
Rafael Franco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8401759/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alternatively activated microglia and macrophages in the central nervous system. Progress in Neurobiology, 2015, 131, 65-86.	5.7	561
2	Presynaptic Control of Striatal Glutamatergic Neurotransmission by Adenosine A1-A2A Receptor Heteromers. Journal of Neuroscience, 2006, 26, 2080-2087.	3.6	553
3	Coaggregation, Cointernalization, and Codesensitization of Adenosine A2A Receptors and Dopamine D2Receptors. Journal of Biological Chemistry, 2002, 277, 18091-18097.	3.4	450
4	Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8606-8611.	7.1	419
5	Adenosine A2A-Dopamine D2 Receptor-Receptor Heteromerization. Journal of Biological Chemistry, 2003, 278, 46741-46749.	3.4	401
6	Building a new conceptual framework for receptor heteromers. Nature Chemical Biology, 2009, 5, 131-134.	8.0	349
7	Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: Implications for striatal neuronal function. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11940-11945.	7.1	345
8	Molecular Mechanisms and Therapeutical Implications of Intramembrane Receptor/Receptor Interactions among Heptahelical Receptors with Examples from the Striatopallidal GABA Neurons. Pharmacological Reviews, 2003, 55, 509-550.	16.0	306
9	Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nature Methods, 2008, 5, 727-733.	19.0	269
10	Metabotropic glutamate type 5, dopamine D ₂ and adenosine A _{2a} receptors form higherâ€order oligomers in living cells. Journal of Neurochemistry, 2009, 109, 1497-1507.	3.9	249
11	Adenosine receptor–dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiology and Behavior, 2007, 92, 210-217.	2.1	239
12	CD26, adenosine deaminase, and adenosine receptors mediate costimulatory signals in the immunological synapse. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9583-9588.	7.1	229
13	Striatal Adenosine A2A and Cannabinoid CB1 Receptors Form Functional Heteromeric Complexes that Mediate the Motor Effects of Cannabinoids. Neuropsychopharmacology, 2007, 32, 2249-2259.	5.4	229
14	An Update on Adenosine A2A-Dopamine D2 Receptor Interactions: Implications for the Function of G Protein-Coupled Receptors. Current Pharmaceutical Design, 2008, 14, 1468-1474.	1.9	229
15	Cell surface adenosine deaminase: Much more than an ectoenzyme. Progress in Neurobiology, 1997, 52, 283-294.	5.7	224
16	ldentification of Dopamine D1–D3 Receptor Heteromers. Journal of Biological Chemistry, 2008, 283, 26016-26025.	3.4	216
17	Phosphodiesterases as Therapeutic Targets for Alzheimer's Disease. ACS Chemical Neuroscience, 2012, 3, 832-844.	3.5	216
18	Adenosine A _{2A} and Dopamine D ₂ Heteromeric Receptor Complexes and Their Function. Journal of Molecular Neuroscience, 2005, 26, 209-220.	2.3	207

#	Article	IF	CITATIONS
19	Cannabinoid Receptors CB1 and CB2 Form Functional Heteromers in Brain. Journal of Biological Chemistry, 2012, 287, 20851-20865.	3.4	196
20	Combining Mass Spectrometry and Pull-Down Techniques for the Study of Receptor Heteromerization. Direct Epitopeâ´'Epitope Electrostatic Interactions between Adenosine A2Aand Dopamine D2Receptors. Analytical Chemistry, 2004, 76, 5354-5363.	6.5	195
21	Human adenosine deaminase 2 induces differentiation of monocytes into macrophages and stimulates proliferation of T helper cells and macrophages. Journal of Leukocyte Biology, 2010, 88, 279-290.	3.3	192
22	Mechanisms of cannabidiol neuroprotection in hypoxic–ischemic newborn pigs: Role of 5HT1A and CB2 receptors. Neuropharmacology, 2013, 71, 282-291.	4.1	182
23	Metabotropic Glutamate 1α and Adenosine A1 Receptors Assemble into Functionally Interacting Complexes. Journal of Biological Chemistry, 2001, 276, 18345-18351.	3.4	170
24	Past, present and future of A2A adenosine receptor antagonists in the therapy of Parkinson's disease. , 2011, 132, 280-299.		170
25	Aspects of the general biology of adenosine A2A signaling. Progress in Neurobiology, 2007, 83, 263-276.	5.7	168
26	Sildenafil restores cognitive function without affecting β-amyloid burden in a mouse model of Alzheimer's disease. British Journal of Pharmacology, 2011, 164, 2029-2041.	5.4	159
27	Enzymatic and extraenzymatic role of ecto-adenosine deaminase in lymphocytes. Immunological Reviews, 1998, 161, 27-42.	6.0	158
28	Interactions between histamine H3 and dopamine D2 receptors and the implications for striatal function. Neuropharmacology, 2008, 55, 190-197.	4.1	157
29	Health Benefits of Methylxanthines in Cacao and Chocolate. Nutrients, 2013, 5, 4159-4173.	4.1	155
30	Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers. A combined neurochemical and behavioral analysis. Neuropharmacology, 2008, 54, 815-823.	4.1	154
31	Direct involvement of Ïf-1 receptors in the dopamine D ₁ receptor-mediated effects of cocaine. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18676-18681.	7.1	153
32	CB2 receptor and amyloid pathology in frontal cortex of Alzheimer's disease patients. Neurobiology of Aging, 2013, 34, 805-808.	3.1	152
33	Adenosine deaminase affects ligandâ€nduced signalling by interacting with cell surface adenosine receptors. FEBS Letters, 1996, 380, 219-223.	2.8	150
34	A ₁ Adenosine Receptors Accumulate in Neurodegenerative Structures in Alzheimer's Disease and Mediate Both Amyloid Precursor Protein Processing and Tau Phosphorylation and Translocation. Brain Pathology, 2003, 13, 440-451.	4.1	150
35	Role of glutamate on T-cell mediated immunity. Journal of Neuroimmunology, 2007, 185, 9-19.	2.3	148
36	Evidence for Adenosine/Dopamine Receptor Interactions Indications for Heteromerization. Neuropsychopharmacology, 2000, 23, S50-S59.	5.4	147

#	Article	IF	CITATIONS
37	Tadalafil crosses the blood–brain barrier and reverses cognitive dysfunction in a mouse model of AD. Neuropharmacology, 2013, 64, 114-123.	4.1	143
38	Adenosine A2A receptor stimulation potentiates nitric oxide release by activated microglia. Journal of Neurochemistry, 2005, 95, 919-929.	3.9	140
39	Homodimerization of adenosine A2A receptors: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. Journal of Neurochemistry, 2003, 88, 726-734.	3.9	139
40	Marked changes in signal transduction upon heteromerization of dopamine D ₁ and histamine H ₃ receptors. British Journal of Pharmacology, 2009, 157, 64-75.	5.4	138
41	Successful therapies for Alzheimerââ,¬â,,¢s disease: why so many in animal models and none in humans?. Frontiers in Pharmacology, 2014, 5, 146.	3.5	138
42	Functional relevance of neurotransmitter receptor heteromers in the central nervous system. Trends in Neurosciences, 2007, 30, 440-446.	8.6	136
43	Adenosine A1-A2A receptor heteromers: new targets for caffeine in the brain. Frontiers in Bioscience - Landmark, 2008, 13, 2391.	3.0	135
44	Binding and Signaling Studies Disclose a Potential Allosteric Site for Cannabidiol in Cannabinoid CB2 Receptors. Frontiers in Pharmacology, 2017, 8, 744.	3.5	134
45	Adenosine A2A-dopamine D2 receptor–receptor heteromers. Targets for neuro-psychiatric disorders. Parkinsonism and Related Disorders, 2004, 10, 265-271.	2.2	132
46	Circadian-Related Heteromerization of Adrenergic and Dopamine D4 Receptors Modulates Melatonin Synthesis and Release in the Pineal Gland. PLoS Biology, 2012, 10, e1001347.	5.6	132
47	Glutamate Released by Dendritic Cells as a Novel Modulator of T Cell Activation. Journal of Immunology, 2006, 177, 6695-6704.	0.8	130
48	Adenosine A _{2A} Receptor-Antagonist/Dopamine D ₂ Receptor-Agonist Bivalent Ligands as Pharmacological Tools to Detect A _{2A} -D ₂ Receptor Heteromers. Journal of Medicinal Chemistry, 2009, 52, 5590-5602.	6.4	129
49	A1R–A2AR heteromers coupled to Gs and Gi/O proteins modulate GABA transport into astrocytes. Purinergic Signalling, 2013, 9, 433-449.	2.2	123
50	Immunological identification of A1adenosine receptors in brain cortex. Journal of Neuroscience Research, 1995, 42, 818-828.	2.9	121
51	Expression of the mRNA coding the cannabinoid receptor 2 in the pallidal complex of <i>Macaca fascicularis</i> . Journal of Psychopharmacology, 2011, 25, 97-104.	4.0	120
52	Adenosine A2A Receptor and Dopamine D3 Receptor Interactions: Evidence of Functional A2A/D3 Heteromeric Complexes. Molecular Pharmacology, 2005, 67, 400-407.	2.3	119
53	Working memory deficits in transgenic rats overexpressing human adenosine A2A receptors in the brain. Neurobiology of Learning and Memory, 2007, 87, 42-56.	1.9	115
54	Striatal Pre- and Postsynaptic Profile of Adenosine A2A Receptor Antagonists. PLoS ONE, 2011, 6, e16088.	2.5	115

