	2.0	34
103	ALDH16A1 is a novel non-catalytic enzyme that may be involved in the etiology of gout via protein–protein interactions with HPRT1. Chemico-Biological Interactions, 2013, 202, 22-31.	4.0	35
104	Comparative genomics, molecular evolution and computational modeling of ALDH1B1 and ALDH2. Chemico-Biological Interactions, 2013, 202, 11-21.	4.0	17
105	Ocular aldehyde dehydrogenases: Protection against ultraviolet damage and maintenance of transparency for vision. Progress in Retinal and Eye Research, 2013, 33, 28-39.	15.5	60
106	Aldehyde dehydrogenases: From eye crystallins to metabolic disease and cancer stem cells. Chemico-Biological Interactions, 2013, 202, 2-10.	4.0	113
107	Focus on Molecules: ALDH1A1: From lens and corneal crystallin to stem cell marker. Experimental Eye Research, 2012, 102, 105-106.	2.6	32
108	ALDH1A Isozymes are Markers of Human Melanoma Stem Cells and Potential Therapeutic Targets. Stem Cells, 2012, 30, 2100-2113.	3.2	241

#	Article	IF	CITATIONS
109	Characterization of aldehyde dehydrogenase isozymes in ovarian cancer tissues and sphere cultures. BMC Cancer, 2012, 12, 329.	2.6	56
110	Genome-Wide Identification and Analysis of Grape Aldehyde Dehydrogenase (ALDH) Gene Superfamily. PLoS ONE, 2012, 7, e32153.	2.5	91
111	Myofibroblast Differentiation Modulates Keratocyte Crystallin Protein Expression, Concentration, and Cellular Light Scattering. , 2012, 53, 770.		72
112	Aldehyde dehydrogenase 1B1 (ALDH1B1) is a potential biomarker for human colon cancer. Biochemical and Biophysical Research Communications, 2011, 405, 173-179.	2.1	107
113	Update on the aldehyde dehydrogenase gene (ALDH) superfamily. Human Genomics, 2011, 5, 283.	2.9	276
114	Update of the human secretoglobin (SCCB) gene superfamily and an example of 'evolutionary bloom' of androgen-binding protein genes within the mouse Scgb gene superfamily. Human Genomics, 2011, 5, 691.	2.9	75
115	Aldehyde Dehydrogenase 1B1: Molecular Cloning and Characterization of a Novel Mitochondrial Acetaldehyde-Metabolizing Enzyme. Drug Metabolism and Disposition, 2010, 38, 1679-1687.	3.3	108
116	Oral N-acetylcysteine rescues lethality of hepatocyte-specific Gclc-knockout mice, providing a model for hepatic cirrhosis. Journal of Hepatology, 2010, 53, 1085-1094.	3.7	26
117	Corneal aldehyde dehydrogenases: Multiple functions and novel nuclear localization. Brain Research Bulletin, 2010, 81, 211-218.	3.0	46
118	Aldehyde Dehydrogenase 7A1 (ALDH7A1) Is a Novel Enzyme Involved in Cellular Defense against Hyperosmotic Stress. Journal of Biological Chemistry, 2010, 285, 18452-18463.	3.4	160
119	Structural and Functional Modifications of Corneal Crystallin ALDH3A1 by UVB Light. PLoS ONE, 2010, 5, e15218.	2.5	29
120	Human aldehyde dehydrogenase genes: alternatively spliced transcriptional variants and their suggested nomenclature. Pharmacogenetics and Genomics, 2009, 19, 893-902.	1.5	55
121	The Aldehyde Dehydrogenase Gene Superfamily Resource Center. Human Genomics, 2009, 4, 136.	2.9	61
122	Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opinion on Drug Metabolism and Toxicology, 2008, 4, 697-720.	3.3	646
123	Role of CYP1B1 in Glaucoma. Annual Review of Pharmacology and Toxicology, 2008, 48, 333-358.	9.4	165
124	Mouse Models of the Cornea and Lens. , 2008, , 148-172.		2
125	Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opinion on Drug Metabolism and Toxicology, 2008, 4, 697-720.	3.3	312