#	Article	IF	CITATIONS
55	Group I Metabotropic Glutamate Receptors Mediate a Dual Role of Glutamate in T Cell Activation. Journal of Biological Chemistry, 2004, 279, 33352-33358.	3.4	113
56	Intramembrane receptor–receptor interactions: a novel principle in molecular medicine. Journal of Neural Transmission, 2007, 114, 49-75.	2.8	113
57	Adenosine–cannabinoid receptor interactions. Implications for striatal function. British Journal of Pharmacology, 2010, 160, 443-453.	5.4	113
58	The emergence of neurotransmitters as immune modulators. Trends in Immunology, 2007, 28, 400-407.	6.8	112
59	Neurotransmitter receptor heteromers and their integrative role in â€~local modules': The striatal spine module. Brain Research Reviews, 2007, 55, 55-67.	9.0	112
60	Cocaine Inhibits Dopamine D2 Receptor Signaling via Sigma-1-D2 Receptor Heteromers. PLoS ONE, 2013, 8, e61245.	2.5	112
61	Dopamine D1-histamine H3 Receptor Heteromers Provide a Selective Link to MAPK Signaling in GABAergic Neurons of the Direct Striatal Pathway. Journal of Biological Chemistry, 2011, 286, 5846-5854.	3.4	109
62	Immunodensity and mRNA expression of A2A adenosine, D2 dopamine, and CB1 cannabinoid receptors in postmortem frontal cortex of subjects with schizophrenia: effect of antipsychotic treatment. Psychopharmacology, 2009, 206, 313-324.	3.1	108
63	Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders. Frontiers in Neuroscience, 2016, 10, 406.	2.8	108
64	Adenosine receptor-mediated modulation of dopamine release in the nucleus accumbens depends on glutamate neurotransmission and N-methyl-d-aspartate receptor stimulation. Journal of Neurochemistry, 2004, 91, 873-880.	3.9	107
65	Detection of Heteromers Formed by Cannabinoid CB ₁ , Dopamine D ₂ , and Adenosine A _{2A} G-Protein-Coupled Receptors by Combining Bimolecular Fluorescence Complementation and Bioluminescence Energy Transfer. Scientific World Journal, The, 2008, 8, 1088-1097.	2.1	105
66	Heteromerization of <scp>GPR</scp> 55 and cannabinoid <scp>CB</scp> ₂ receptors modulates signalling. British Journal of Pharmacology, 2014, 171, 5387-5406.	5.4	105
67	Interactions between Intracellular Domains as Key Determinants of the Quaternary Structure and Function of Receptor Heteromers. Journal of Biological Chemistry, 2010, 285, 27346-27359.	3.4	102
68	The Adenosine A2A Receptor Interacts with the Actin-binding Protein α-Actinin. Journal of Biological Chemistry, 2003, 278, 37545-37552.	3.4	100
69	The relevance of theobromine for the beneficial effects of cocoa consumption. Frontiers in Pharmacology, 2015, 6, 30.	3.5	100
70	Receptor-heteromer mediated regulation of endocannabinoid signaling in activated microglia. Role of CB1 and CB2 receptors and relevance for Alzheimer's disease and levodopa-induced dyskinesia. Brain, Behavior, and Immunity, 2018, 67, 139-151.	4.1	99
71	Basic Pharmacological and Structural Evidence for Class A G-Protein-Coupled Receptor Heteromerization. Frontiers in Pharmacology, 2016, 7, 76.	3.5	98
72	Quaternary structure of a G-protein-coupled receptor heterotetramer in complex with Gi and Gs. BMC Biology, 2016, 14, 26.	3.8	97

#	Article	IF	CITATIONS
73	Adenosine Deaminase and A1 Adenosine Receptors Internalize Together following Agonist-induced Receptor Desensitization. Journal of Biological Chemistry, 1998, 273, 17610-17617.	3.4	93
74	Involvement of adenosine A2A and dopamine receptors in the locomotor and sensitizing effects of cocaine. Brain Research, 2006, 1077, 67-80.	2.2	90
75	Comodulation of CXCR4 and CD26 in Human Lymphocytes. Journal of Biological Chemistry, 2001, 276, 19532-19539.	3.4	89
76	Adenosine Receptor Heteromers and their Integrative Role in Striatal Function. Scientific World Journal, The, 2007, 7, 74-85.	2.1	89
77	Detection of higherâ€order G proteinâ€coupled receptor oligomers by a combined BRET–BiFC technique. FEBS Letters, 2008, 582, 2979-2984.	2.8	89
78	Heterodimeric adenosine receptors: a device to regulate neurotransmitter release. Cellular and Molecular Life Sciences, 2006, 63, 2427-2431.	5.4	88
79	Cannabigerol Action at Cannabinoid CB1 and CB2 Receptors and at CB1–CB2 Heteroreceptor Complexes. Frontiers in Pharmacology, 2018, 9, 632.	3.5	88
80	Mitochondrial angiotensin receptors in dopaminergic neurons. Role in cell protection and aging-related vulnerability to neurodegeneration. Cell Death and Disease, 2016, 7, e2427-e2427.	6.3	87
81	A First-in-Class Small-Molecule that Acts as a Dual Inhibitor of HDAC and PDE5 and that Rescues Hippocampal Synaptic Impairment in Alzheimer's Disease Mice. Neuropsychopharmacology, 2017, 42, 524-539.	5.4	86
82	Involvement of Caveolin in Ligand-Induced Recruitment and Internalization of A ₁ Adenosine Receptor and Adenosine Deaminase in an Epithelial Cell Line. Molecular Pharmacology, 2001, 59, 1314-1323.	2.3	84
83	GPCR homomers and heteromers: A better choice as targets for drug development than GPCR monomers?. , 2009, 124, 248-257.		84
84	Decreased levels of guanosine 3′, 5′â€monophosphate (c <scp>GMP</scp>) in cerebrospinal fluid (<scp>CSF</scp>) are associated with cognitive decline and amyloid pathology in <scp>A</scp> lzheimer's disease. Neuropathology and Applied Neurobiology, 2015, 41, 471-482.	3.2	84
85	Basic Concepts in G-Protein-Coupled Receptor Homo- and Heterodimerization. Scientific World Journal, The, 2007, 7, 48-57.	2.1	83
86	l-DOPA-treatment in primates disrupts the expression of A2A adenosine–CB1 cannabinoid–D2 dopamine receptor heteromers in the caudate nucleus. Neuropharmacology, 2014, 79, 90-100.	4.1	83
87	Looking for the role of cannabinoid receptor heteromers in striatal function. Neuropharmacology, 2009, 56, 226-234.	4.1	82
88	Dopamine D4 receptor, but not the ADHD-associated D4.7 variant, forms functional heteromers with the dopamine D2S receptor in the brain. Molecular Psychiatry, 2012, 17, 650-662.	7.9	82
89	Detection of cannabinoid receptors CB1 and CB2 within basal ganglia output neurons in macaques: changes following experimental parkinsonism. Brain Structure and Function, 2015, 220, 2721-2738.	2.3	82
90	Ligand-Induced Phosphorylation, Clustering, and Desensitization of A ₁ Adenosine Receptors. Molecular Pharmacology, 1997, 52, 788-797.	2.3	80

#	Article	IF	CITATIONS
91	Use of implicit methods from general sensitivity theory to develop a systematic approach to metabolic control. II. complex systems. Mathematical Biosciences, 1989, 94, 289-309.	1.9	79
92	Up-regulation of the Kv3.4 potassium channel subunit in early stages of Alzheimer's disease. Journal of Neurochemistry, 2004, 91, 547-557.	3.9	78
93	Dopamine in Health and Disease: Much More Than a Neurotransmitter. Biomedicines, 2021, 9, 109.	3.2	78
94	l-DOPA disrupts adenosine A2A–cannabinoid CB1–dopamine D2 receptor heteromer cross-talk in the striatum of hemiparkinsonian rats: Biochemical and behavioral studies. Experimental Neurology, 2014, 253, 180-191.	4.1	77
95	Adenosine A2A receptor ligand recognition and signaling is blocked by A2B receptors. Oncotarget, 2018, 9, 13593-13611.	1.8	77
96	Adenosine/A2B Receptor Signaling Ameliorates the Effects of Aging and Counteracts Obesity. Cell Metabolism, 2020, 32, 56-70.e7.	16.2	77
97	The Two-State Dimer Receptor Model: A General Model for Receptor Dimers. Molecular Pharmacology, 2006, 69, 1905-1912.	2.3	76
98	Use of implicit methods from general sensitivity theory to develop a systematic approach to metabolic control. I. unbranched pathways. Mathematical Biosciences, 1989, 94, 271-288.	1.9	74
99	Regulation of heptaspanning-membrane-receptor function by dimerization and clustering. Trends in Biochemical Sciences, 2003, 28, 238-243.	7.5	74
100	Role of Electrostatic Interaction in Receptor–Receptor Heteromerization. Journal of Molecular Neuroscience, 2005, 26, 125-132.	2.3	74
101	Cannabidiol skews biased agonism at cannabinoid CB1 and CB2 receptors with smaller effect in CB1-CB2 heteroreceptor complexes. Biochemical Pharmacology, 2018, 157, 148-158.	4.4	74
102	CB1 and GPR55 receptors are co-expressed and form heteromers in rat and monkey striatum. Experimental Neurology, 2014, 261, 44-52.	4.1	73
103	Striatal plasticity at the network level. Focus on adenosine A2A and D2 interactions in models of Parkinson's Disease. Parkinsonism and Related Disorders, 2004, 10, 273-280.	2.2	72
104	The monoacylglycerol lipase inhibitor JZL184 is neuroprotective and alters glial cell phenotype in the chronic MPTP mouse model. Neurobiology of Aging, 2014, 35, 2603-2616.	3.1	71
105	Old and new ways to calculate the affinity of agonists and antagonists interacting with G-protein-coupled monomeric and dimeric receptors: The receptor–dimer cooperativity index. , 2007, 116, 343-354.		70
106	Cross-communication between Gi and Gs in a G-protein-coupled receptor heterotetramer guided by a receptor C-terminal domain. BMC Biology, 2018, 16, 24.	3.8	70
107	Potentiation of ATP calcium responses by A2B receptor stimulation and other signals coupled to Gs proteins in type-1 cerebellar astrocytes. Glia, 1999, 26, 119-128.	4.9	69
108	Receptor–receptor interactions involving adenosine A1 or dopamine D1 receptors and accessory proteins. Journal of Neural Transmission, 2007, 114, 93-104.	2.8	69

#	Article	IF	CITATIONS
109	Purinergic signaling in Parkinson's disease. Relevance for treatment. Neuropharmacology, 2016, 104, 161-168.	4.1	68
110	Abnormal calcium handling in atrial fibrillation is linked to up-regulation of adenosine A2A receptors. European Heart Journal, 2011, 32, 721-729.	2.2	67
111	GPR55: A therapeutic target for Parkinson's disease?. Neuropharmacology, 2017, 125, 319-332.	4.1	67
112	Heterogeneous localization of some purine enzymes in subcellular fractions of rat brain and cerebellum. Neurochemical Research, 1986, 11, 423-435.	3.3	65
113	Ligand-induced caveolae-mediated internalization of A1 adenosine receptors: morphological evidence of endosomal sorting and receptor recycling. Experimental Cell Research, 2003, 285, 72-90.	2.6	65
114	Interactions between Calmodulin, Adenosine A2A, and Dopamine D2 Receptors. Journal of Biological Chemistry, 2009, 284, 28058-28068.	3.4	65
115	Health benefits of methylxanthines in neurodegenerative diseases. Molecular Nutrition and Food Research, 2017, 61, 1600670.	3.3	65
116	Solubilization of A1adenosine receptor from pig brain: Characterization and evidence of the role of the cole of the cole of the cole of high- and low-affinity states. Journal of Neuroscience Research, 1990, 26, 461-473.	2.9	64
117	Heteromeric Nicotinic Acetylcholine–Dopamine Autoreceptor Complexes Modulate Striatal Dopamine Release. Neuropsychopharmacology, 2007, 32, 35-42.	5.4	63
118	Real-world clinical experience with long-term miglustat maintenance therapy in type 1 Gaucher disease: the ZAGAL project. Haematologica, 2009, 94, 1771-1775.	3.5	63
119	The Heat Shock Cognate Protein hsc73 Assembles with A 1 Adenosine Receptors To Form Functional Modules in the Cell Membrane. Molecular and Cellular Biology, 2000, 20, 5164-5174.	2.3	62
120	Adenosine A2A receptors are expressed in human atrial myocytes and modulate spontaneous sarcoplasmic reticulum calcium release. Cardiovascular Research, 2006, 72, 292-302.	3.8	62
121	Dimer-based model for heptaspanning membrane receptors. Trends in Biochemical Sciences, 2005, 30, 360-366.	7.5	60
122	Gâ€protein oupled receptor heteromers: function and ligand pharmacology. British Journal of Pharmacology, 2008, 153, S90-8.	5.4	60
123	Oligomerization of G-protein-coupled receptors: A reality. Current Opinion in Pharmacology, 2010, 10, 1-5.	3.5	60
124	Structures for G-Protein-Coupled Receptor Tetramers in Complex with G Proteins. Trends in Biochemical Sciences, 2015, 40, 548-551.	7.5	60
125	Neurologic Improvement in a Type 3 Gaucher Disease Patient Treated with Imiglucerase/Miglustat Combination. Epilepsia, 2007, 48, 1406-1408.	5.1	59
126	Adenosine deaminase potentiates the generation of effector, memory, and regulatory CD4+ T cells. Journal of Leukocyte Biology, 2010, 89, 127-136.	3.3	59

#	Article	IF	CITATIONS
127	Dopamine D2 and angiotensin II type 1 receptors form functional heteromers in rat striatum. Biochemical Pharmacology, 2015, 96, 131-142.	4.4	59
128	Phenylbutyrate is a Multifaceted Drug that Exerts Neuroprotective Effects and Reverses the Alzheimer´s Disease-like Phenotype of a Commonly Used Mouse Model. Current Pharmaceutical Design, 2013, 19, 5076-5084.	1.9	59
129	Adenosine Deaminase Interacts with A ₁ Adenosine Receptors in Pig Brain Cortical Membranes. Journal of Neurochemistry, 1996, 66, 1675-1682.	3.9	58
130	Neurochemical evidence supporting dopamine D1–D2 receptor heteromers in the striatum of the long-tailed macaque: changes following dopaminergic manipulation. Brain Structure and Function, 2017, 222, 1767-1784.	2.3	58
131	Calcium mobilization in Jurkat cells via A2b adenosine receptors. British Journal of Pharmacology, 1997, 122, 1075-1082.	5.4	57
132	Pharmacological data of cannabidiol- and cannabigerol-type phytocannabinoids acting on cannabinoid CB1, CB2 and CB1/CB2 heteromer receptors. Pharmacological Research, 2020, 159, 104940.	7.1	57
133	Molecular mechanisms involved in the adenosine A1 and A2A receptor-induced neuronal differentiation in neuroblastoma cells and striatal primary cultures. Journal of Neurochemistry, 2005, 92, 337-348.	3.9	56
134	Interactions among adenosine deaminase, adenosine A1 receptors and dopamine D1 receptors in stably cotransfected fibroblast cells and neurons. Neuroscience, 2002, 113, 709-719.	2.3	55
135	Chronic Mild Stress Accelerates the Onset and Progression of the Alzheimer's Disease Phenotype in Tg2576 Mice. Journal of Alzheimer's Disease, 2012, 28, 567-578.	2.6	54
136	Allosteric Modulation of Dopamine D2Receptors by Homocysteine. Journal of Proteome Research, 2006, 5, 3077-3083.	3.7	53
137	Enzymatic and Extraenzymatic Role of Adenosine Deaminase 1 in T-Cell-Dendritic Cell Contacts and in Alterations of the Immune Function. Critical Reviews in Immunology, 2007, 27, 495-509.	0.5	53
138	Angiotensin type 2 receptors: Role in aging and neuroinflammation in the substantia nigra. Brain, Behavior, and Immunity, 2020, 87, 256-271.	4.1	53
139	Increase in A2A receptors in the nucleus accumbens after extended cocaine self-administration and its disappearance after cocaine withdrawal. Brain Research, 2007, 1143, 208-220.	2.2	52
140	Concomitant histone deacetylase and phosphodiesterase 5 inhibition synergistically prevents the disruption in synaptic plasticity and it reverses cognitive impairment in a mouse model of Alzheimer's disease. Clinical Epigenetics, 2015, 7, 108.	4.1	52
141	ATP-Sensitive K + Channels Regulate the Concentrative Adenosine Transporter CNT2 following Activation by A 1 Adenosine Receptors. Molecular and Cellular Biology, 2004, 24, 2710-2719.	2.3	51
142	Fatty acid amide hydrolase inhibition for the symptomatic relief of Parkinson's disease. Brain, Behavior, and Immunity, 2016, 57, 94-105.	4.1	51
143	Reinforcing and neurochemical effects of cannabinoid CB1 receptor agonists, but not cocaine, are altered by an adenosine A2A receptor antagonist. Addiction Biology, 2011, 16, 405-415.	2.6	50
144	Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia. Molecular Neurobiology, 2015, 52, 1408-1420.	4.0	49

#	Article	IF	CITATIONS
145	Pharmacologic antagonism of dopamine receptor D3 attenuates neurodegeneration and motor impairment in a mouse model of Parkinson's disease. Neuropharmacology, 2017, 113, 110-123.	4.1	49
146	Antioxidants versus Food Antioxidant Additives and Food Preservatives. Antioxidants, 2019, 8, 542.	5.1	48
147	Hormetic and Mitochondria-Related Mechanisms of Antioxidant Action of Phytochemicals. Antioxidants, 2019, 8, 373.	5.1	48
148	Antioxidant Defense Mechanisms in Erythrocytes and in the Central Nervous System. Antioxidants, 2019, 8, 46.	5.1	48
149	Molecular and functional interaction between GPR18 and cannabinoid CB2 G-protein-coupled receptors. Relevance in neurodegenerative diseases. Biochemical Pharmacology, 2018, 157, 169-179.	4.4	47
150	G Protein-Coupled Receptor Heteromers as New Targets for Drug Development. Progress in Molecular Biology and Translational Science, 2010, 91, 41-52.	1.7	46
151	GPR40 activation leads to CREB and ERK phosphorylation in primary cultures of neurons from the mouse CNS and in human neuroblastoma cells. Hippocampus, 2014, 24, 733-739.	1.9	46
152	Adenosine A2A Receptor Antagonists in Neurodegenerative Diseases: Huge Potential and Huge Challenges. Frontiers in Psychiatry, 2018, 9, 68.	2.6	46
153	ROLE OF ADENOSINE IN THE CONTROL OF HOMOSYNAPTIC PLASTICITY IN STRIATAL EXCITATORY SYNAPSES. Journal of Integrative Neuroscience, 2005, 04, 445-464.	1.7	45
154	Human adenosine deaminase as an allosteric modulator of human A ₁ adenosine receptor: abolishment of negative cooperativity for [³ H](R)â€pia binding to the caudate nucleus. Journal of Neurochemistry, 2008, 107, 161-170.	3.9	45
155	CCR5/CD4/CXCR4 oligomerization prevents HIV-1 gp120 _{IIIB} binding to the cell surface. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1960-9.	7.1	45
156	The potential of methylxanthine-based therapies in pediatric respiratory tract diseases. Respiratory Medicine, 2016, 112, 1-9.	2.9	45
157	Experimental data using candesartan and captopril indicate no double-edged sword effect in COVID-19. Clinical Science, 2021, 135, 465-481.	4.3	45
158	Studies on homocysteine plasma levels in Alzheimer?s patients. Relevance for neurodegeneration. Journal of Neural Transmission, 2005, 112, 163-169.	2.8	44
159	Dynamic Regulation of CXCR1 and CXCR2 Homo- and Heterodimers. Journal of Immunology, 2009, 183, 7337-7346.	0.8	44
160	Adenosine A2A Receptors and A2A Receptor Heteromers as Key Players in Striatal Function. Frontiers in Neuroanatomy, 2011, 5, 36.	1.7	44
161	Heteroreceptor Complexes Formed by Dopamine D1, Histamine H3, and N-Methyl-D-Aspartate Glutamate Receptors as Targets to Prevent Neuronal Death in Alzheimer's Disease. Molecular Neurobiology, 2017, 54, 4537-4550.	4.0	44
162	Alterations in Gene and Protein Expression of Cannabinoid CB2 and GPR55 Receptors in the Dorsolateral Prefrontal Cortex of Suicide Victims. Neurotherapeutics, 2018, 15, 796-806.	4.4	44