126	Mechanisms Involved in the Protection of UV-induced Protein Inactivation by the Corneal Crystallin ALDH3A1. Journal of Biological Chemistry, 2007, 282, 4382-4392.	3.4	53

#	Article	IF	CITATIONS
127	Duplicated gelsolin family genes in zebrafish: a novel scinderinâ€like gene (scinla) encodes the major corneal crystallin. FASEB Journal, 2007, 21, 3318-3328.	0.5	24
128	Multiple and Additive Functions of ALDH3A1 and ALDH1A1. Journal of Biological Chemistry, 2007, 282, 25668-25676.	3.4	153
129	ALDH3A1: a corneal crystallin with diverse functions. Experimental Eye Research, 2007, 84, 3-12.	2.6	132
130	Removal of Acetaldehyde from the Body. Novartis Foundation Symposium, 2007, 285, 23-51.	1.1	35
131	Update of the NAD(P)H:quinone oxidoreductase (NQO) gene family. Human Genomics, 2006, 2, 329.	2.9	146
132	CYP2E1 and catalase influence ethanol sensitivity in the central nervous system. Pharmacogenetics and Genomics, 2006, 16, 51-58.	1.5	49
133	Enzymatic Mechanisms of Ethanol Oxidation in the Brain. Alcoholism: Clinical and Experimental Research, 2006, 30, 1500-1505.	2.4	209
134	Analysis and update of the human aldehyde dehydrogenase (ALDH) gene family. Human Genomics, 2005, 2, 138-43.	2.9	327
135	MOLECULAR CLONING, BACULOVIRUS EXPRESSION, AND TISSUE DISTRIBUTION OF THE ZEBRAFISH ALDEHYDE DEHYDROGENASE 2. Drug Metabolism and Disposition, 2005, 33, 649-656.	3.3	49
136	Ocular Metabolism and Disposition of 4-Hydroxy-2-nonenal. Cutaneous and Ocular Toxicology, 2005, 24, 165-176.	1.3	1
137	Human Aldehyde Dehydrogenase 3A1 Inhibits Proliferation and Promotes Survival of Human Corneal Epithelial Cells. Journal of Biological Chemistry, 2005, 280, 27998-28006.	3.4	86
138	Role of Human Aldehyde Dehydrogenases in Endobiotic and Xenobiotic Metabolism. Drug Metabolism Reviews, 2004, 36, 279-299.	3.6	269
139	Aldh3a1 protects human corneal epithelial cells from ultraviolet- and 4-hydroxy-2-nonenal-induced oxidative damage. Free Radical Biology and Medicine, 2003, 34, 1178-1189.	2.9	110
140	Aldehyde dehydrogenase gene superfamily: the 2002 update. Chemico-Biological Interactions, 2003, 143-144, 5-22.	4.0	283
141	Involvement of the electrophile responsive element and p53 in the activation of hepatic stellate cells as a response to electrophile menadione. Archives of Biochemistry and Biophysics, 2003, 413, 164-171.	3.0	16
142	Molecular Cloning and Baculovirus Expression of the Rabbit Corneal Aldehyde Dehydrogenase (ALDH1A1) cDNA. DNA and Cell Biology, 2003, 22, 329-338.	1.9	43
143	Human aldehyde dehydrogenase 3A1 (ALDH3A1): biochemical characterization and immunohistochemical localization in the cornea. Biochemical Journal, 2003, 376, 615-623.	3.7	143
144	Corneal and stomach expression of aldehyde dehydrogenases: from fish to mammals. Chemico-Biological Interactions, 2001, 130-132, 181-191.	4.0	56

#	Article	IF	CITATIONS
145	Aldehyde dehydrogenase gene superfamily: the 2000 update. Chemico-Biological Interactions, 2001, 130-132, 323-337.	4.0	64
146	Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism. Chemico-Biological Interactions, 2000, 129, 1-19.	4.0	335
147	Prepubertal Regulation of the Rat Dioxin-Inducible Aldehyde Dehydrogenase (ALDH3). Advances in Experimental Medicine and Biology, 1999, 463, 143-150.	1.6	4