#	Article	IF	CITATIONS
163	Understanding the Role of Adenosine A2AR Heteroreceptor Complexes in Neurodegeneration and Neuroinflammation. Frontiers in Neuroscience, 2018, 12, 43.	2.8	44
164	Adenosine A1 Receptor in Cultured Neurons from Rat Cerebral Cortex. Journal of Neurochemistry, 2002, 75, 656-664.	3.9	43
165	New Methods to Evaluate Colocalization of Fluorophores in Immunocytochemical Preparations as Exemplified by a Study on A2A and D2 Receptors in Chinese Hamster Ovary Cells. Journal of Histochemistry and Cytochemistry, 2005, 53, 941-953.	2.5	43
166	Brain Dopamine Transmission in Health and Parkinson's Disease: Modulation of Synaptic Transmission and Plasticity Through Volume Transmission and Dopamine Heteroreceptors. Frontiers in Synaptic Neuroscience, 2018, 10, 20.	2.5	43
167	MECHANISMS OF CD26/DIPEPTIDYL PEPTIDASE IV CYTOKINE-DEPENDENT REGULATION ON HUMAN ACTIVATED LYMPHOCYTES. Cytokine, 2000, 12, 1136-1141.	3.2	42
168	Trafficking of Adenosine A _{2A} and Dopamine D ₂ Receptors. Journal of Molecular Neuroscience, 2005, 25, 191-200.	2.3	42
169	How Calmodulin Interacts with the Adenosine A _{2A} and the Dopamine D ₂ Receptors. Journal of Proteome Research, 2008, 7, 3428-3434.	3.7	42
170	Potential of GPCRs to modulate MAPK and mTOR pathways in Alzheimer's disease. Progress in Neurobiology, 2017, 149-150, 21-38.	5.7	42
171	A model of the pentose phosphate pathway in rat liver cells. Molecular and Cellular Biochemistry, 1995, 142, 9-17.	3.1	41
172	CD26 and Adenosine Deaminase Interaction: Its Role in the Fusion Between Horse Membrane Vesicles and Spermatozoa1. Biology of Reproduction, 1999, 61, 802-808.	2.7	41
173	Plasma membrane diffusion of g protein-coupled receptor oligomers. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 2262-2268.	4.1	41
174	Pharmacokinetic investigation of sildenafil using positron emission tomography and determination of its effect on cerebrospinal fluid <scp>cGMP</scp> levels. Journal of Neurochemistry, 2016, 136, 403-415.	3.9	41
175	Increased α-Defensins 1-3 Production by Dendritic Cells in HIV-Infected Individuals Is Associated with Slower Disease Progression. PLoS ONE, 2010, 5, e9436.	2.5	40
176	A new strategy for the evaluation of force parameters from quantum mechanical computations. Journal of Computational Chemistry, 1991, 12, 664-674.	3.3	39
177	Novel Ergopeptides as Dual Ligands for Adenosine and Dopamine Receptors. Journal of Medicinal Chemistry, 2007, 50, 3062-3069.	6.4	39
178	Useful pharmacological parameters for G-protein-coupled receptor homodimers obtained from competition experiments. Agonist–antagonist binding modulation. Biochemical Pharmacology, 2009, 78, 1456-1463.	4.4	39
179	The Cluster-Arranged Cooperative Model: A Model That Accounts for the Kinetics of Binding to A1Adenosine Receptorsâ€. Biochemistry, 1996, 35, 3007-3015.	2.5	38
180	Dopamine receptor heteromeric complexes and their emerging functions. Progress in Brain Research, 2014, 211, 183-200.	1.4	38

#	Article	lF	CITATIONS
181	Resveratrol and Related Stilbenoids, Nutraceutical/Dietary Complements with Healthâ€Promoting Actions: Industrial Production, Safety, and the Search for Mode of Action. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 808-826.	11.7	38
182	The T cell receptor associated CD3-ε protein is phosphorylated upon T cell activation in the two tyrosine residues of a conserved signal transduction motif. European Journal of Immunology, 1993, 23, 1636-1642.	2.9	37
183	Actin-binding Protein α-Actinin-1 Interacts with the Metabotropic Glutamate Receptor Type 5b and Modulates the Cell Surface Expression and Function of the Receptor. Journal of Biological Chemistry, 2007, 282, 12143-12153.	3.4	37
184	The neuronal Ca2+-binding protein 2 (NECAB2) interacts with the adenosine A2A receptor and modulates the cell surface expression and function of the receptor. Molecular and Cellular Neurosciences, 2007, 36, 1-12.	2.2	37
185	Light resonance energy transferâ€based methods in the study of G proteinâ€coupled receptor oligomerization. BioEssays, 2008, 30, 82-89.	2.5	37
186	Chronic mild stress in mice promotes cognitive impairment and CDK5-dependent tau hyperphosphorylation. Behavioural Brain Research, 2011, 220, 338-343.	2.2	37
187	A2A adenosine receptor ligand binding and signalling is allosterically modulated by adenosine deaminase. Biochemical Journal, 2011, 435, 701-709.	3.7	37
188	Short-term effect of miglustat in every day clinical use in treatment-naÃ⁻ve or previously treated patients with type 1 Gaucher's disease. Haematologica, 2006, 91, 703-6.	3.5	37
189	Aβ peptides as one of the crucial volume transmission signals in the trophic units and their interactions with homocysteine. Physiological implications and relevance for Alzheimer's disease. Journal of Neural Transmission, 2007, 114, 21-31.	2.8	36
190	Disruption of a dopamine receptor complex amplifies the actions of cocaine. European Neuropsychopharmacology, 2016, 26, 1366-1377.	0.7	36
191	Potentiation of cannabinoid signaling in microglia by adenosine A 2A receptor antagonists. Glia, 2019, 67, 2410-2423.	4.9	36
192	Adenosine A2A Receptor Antagonists Affects NMDA Glutamate Receptor Function. Potential to Address Neurodegeneration in Alzheimer's Disease. Cells, 2020, 9, 1075.	4.1	36
193	The catalytic site structural gate of adenosine deaminase allosterically modulates ligand binding to adenosine receptors. FASEB Journal, 2013, 27, 1048-1061.	0.5	35
194	Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminase‒CD26 interaction. Biochemical Journal, 2002, 361, 203.	3.7	34
195	Chromenopyrazole, a Versatile Cannabinoid Scaffold with in Vivo Activity in a Model of Multiple Sclerosis. Journal of Medicinal Chemistry, 2016, 59, 6753-6771.	6.4	34
196	The Adenosine Receptors Present on the Plasma Membrane of Chromaffin Cells Are of the A2bSubtype. Journal of Neurochemistry, 1992, 59, 425-431.	3.9	32
197	The HIV-1 gp120 inhibits the binding of adenosine deaminase to CD26 by a mechanism modulated by CD4 and CXCR4 expression. FEBS Letters, 2000, 477, 123-128.	2.8	32
198	A Role for Interleukin-12 in the Regulation of T Cell Plasma Membrane Compartmentation. Journal of Biological Chemistry, 2003, 278, 24849-24857.	3.4	32

#	Article	IF	CITATIONS
199	Neuroprotective effect of L-DOPA co-administered with the adenosine A2A receptor agonist CGS 21680 in an animal model of Parkinson's disease. Brain Research Bulletin, 2004, 64, 155-164.	3.0	32
200	Novel pharmacological targets based on receptor heteromers. Brain Research Reviews, 2008, 58, 475-482.	9.0	32
201	Neuroprotective Effect of JZL184 in MPP+-Treated SH-SY5Y Cells Through CB2 Receptors. Molecular Neurobiology, 2016, 53, 2312-2319.	4.0	32
202	Biased receptor functionality versus biased agonism in G-protein-coupled receptors. Biomolecular Concepts, 2018, 9, 143-154.	2.2	32
203	Metabotropic glutamate type $1\hat{l}\pm$ receptor localizes in low-density caveolin-rich plasma membrane fractions. Journal of Neurochemistry, 2003, 86, 785-791.	3.9	31
204	Dopamine–Galanin Receptor Heteromers Modulate Cholinergic Neurotransmission in the Rat Ventral Hippocampus. Journal of Neuroscience, 2011, 31, 7412-7423.	3.6	31
205	Neuroprotective Potential of Adenosine A _{2A} and Cannabinoid CB ₁ Receptor Antagonists in an Animal Model of Parkinson Disease. Journal of Neuropathology and Experimental Neurology, 2014, 73, 414-424.	1.7	31
206	Melatonin and the control of intraocular pressure. Progress in Retinal and Eye Research, 2020, 75, 100798.	15.5	31
207	On the Molecular Basis of the Receptor Mosaic Hypothesis of the Engram. Cellular and Molecular Neurobiology, 2004, 24, 501-516.	3.3	30
208	Epigenetic drugs in Alzheimer's disease. Biomolecular Concepts, 2013, 4, 433-445.	2.2	30
209	Chemical rules on the assessment of antioxidant potential in food and food additives aimed at reducing oxidative stress and neurodegeneration. Food Chemistry, 2017, 235, 318-323.	8.2	30
210	Pharmacological potential of varinic-, minor-, and acidic phytocannabinoids. Pharmacological Research, 2020, 158, 104801.	7.1	30
211	Structure and function of adenosine receptor heteromers. Cellular and Molecular Life Sciences, 2021, 78, 3957-3968.	5.4	30
212	Computer simulation of purine metabolism. FEBS Journal, 1984, 144, 305-315.	0.2	29
213	Further characterization of adenosine transport in renal brush-border membranes. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1024, 241-248.	2.6	29
214	Epidermal growth factor (EGF)-induced up-regulation and agonist- and antagonist-induced desensitization and internalization of A1 adenosine receptors in a pituitary-derived cell line. Brain Research, 1999, 816, 47-57.	2.2	29
215	Understanding the Functional Plasticity in Neural Networks of the Basal Ganglia in Cocaine Use Disorder: A Role for Allosteric Receptor-Receptor Interactions in A2A-D2 Heteroreceptor Complexes. Neural Plasticity, 2016, 2016, 1-12.	2.2	28
216	Epigenetics in the Eye: An Overview of the Most Relevant Ocular Diseases. Frontiers in Genetics, 2017, 8, 144.	2.3	28

#	Article	IF	CITATIONS
217	The association of metabotropic glutamate receptor type 5 with the neuronal Ca ²⁺ â€binding protein 2 modulates receptor function. Journal of Neurochemistry, 2009, 111, 555-567.	3.9	27
218	Design of Negative and Positive Allosteric Modulators of the Cannabinoid CB ₂ Receptor Derived from the Natural Product Cannabidiol. Journal of Medicinal Chemistry, 2021, 64, 9354-9364.	6.4	27
219	Age-Related Mitochondrial Alterations without Neuronal Loss in the Hippocampus of a Transgenic Model of Alzheimer's Disease. Current Alzheimer Research, 2013, 10, 390-405.	1.4	27
220	Mutual regulation between metabotropic glutamate type 1αÂreceptor and caveolin proteins: from traffick to constitutive activity. Experimental Cell Research, 2004, 300, 23-34.	2.6	26
221	Adenosine deaminase enhances Tâ€cell response elicited by dendritic cells loaded with inactivated HIV. Immunology and Cell Biology, 2009, 87, 634-639.	2.3	26
222	Partners for Adenosine A ₁ Receptors. Journal of Molecular Neuroscience, 2005, 26, 221-232.	2.3	25
223	Heptaspanning Membrane Receptors and Cytoskeletal/Scaffolding Proteins: Focus on Adenosine, Dopamine, and Metabotropic Glutamate Receptor Function. Journal of Molecular Neuroscience, 2005, 26, 277-292.	2.3	25
224	Immunological dysfunction in HIVâ€1â€infected individuals caused by impairment of adenosine deaminaseâ€induced costimulation of Tâ€cell activation. Immunology, 2009, 128, 393-404.	4.4	25
225	Calcium-mediated modulation of the quaternary structure and function of adenosine A2A–dopamine D2 receptor heteromers. Current Opinion in Pharmacology, 2010, 10, 67-72.	3.5	25
226	Cocaine produces D2R-mediated conformational changes in the adenosine A2AR-dopamine D2R heteromer. Biochemical and Biophysical Research Communications, 2010, 394, 988-992.	2.1	25
227	Increased expression of cannabinoid CB2 and serotonin 5-HT1A heteroreceptor complexes in a model of newborn hypoxic-ischemic brain damage. Neuropharmacology, 2019, 152, 58-66.	4.1	25
228	Interactions between ibuprofen, ACE2, reninâ€angiotensin system, and spike protein in the lung. Implications for COVIDâ€19. Clinical and Translational Medicine, 2021, 11, e371.	4.0	25
229	Phosphodiesterase Inhibition in Cognitive Decline. Journal of Alzheimer's Disease, 2014, 42, S561-S573.	2.6	24
230	A2A and A2B adenosine receptors: The extracellular loop 2 determines high (A2A) or low affinity (A2B) for adenosine. Biochemical Pharmacology, 2020, 172, 113718.	4.4	24
231	Identification and rejection of outliers in enzyme kinetics. International Journal of Bio-medical Computing, 1988, 23, 9-20.	0.5	23
232	Characterization of adenosine receptors in brushâ€border membranes from pig kidney. British Journal of Pharmacology, 1992, 107, 671-678.	5.4	23
233	Gâ€proteinâ€coupled receptor heteromers or how neurons can display differently flavoured patterns in response to the same neurotransmitter. British Journal of Pharmacology, 2009, 158, 23-31.	5.4	23
234	Prime Time for G-Protein-Coupled Receptor Heteromers as Therapeutic Targets for CNS disorders: The Dopamine D1-D3 Receptor Heteromer. CNS and Neurological Disorders - Drug Targets, 2010, 9, 596-600.	1.4	23

#	Article	IF	CITATIONS
235	Gâ€Proteinâ€Coupled Receptor Heteromers as Key Players in the Molecular Architecture of the Central Nervous System. CNS Neuroscience and Therapeutics, 2014, 20, 703-709.	3.9	23
236	Twelve years of experience with miglustat in the treatment of type 1 Gaucher disease: The Spanish ZAGAL project. Blood Cells, Molecules, and Diseases, 2018, 68, 173-179.	1.4	23
237	Recent Advances in the Potential of Cannabinoids for Neuroprotection in Alzheimer's, Parkinson's, and Huntington's Diseases. Advances in Experimental Medicine and Biology, 2021, 1264, 81-92.	1.6	23
238	Targeting CB1 and GPR55 Endocannabinoid Receptors as a Potential Neuroprotective Approach for Parkinson's Disease. Molecular Neurobiology, 2019, 56, 5900-5910.	4.0	22
239	Microglial Adenosine Receptors: From Preconditioning to Modulating the M1/M2 Balance in Activated Cells, 2021, 10, 1124.	4.1	22
240	Adenosine Receptor Antagonists to Combat Cancer and to Boost Anti-Cancer Chemotherapy and Immunotherapy. Cells, 2021, 10, 2831.	4.1	22
241	OnÂtheÂNestedÂHierarchicalÂOrganizationÂofÂCNS: Basic Characteristics of Neuronal Molecular Networks. Lecture Notes in Computer Science, 2004, , 24-54.	1.3	21
242	Existence and Theoretical Aspects of Homomeric and Heteromeric Dopamine Receptor Complexes and Their Relevance for Neurological Diseases. NeuroMolecular Medicine, 2005, 7, 061-078.	3.4	21
243	Adenosine Deaminase Enhances the Immunogenicity of Human Dendritic Cells from Healthy and HIV-Infected Individuals. PLoS ONE, 2012, 7, e51287.	2.5	21
244	Two Affinity Sites of the Cannabinoid Subtype 2 Receptor Identified by a Novel Homogeneous Binding Assay. Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 580-587.	2.5	20
245	Adenosine deaminase regulates Treg expression in autologous T cell-dendritic cell cocultures from patients infected with HIV-1. Journal of Leukocyte Biology, 2016, 99, 349-359.	3.3	20
246	Discovery of Homobivalent Bitopic Ligands of the Cannabinoid CB ₂ Receptor**. Chemistry - A European Journal, 2020, 26, 15839-15842.	3.3	20
247	Experimental and computational analysis of biased agonism on full-length and a C-terminally truncated adenosine A2A receptor. Computational and Structural Biotechnology Journal, 2020, 18, 2723-2732.	4.1	20
248	A quantum chemical study of the enzymatic deamination of benzoadenine derivatives. A theoretical model of the interactions occurring between nucleosides and the active site of adenosine deaminase. FEBS Journal, 1990, 188, 155-163.	0.2	19
249	Ammonium toxicity in different cell lines. , 1997, 56, 530-537.		19
250	Regulation of L-Type Calcium Channels in GH4 Cells via A1 Adenosine Receptors. Journal of Neurochemistry, 2002, 69, 2546-2554.	3.9	19
251	N-Methyl-D-Aspartate Receptor Link to the MAP Kinase Pathway in Cortical and Hippocampal Neurons and Microglia Is Dependent on Calcium Sensors and Is Blocked by α-Synuclein, Tau, and Phospho-Tau in Non-transgenic and Transgenic APPSw,Ind Mice. Frontiers in Molecular Neuroscience, 2018, 11, 273.	2.9	19
252	Glucocerebrosidase Mutations and Synucleinopathies. Potential Role of Sterylglucosides and Relevance of Studying Both GBA1 and GBA2 Genes. Frontiers in Neuroanatomy, 2018, 12, 52.	1.7	19