148	The Lack of AHD4 Induction by TCDD in Corneal Cells May Involve Tissue-Specific Regulatory Proteins. Advances in Experimental Medicine and Biology, 1999, 463, 181-187.	1.6	1
149	Aldehyde Dehydrogenase Gene Superfamily. Advances in Experimental Medicine and Biology, 1999, 463, 255-263.	1.6	18
150	Extrahepatic Expression of NAD(P)H:Menadione Oxidoreductase, UDP Glucuronosyltransferase-1A6, Microsomal Aldehyde Dehydrogenase, and Hepatic Nuclear Factor-1α mRNAs inch/chand14CoS/14CoSMice. Biochemical and Biophysical Research Communications, 1997, 233, 631-636.	2.1	3
151	Mouse Microsomal Class 3 Aldehyde Dehydrogenase: AHD3 cDNA Sequence, Inducibility by Dioxin and Clofibrate, and Genetic Mapping. DNA and Cell Biology, 1996, 15, 235-245.	1.9	41
152	Ontogenesis and Expression of ALDH Activity in the Skin and the Eye of the Rat. Advances in Experimental Medicine and Biology, 1996, 414, 73-80.	1.6	14
153	Expression of ALDH3 and NMO1 in Human Corneal Epithelial and Breast Adenocarcinoma Cells. Advances in Experimental Medicine and Biology, 1996, 414, 59-68.	1.6	14
154	Mouse Dioxin-Inducible Ahd4 Gene. Advances in Experimental Medicine and Biology, 1996, , 37-46.	1.6	1
155	Enzyme Induction by L-Buthionine(S,R)-Sulfoximine in Cultured Mouse Hepatoma Cells. Chemical Research in Toxicology, 1995, 8, 431-436.	3.3	45
156	Response of [Ah] battery genes to compounds that protect against menadione toxicity. Biochemical Pharmacology, 1995, 50, 1885-1891.	4.4	23
157	Ligands of four receptors in the nuclear steroid/thyroid hormone superfamily inhibit induction of rat cytosolic aldehyde dehydrogenase-3 (ALDH3c) by 3-methylcholanthrene. Biochemical Pharmacology, 1995, 50, 2113-2117.	4.4	4
158	Interaction between the Ah receptor and proteins binding to the AP-1-like electrophile response element (EpRE) during murine phase II [Ah] battery gene expression. Biochemical Pharmacology, 1995, 50, 2057-2068.	4.4	60
159	Studies on the Induction of Rat Class 3 Aldehyde Dehydrogenase. Advances in Experimental Medicine and Biology, 1995, 372, 143-149.	1.6	5
160	Mouse Class 3 Aldehyde Dehydrogenases. Advances in Experimental Medicine and Biology, 1995, 372, 151-158.	1.6	6
161	Role of the Ah Receptor and the Dioxin-Inducible [Ah] Gene Battery in Toxicity, Cancer, and Signal Transduction. Annals of the New York Academy of Sciences, 1993, 685, 624-640.	3.8	405
162	Mouse dioxin-inducible cytosolic aldehyde dehydrogenase-3: AHD4 cDNA sequence, genetic mapping, and differences in mRNA levels. Pharmacogenetics and Genomics, 1993, 3, 281-290.	5.7	36

#	Article	IF	CITATIONS
163	Mouse Class 3 Aldehyde Dehydrogenases: Positive and Negative Regulation of Gene Expression. Advances in Experimental Medicine and Biology, 1993, 328, 131-139.	1.6	12
164	Negative regulation of the murine cytosolic aldehyde dehydrogenase-3 (Aldh-3c) gene by functional CYP1A1 and CYP1A2 proteins. Biochemical and Biophysical Research Communications, 1992, 187, 413-419.	2.1	44
165	Effect of various chemicals on the aldehyde dehydrogenase activity of the rat liver cytosol. Chemico-Biological Interactions, 1991, 79, 79-89.	4.0	21
166	Tissue Distribution of Inducible Aldehyde Dehydrogenase Activity in the Rat after Treatment with Phenobarbital or Methylcholanthrene. Basic and Clinical Pharmacology and Toxicology, 1989, 64, 39-42.	0.0	33
167	The Mechanism of Alcohol Intolerance Produced by Various Therapeutic Agents. Acta Pharmacologica Et Toxicologica, 1986, 58, 305-310.	0.0	34