#	Article	IF	CITATIONS
253	An ACE2/Mas-related receptor MrgE axis in dopaminergic neuron mitochondria. Redox Biology, 2021, 46, 102078.	9.0	19
254	A method for binding parameters estimation of A1 adenosine receptor subtype: A practical approach. Analytical Biochemistry, 1990, 184, 117-123.	2.4	18
255	Glutamate mGlu5-Adenosine A2A-Dopamine D2 Receptor Interactions in the Striatum. Implications for Drug Therapy in Neuro-psychiatric Disorders and Drug Abuse. Current Medicinal Chemistry - Central Nervous System Agents, 2003, 3, 1-26.	0.5	18
256	SARS-CoV-2 as a Factor to Disbalance the Renin–Angiotensin System: A Suspect in the Case of Exacerbated IL-6 Production. Journal of Immunology, 2020, 205, 1198-1206.	0.8	18
257	Potential of caveolae in the therapy of cardiovascular and neurological diseases. Frontiers in Physiology, 2014, 5, 370.	2.8	17
258	Cocaine Effects on Dopaminergic Transmission Depend on a Balance between Sigma-1 and Sigma-2 Receptor Expression. Frontiers in Molecular Neuroscience, 2018, 11, 17.	2.9	17
259	Similarities and differences upon binding of naturally occurring ΰ9-tetrahydrocannabinol-derivatives to cannabinoid CB1 and CB2 receptors. Pharmacological Research, 2021, 174, 105970.	7.1	17
260	Surface adenosine deaminase. Human Immunology, 1995, 42, 265-273.	2.4	16
261	Indoloquinolizidine–Peptide Hybrids as Multiple Agonists for D ₁ and D ₂ Dopamine Receptors. ChemMedChem, 2009, 4, 1514-1522.	3.2	16
262	Modulation of GABA Transport by Adenosine A1R-A2AR Heteromers, Which Are Coupled to Both Gs- and Gi/o-Proteins. Journal of Neuroscience, 2011, 31, 15629-15639.	3.6	16
263	Loss of Parvalbumin-Positive Neurons From the Globus Pallidus in Animal Models of Parkinson Disease. Journal of Neuropathology and Experimental Neurology, 2012, 71, 973-982.	1.7	16
264	Angiotensin AT1 and AT2 receptor heteromer expression in the hemilesioned rat model of Parkinson's disease that increases with levodopa-induced dyskinesia. Journal of Neuroinflammation, 2020, 17, 243.	7.2	16
265	A program for the numerical integration of enzyme kinetic equations using small computers. International Journal of Bio-medical Computing, 1984, 15, 419-432.	0.5	15
266	Degradation of adenosine by extracellular adenosine deaminase in the rat duodenum. General Pharmacology, 1988, 19, 679-681.	0.7	15
267	Theoretical study of the hydroxyl nucleophilic attack on the 6-aminopyrimidine molecule: functional implications in the reaction mechanism of nucleoside deaminative enzymes. Journal of Organic Chemistry, 1990, 55, 2630-2637.	3.2	15
268	Adenosine Receptors in Myelin Fractions and Subtractions: The Effect of the Agonist (R)-Phenylisopropyladenosine on Myelin Membrane Microviscosity. Journal of Neurochemistry, 1991, 57, 1623-1629.	3.9	15
269	Modulation of adenosine agonist [3H]N6-(R)-phenylisopropyladenosine binding to pig brain cortical membranes by changes of membrane fluidity and of medium physicochemical characteristics. European Journal of Pharmacology, 1992, 225, 7-14.	2.6	15
270	Maternal imprinting on cognition markers of wild type and transgenic Alzheimer's disease model mice. Scientific Reports, 2018, 8, 6434.	3.3	15

#	Article	IF	CITATIONS
271	Kinetics of the 5?-nucleotidase and the adenosine deaminase in subcellular fractions of rat brain. Neurochemical Research, 1986, 11, 471-479.	3.3	14
272	Simulation of the purine nucleotide cycle as an anaplerotic process in skeletal muscle. Archives of Biochemistry and Biophysics, 1987, 254, 142-155.	3.0	14
273	Determination of the conformational preferences of adenosine at the active site of adenosine deaminase. Journal of the American Chemical Society, 1990, 112, 8221-8229.	13.7	14
274	The binding of [3H]R-PIA to A1adenosine receptors produces a conversion of the high- to the low-affinity state. FEBS Letters, 1991, 286, 221-224.	2.8	14
275	G _i protein coupling to adenosine A ₁ –A _{2A} receptor heteromers in human brain caudate nucleus. Journal of Neurochemistry, 2010, 114, 972-980.	3.9	14
276	Synthesis and Evaluation of 13N-Labelled Azo Compounds for Î ² -Amyloid Imaging in Mice. Molecular Imaging and Biology, 2014, 16, 538-549.	2.6	14
277	Presynaptic P2X1-3 and α3-containing nicotinic receptors assemble into functionally interacting ion channels in the rat hippocampus. Neuropharmacology, 2016, 105, 241-257.	4.1	14
278	Orexin A/Hypocretin Modulates Leptin Receptor-Mediated Signaling by Allosteric Modulations Mediated by the Ghrelin GHS-R1A Receptor in Hypothalamic Neurons. Molecular Neurobiology, 2018, 55, 4718-4730.	4.0	14
279	Adenosine A2A and A3 Receptors Are Able to Interact with Each Other. A Further Piece in the Puzzle of Adenosine Receptor-Mediated Signaling. International Journal of Molecular Sciences, 2020, 21, 5070.	4.1	14
280	N-Methyl-D-aspartate (NMDA) and cannabinoid CB2 receptors form functional complexes in cellsÂof the central nervous system: insights into the therapeutic potential of neuronal and microglial NMDA receptors. Alzheimer's Research and Therapy, 2021, 13, 184.	6.2	14
281	Effect of phospholipases and proteases on the [3H]N6-(R)-phenylisopropyladenosine ([3H]R-PIA) binding to A1 adenosine receptors from pig cerebral cortex. Journal of Cellular Biochemistry, 1991, 47, 278-288.	2.6	13
282	A Hybrid Indoloquinolizidine Peptide as Allosteric Modulator of Dopamine D1 Receptors. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 876-885.	2.5	13
283	Biotin Ergopeptide Probes for Dopamine Receptors. Journal of Medicinal Chemistry, 2011, 54, 1080-1090.	6.4	13
284	Neuronal Calcium and cAMP Cross-Talk Mediated by Cannabinoid CB1 Receptor and EF-Hand Calcium Sensor Interactions. Frontiers in Cell and Developmental Biology, 2018, 6, 67.	3.7	13
285	Cocaine Blocks Effects of Hunger Hormone, Ghrelin, Via Interaction with Neuronal Sigma-1 Receptors. Molecular Neurobiology, 2019, 56, 1196-1210.	4.0	13
286	Differential Neuroprotective Effects of 5′-Deoxy-5′-Methylthioadenosine. PLoS ONE, 2014, 9, e90671.	2.5	13
287	Control analysis of systems having two steps catalyzed by the same protein molecule in unbranched chains. FEBS Journal, 1990, 192, 369-371.	0.2	12
288	Biochemical systems theory: Increasing predictive power by using second-order derivatives measurements. Journal of Theoretical Biology, 1991, 149, 521-535.	1.7	12

#	Article	IF	CITATIONS
289	Adenine nucleotides and adenosine metabolism in pig kidney proximal tubule membranes. Journal of Cellular Physiology, 1993, 157, 77-83.	4.1	12
290	Ecto-adenosine deaminase: An ecto-enzyme and a costimulatory protein acting on a variety of cell surface receptors. , 1998, 45, 261-268.		12
291	Neurotransmitter receptor heteromers in neurodegenerative diseases and neural plasticity. Journal of Neural Transmission, 2009, 116, 983-987.	2.8	12
292	Expression of GPR55 and either cannabinoid CB1 or CB2 heteroreceptor complexes in the caudate, putamen, and accumbens nuclei of control, parkinsonian, and dyskinetic non-human primates. Brain Structure and Function, 2020, 225, 2153-2164.	2.3	12
293	Expression of Melatonin and Dopamine D3 Receptor Heteromers in Eye Ciliary Body Epithelial Cells and Negative Correlation with Ocular Hypertension. Cells, 2020, 9, 152.	4.1	12
294	The Heteromeric Complex Formed by Dopamine Receptor D5 and CCR9 Leads the Gut Homing of CD4+ T Cells Upon Inflammation. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 489-506.	4.5	12
295	Genes Implicated in Familial Parkinson's Disease Provide a Dual Picture of Nigral Dopaminergic Neurodegeneration with Mitochondria Taking Center Stage. International Journal of Molecular Sciences, 2021, 22, 4643.	4.1	12
296	Phenyl Acyl Acids Attenuate the Unfolded Protein Response in Tunicamycin-Treated Neuroblastoma Cells. PLoS ONE, 2013, 8, e71082.	2.5	12
297	Control analysis of transition times. Molecular and Cellular Biochemistry, 1991, 101, 83-91.	3.1	11
298	Adenosine/dopamine receptor-receptor interactions in the central nervous system. Drug Development Research, 2001, 52, 296-302.	2.9	11
299	Differential effect of amphetamine over the corticotropin-releasing factor CRF2 receptor, the orexin OX1 receptor and the CRF2-OX1 heteroreceptor complex. Neuropharmacology, 2019, 152, 102-111.	4.1	11
300	Functional Complexes of Angiotensin-Converting Enzyme 2 and Renin-Angiotensin System Receptors: Expression in Adult but Not Fetal Lung Tissue. International Journal of Molecular Sciences, 2020, 21, 9602.	4.1	11
301	Carnitine palmitoyltransferase 1C negatively regulates the endocannabinoid hydrolase ABHD6 in mice, depending on nutritional status. British Journal of Pharmacology, 2021, 178, 1507-1523.	5.4	11
302	Novel Interactions Involving the Mas Receptor Show Potential of the Renin–Angiotensin system in the Regulation of Microglia Activation: Altered Expression in Parkinsonism and Dyskinesia. Neurotherapeutics, 2021, 18, 998-1016.	4.4	11
303	Quantum Chemical Study of the Electronic and Conformational Characteristics of Adenosine and 8-Substituted Derivatives: Functional Implications in the Mechanism of Reaction of Adenosine Deaminase. Journal of Pharmaceutical Sciences, 1990, 79, 133-137.	3.3	10
304	The distribution of A1 adenosine receptor and 5?-nucleotidase in pig brain cortex subcellular fractions. Neurochemical Research, 1992, 17, 129-139.	3.3	10
305	Role of Histidine Residues in Agonist and Antagonist Binding Sites of A1Adenosine Receptor. Journal of Neurochemistry, 1993, 60, 1525-1533.	3.9	10
306	Ecto-ADA in the development of theimmune system. Trends in Immunology, 1998, 19, 533.	7.5	10

#	Article	IF	CITATIONS
307	Challenges in the Development of Heteromer-GPCR-Based Drugs. Progress in Molecular Biology and Translational Science, 2013, 117, 143-162.	1.7	10
308	The Epigenetic Cytocrin Pathway to the Nucleus. Epigenetic Factors, Epigenetic Mediators, and Epigenetic Traits. A Biochemist Perspective. Frontiers in Genetics, 2017, 8, 179.	2.3	10
309	The Old and New Visions of Biased Agonism Through the Prism of Adenosine Receptor Signaling and Receptor/Protein Interactions. Frontiers in Pharmacology, 2020, 11, 628601.	3.5	10
310	Detection of Receptor Heteromers Involving Dopamine Receptors by the Sequential BRET-FRET Technology. Methods in Molecular Biology, 2013, 964, 95-105.	0.9	10
311	Theoretical Approximation to the Reaction Mechanism of Adenosine Deaminase. QSAR and Combinatorial Science, 1989, 8, 109-114.	1.2	9
312	Ab initio study of the protonation and the tautomerism of the 7-aminopyrazolopyrimidine molecule. Journal of Organic Chemistry, 1990, 55, 753-756.	3.2	9
313	N-ethylmaleimide affects agonist binding to A1adenosine receptors differently in the presence than in the absence of ligand. Biochemical and Biophysical Research Communications, 1991, 181, 213-218.	2.1	9
314	Solubilization and molecular characterization of the nitrobenzylthioinosine binding sites from pig kidney brush-border membranes. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1191, 94-102.	2.6	9
315	Increased expression with differential subcellular location of cytidine deaminase APOBEC3G in human CD4 + Tâ€cell activation and dendritic cell maturation. Immunology and Cell Biology, 2016, 94, 689-700.	2.3	9
316	A genomics approach identifies selective effects of trans-resveratrol in cerebral cortex neuron and glia gene expression. PLoS ONE, 2017, 12, e0176067.	2.5	9
317	A2A Receptor Homodimer-Disrupting Sequence Efficiently Delivered by a Protease-Resistant, Cyclic CPP Vector. International Journal of Molecular Sciences, 2019, 20, 4937.	4.1	9
318	Cuprizone-Induced Neurotoxicity in Human Neural Cell Lines Is Mediated by a Reversible Mitochondrial Dysfunction: Relevance for Demyelination Models. Brain Sciences, 2021, 11, 272.	2.3	9
319	The sigma-1 receptor as key common factor in cocaine and food-seeking behaviors. Journal of Molecular Endocrinology, 2019, 63, R81-R92.	2.5	9
320	Preparative purification of adenosine deaminase from human erythrocytes by affinity chromatography. Biomedical Applications, 1990, 532, 75-85.	1.7	8
321	Modulation of GH4 Cell Cycle via A1 Adenosine Receptors. Journal of Neurochemistry, 2002, 69, 2145-2154.	3.9	8
322	Cocaine selfâ€administration markedly increases dopamine D ₂ receptor negative cooperativity for dopamine binding: A receptor dimerâ€based analysis. Synapse, 2010, 64, 566-569.	1.2	8
323	Why have transgenic rodent models failed to successfully mimic Alzheimer's disease. How can we develop effective drugs without them?. Expert Opinion on Drug Discovery, 2019, 14, 327-330.	5.0	8
324	Adreno–melatonin receptor complexes control ion homeostasis and intraocular pressure ―their disruption contributes to hypertensive glaucoma. British Journal of Pharmacology, 2020, 177, 2090-2105.	5.4	8

#	Article	IF	CITATIONS
325	Natural Compounds as Guides for the Discovery of Drugs Targeting G-Protein-Coupled Receptors. Molecules, 2020, 25, 5060.	3.8	8
326	Enzymes of the purine metabolism in rat brain microsomes. Neurochemical Research, 1986, 11, 407-422.	3.3	7
327	An old enzyme for current needs: adenosine deaminase and a dendritic cell vaccine for HIV. Immunology and Cell Biology, 2012, 90, 594-600.	2.3	7
328	Hints on the Lateralization of Dopamine Binding to D1 Receptors in Rat Striatum. Molecular Neurobiology, 2016, 53, 5436-5445.	4.0	7
329	DIMERBOW: exploring possible GPCR dimer interfaces. Bioinformatics, 2020, 36, 3271-3272.	4.1	7
330	Antioxidant Supplements versus Health Benefits of Brief/Intermittent Exposure to Potentially Toxic Physical or Chemical Agents. Current Issues in Molecular Biology, 2021, 43, 650-664.	2.4	7
331	HIV-1 Envelope gp120 and Viral Particles Block Adenosine Deaminase Binding to Human CD26. Advances in Experimental Medicine and Biology, 1997, 421, 185-192.	1.6	7
332	Platforms for the identification of GPCR targets, and of orthosteric and allosteric modulators. Expert Opinion on Drug Discovery, 2010, 5, 391-403.	5.0	6
333	Understanding the Added Value of G-Protein-Coupled Receptor Heteromers. Scientifica, 2014, 2014, 1-7.	1.7	6
334	Lessons on Differential Neuronal-Death-Vulnerability from Familial Cases of Parkinson's and Alzheimer's Diseases. International Journal of Molecular Sciences, 2019, 20, 3297.	4.1	6
335	Discovery of a macromolecular complex mediating the hunger suppressive actions of cocaine: Structural and functional properties. Addiction Biology, 2021, 26, e13017.	2.6	6
336	Is adenosine deaminase involved in adenosine transport?. Medical Hypotheses, 1990, 33, 245-250.	1.5	5
337	Transcriptional profiling of striatal neurons in response to single or concurrent activation of dopamine D2, adenosine A2A and metabotropic glutamate type 5 receptors: Focus on beta-synuclein expression. Gene, 2012, 508, 199-205.	2.2	5
338	Microbiota and Other Preventive Strategies and Non-genetic Risk Factors in Parkinson's Disease. Frontiers in Aging Neuroscience, 2020, 12, 12.	3.4	5
339	Expression of the Adenosine A2A-A3 Receptor Heteromer in Different Brain Regions and Marked Upregulation in the Microglia of the Transgenic APPSw,Ind Alzheimer's Disease Model. Biomedicines, 2022, 10, 214.	3.2	5
340	A laboratory experiment on the purification of catalase. Biochemical Education, 1986, 14, 84-87.	0.1	4
341	Distribution of adenosine deaminase in some rat tissues. Inhibition by ethanol and dimethyl sulfoxide. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1987, 86, 95-98.	0.2	4
342	Interdependence between cooperativity and control coefficients. BioSystems, 1989, 23, 7-14.	2.0	4

#	Article	IF	CITATIONS
343	Heterogeneity of the gradients performed by the freeze-thaw method. Journal of Proteomics, 1989, 18, 177-182.	2.4	4
344	Adenosine-glutamate receptor-receptor interactions in the central nervous system. Drug Development Research, 2001, 52, 316-322.	2.9	4
345	Unmasking adenosine 2A receptors (A2ARs) in monkey basal ganglia output neurons using cholera toxin subunit B (CTB). Neurobiology of Disease, 2012, 47, 347-357.	4.4	4
346	Expression of cannabinoid CB 1 R–GPR55 heteromers in neuronal subtypes of the Macaca fascicularis striatum. Annals of the New York Academy of Sciences, 2020, 1475, 34-42.	3.8	4
347	Identification of the Chrelin and Cannabinoid CB2 Receptor Heteromer Functionality and Marked Upregulation in Striatal Neurons from Offspring of Mice under a High-Fat Diet. International Journal of Molecular Sciences, 2021, 22, 8928.	4.1	4
348	Effect of Endogenous Phospholipids on the [³ H]R-Pia Binding to A ₁ Adenosine Receptors from PIG Cerebral Cortex. Nucleosides & Nucleotides, 1991, 10, 1141-1143.	0.5	3
349	Characterization of the GTP/GDP binding site in the murine CD3-ζ polypeptide chain. Immunology Letters, 1994, 43, 167-175.	2.5	3
350	Dipropylcyclopentylxanthine triggers apoptosis in Jurkat T cells by a receptor-independent mechanism. Cell Death and Differentiation, 1997, 4, 639-646.	11.2	3
351	Methamphetamine Blocks Adenosine A2A Receptor Activation via Sigma 1 and Cannabinoid CB1 Receptors. International Journal of Molecular Sciences, 2021, 22, 2743.	4.1	3
352	5-Hydroxytryptamine, Glutamate, and ATP: Much More Than Neurotransmitters. Frontiers in Cell and Developmental Biology, 2021, 9, 667815.	3.7	3
353	Potent and Subtype-Selective Dopamine D ₂ Receptor Biased Partial Agonists Discovered via an Ugi-Based Approach. Journal of Medicinal Chemistry, 2021, 64, 8710-8726.	6.4	3
354	Detection, Analysis, and Quantification of GPCR Homo- and Heteroreceptor Complexes in Specific Neuronal Cell Populations Using the In Situ Proximity Ligation Assay. Neuromethods, 2018, , 299-315.	0.3	3
355	Specificity and nanomolar potency of melatonin on G-protein coupled melatonin MT1 and MT2 receptors expressed in HEK-293T human embryo kidney cells. Melatonin Research, 2019, 2, 121-131.	1.1	3
356	Genetic Inactivation of Free Fatty Acid Receptor 3 Impedes Behavioral Deficits and Pathological Hallmarks in the APPswe Alzheimer's Disease Mouse Model. International Journal of Molecular Sciences, 2022, 23, 3533.	4.1	3
357	Release of adenosine deaminase from rat intestinal mucosa. Biochemical Society Transactions, 1990, 18, 641-642.	3.4	2
358	Distribution of A1-adenosine receptors, adenosine deaminase and 5′-nucleotidase in brain and other tissues of the pig. Biochemical Society Transactions, 1990, 18, 639-641.	3.4	2
359	Theoretical study of the acidic strength of amino acid side chains. Bioorganic Chemistry, 1990, 18, 361-372.	4.1	2
360	A1 Adenosine receptors can occur manifesting two kinetic components of 8-cyclopentyl-1,3-[3H]dipropylxanthine ([3H]DPCPX) binding. Naunyn-Schmiedeberg's Archives of Pharmacology, 1994, 349, 485-491.	3.0	2

#	Article	IF	CITATIONS
361	Reply: Does the adenosine A2A receptor stimulate the ryanodine receptor?. Cardiovascular Research, 2007, 73, 249-250.	3.8	2
362	Real-Time G-Protein-Coupled Receptor Imaging to Understand and Quantify Receptor Dynamics. Scientific World Journal, The, 2011, 11, 1995-2010.	2.1	2
363	Geoffrey Burnstock (1929–2020): the finest pharmacologist and an inspiring scientist. Purinergic Signalling, 2021, 17, 135-135.	2.2	2
364	Heteromerization of Adenosine and Dopamine Receptor Subtypes: Relevance for Neuronal Integration in Normal and Pathological States. Advances in Behavioral Biology, 2002, , 199-204.	0.2	2
365	Practical Determination of Control Coefficients in Metabolic Pathways. , 1990, , 157-169.		2
366	The Kinetic Component in Drug Discovery: Using the Most Basic Pharmacological Concepts to Advance in Selecting Drugs to Combat CNS Diseases. Current Neuropharmacology, 2020, 18, 250-257.	2.9	2
367	Plant-derived compounds, vitagens, vitagenes and mitochondrial function. PharmaNutrition, 2022, 19, 100287.	1.7	2
368	The Binding Mode to Orthosteric Sites and/or Exosites Underlies the Therapeutic Potential of Drugs Targeting Cannabinoid CB2 Receptors. Frontiers in Pharmacology, 2022, 13, 852631.	3.5	2
369	Ghrelin and Cannabinoid Functional Interactions Mediated by Ghrelin/CB1 Receptor Heteromers That Are Upregulated in the Striatum From Offspring of Mice Under a High-Fat Diet. Frontiers in Cellular Neuroscience, 2021, 15, 786597.	3.7	2
370	Robustness of the Krebs Cycle under Physiological Conditions and in Cancer: New Clues for Evaluating Metabolism-Modifying Drug Therapies. Biomedicines, 2022, 10, 1199.	3.2	2
371	Rapid purification of adenosine deaminase from rat liver. Biochemical Society Transactions, 1987, 15, 884-885.	3.4	1
372	Purification of Adenosine Deaminase from Chicken-Egg Yolk by Affinity Column Chromatography. Preparative Biochemistry and Biotechnology, 1990, 20, 199-204.	0.5	1
373	Enhancing cognition before clinical symptoms of dementia. Frontiers in Systems Neuroscience, 2014, 8, 240.	2.5	1
374	Suggesting a Way to Understand the Actual Potential of Anti-Alzheimer's Disease Drugs That Show Promise in Transgenic Mouse Models. Frontiers in Neurology, 2015, 6, 206.	2.4	1
375	Heteroreceptor Complexes Implicated in Parkinson's Disease. , 2017, , 477-501.		1
376	Identification of a Tool Compound to Study the Mechanisms of Functional Selectivity between D ₂ and D ₃ Dopamine Receptors. ACS Omega, 2018, 3, 17368-17375.	3.5	1
377	Methods to Identify the Signature of Trimers Formed by Three G Protein-Coupled Receptors or by Two G Protein-Coupled and One Ionotropic Receptor with Special Emphasis in the Functional Role in the Central Nervous System. Neuromethods, 2018, , 187-203.	0.3	1
378	Editorial: Epigenetics in Mammalian Tissues. Frontiers in Genetics, 2019, 10, 635.	2.3	1

#	Article	IF	CITATIONS
379	Structure of G-protein-coupled receptor heteromers. , 2020, , 109-119.		1
380	Science plus technology to address challenges in determining the efficacy of neuroprotective/neurorestorative therapies. , 0, , .		1
381	Identification of Heteroreceptors Complexes and Signal Transduction Events Using Bioluminescence Resonance Energy Transfer (BRET). Bio-protocol, 2019, 9, e3385.	0.4	1
382	SIMCODE: A program for simulating point mutations in genomic DNA. Biochemical Education, 1985, 13, 66-67.	0.1	0
383	Computer-based learning of cooperativity and allostery. Bioinformatics, 1985, 1, 161-165.	4.1	0
384	An Improved Method for the Preparation of Rat Brain Microsomes. Biological Chemistry Hoppe-Seyler, 1986, 367, 307-312.	1.4	0
385	Cytochemical demonstration of 5′-nucleotidase in rat brain synaptosomes. Biochemical Society Transactions, 1987, 15, 528-529.	3.4	0
386	TEFOOL/2: a program for theoretical drug design on microcomputers. Bioinformatics, 1989, 5, 219-226.	4.1	0
387	Intuitive science. Nature, 1989, 338, 536-536.	27.8	0
388	Slight differences between adenosine deaminases from different species an immunochemical study. Archives Internationales De Physiologie Et De Biochimie, 1990, 98, 421-431.	0.2	0
389	Computer simulated process of "lead optimization": A student-interactive program. Journal of Chemical Education, 1990, 67, 232.	2.3	0
390	Application of Progress Curve Analysis to Enzyme Kinetic Studies Using Radioactive Measurements. Analytical Letters, 1991, 24, 1545-1552.	1.8	0
391	New possibilities in the therapy of immunodeficiency diseases. Immunology Letters, 1991, 29, 277-279.	2.5	0
392	Graphical analysis of data from pharmacology experiments. Pharmacological Research, 1992, 25, 325-334.	7.1	0
393	Theoretical study about the variability of the genome of foot-and-mouth disease viruses. International Journal of Biochemistry & Cell Biology, 1992, 24, 325-329.	0.5	0
394	Interaction of trans-acting factors with the proximal promoter of the mouse α-fetoprotein gene. International Journal of Biochemistry & Cell Biology, 1992, 24, 1985-1989.	0.5	0
395	Response to Drs. Straub and Jessop. Trends in Immunology, 2008, 29, 304-305.	6.8	0
396	Conversaciones entre el sistema nervioso y el sistema inmunológico. Revista Internacional De Acupuntura, 2014, 8, 147-148.	0.1	0

#	Article	IF	CITATIONS
397	Humans and Caffeine—A Very Long Relationship. Frontiers for Young Minds, 2017, 5, .	0.8	Ο
398	Adenosine Receptors as a Paradigm to Identify Dimer/Oligomers of G-Protein-Coupled Receptors and as Targets in Parkinson's Disease and Schizophrenia. , 2018, , 239-258.		0
399	Analysis and Quantification of GPCR Allosteric Receptor–Receptor Interactions Using Radioligand Binding Assays: The A2AR-D2R Heteroreceptor Complex Example. Neuromethods, 2018, , 1-14.	0.3	Ο
400	Current Issues in Molecular Biology Journal Enters a New Era. Current Issues in Molecular Biology, 2021, 43, 384-388.	2.4	0
401	Cholesterol in autism spectrum disorders. , 0, , .		Ο
402	Adenosine A2A annabinoid CB1 receptor heteromers. Implications for the rewarding effects of cannabinoids. FASEB Journal, 2007, 21, A410.	0.5	0
403	Performance Indices in Metabolic Systems: a Criterion for Evaluating Effectiveness in Metabolic Regulation. , 1990, , 149-156.		Ο
404	Introductory and Basic aspects. , 0, , 1090-1103.		0