
Stephen P Kelley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/839966/publications.pdf Version: 2024-02-01

STEDHEN D KELLEV

#	Article	IF	CITATIONS
1	Crystal structure of (E)-N′-(1-(2-hydroxy-4-methoxyphenyl)ethylidene) isonicotinohydrazide, C15H15N3O3. Zeitschrift Fur Kristallographie - New Crystal Structures, 2022, .	0.3	1
2	Cesium Cationâ^Ï€ Interactions Stabilize Pyrogallol[4]arene Coordination Networks. Crystal Growth and Design, 2022, 22, 2806-2811.	3.0	2
3	Evaluation of ¹⁸⁶ WS ₂ target material for production of high specific activity ¹⁸⁶ Re via proton irradiation: separation, radiolabeling and recovery/recycling. Radiochimica Acta, 2022, .	1.2	Ο
4	Tropane Skeleta from the Intramolecular Photocycloaddition of (4+3) Cycloadducts of Oxidopyridinium Ions and Dienes. Organic Letters, 2022, 24, 3521-3525.	4.6	2
5	Intramolecular (4+3) Cycloadditions of Oxidopyridinium Ions: Towards Daphnicyclidin A. Chemistry - A European Journal, 2022, 28, .	3.3	5
6	Reduction of CO ₂ and CS ₂ with Uranium(III) Metallocene Aryloxides. Organometallics, 2022, 41, 1579-1585.	2.3	4
7	Flexible Alkyl Tails Help Shape Matching and Close Packing in Self-Assembly of Supramolecular Structure. Crystal Growth and Design, 2021, 21, 40-44.	3.0	1
8	Sandwiched Kagomé Lattices in a Coordination Polymer Based on Mixed-Valent Uranium. Crystal Growth and Design, 2021, 21, 1727-1733.	3.0	2
9	Molecular Entrapment of Polymers by Pyrogallol[4]arenes. Journal of the American Chemical Society, 2021, 143, 693-698.	13.7	7
10	A New, Second Generation Trithiol Bifunctional Chelate for ^{72,77} As: Trithiol(b)-(Ser) ₂ -RM2. Bioconjugate Chemistry, 2021, 32, 1364-1373.	3.6	4
11	Hierarchical Coordination Frameworks Based on Metal–Organic Dimeric Nanocapsules Comprising Praseodymium and Pyrogallol[4]arene. Crystal Growth and Design, 2021, 21, 1891-1897.	3.0	8
12	Selfâ€Assembly of a Semiconductive and Photoactive Heterobimetallic Metal–Organic Capsule. Angewandte Chemie, 2021, 133, 10610-10614.	2.0	7
13	Selfâ€Assembly of a Semiconductive and Photoactive Heterobimetallic Metal–Organic Capsule. Angewandte Chemie - International Edition, 2021, 60, 10516-10520.	13.8	30
14	Frontispiz: Selfâ€Assembly of a Semiconductive and Photoactive Heterobimetallic Metal–Organic Capsule. Angewandte Chemie, 2021, 133, .	2.0	0
15	Frontispiece: Selfâ€Assembly of a Semiconductive and Photoactive Heterobimetallic Metal–Organic Capsule. Angewandte Chemie - International Edition, 2021, 60, .	13.8	Ο
16	Isolation of a [Fe(CO) ₄] ^{2–} -Bridged Diuranium Complex Obtained via Reduction of Fe(CO) ₅ with Uranium(III). Organometallics, 2021, 40, 1411-1415.	2.3	9
17	Generation of the 7-Azabicyclo[4.3.1]decane Ring System via (4 + 3) Cycloaddition of Oxidopyridinium Ions. Journal of Organic Chemistry, 2021, 86, 7028-7037.	3.2	9
18	Systematic Investigation of the Molecular and Electronic Structure of Thorium and Uranium Phosphorus and Arsenic Complexes. Inorganic Chemistry, 2021, 60, 10614-10630.	4.0	15

#	Article	IF	CITATIONS
19	Formation and Reactivity with ^t BuCN of a Thorium Phosphinidiide through a Combined Experimental and Computational Analysis. Organometallics, 2021, 40, 2701-2708.	2.3	4
20	Ready Access to Anhydrous Anionic Lanthanide Acetates by Using Imidazolium Acetate Ionic Liquids as the Reaction Medium. Chemistry - A European Journal, 2021, 27, 13181-13189.	3.3	7
21	Structural, Spectroscopic, and Computational Analysis of Heterometallic Thorium Phosphinidiide Complexes. Inorganic Chemistry, 2021, 60, 14932-14943.	4.0	2
22	Backbonding in Thorium(IV) and Uranium(IV) Diarsenido Complexes with t BuNC and CO. Chemistry - A European Journal, 2021, 27, 14396-14400.	3.3	6
23	Crystal structure of [Th ₃ (Cp*) ₃ (O)(OH) ₃] ₂ Cl ₂ (N ₃) <s a discrete molecular capsule built from multinuclear organothorium cluster cations. Acta Crystallographica Section E: Crystallographic Communications. 2021, 77, 971-974.</s 	ub>6 <td>o»;</td>	o»;
24	Recovery, recycling and re-irradiation of enriched 104Ru metal targets for cost effective production of 105Rh. Applied Radiation and Isotopes, 2021, 176, 109847.	1.5	0
25	Structural analysis of mono-substituted <i>N</i> -butyl-pyridinium salts: in search of ionic liquids. Journal of Coordination Chemistry, 2021, 74, 117-128.	2.2	2
26	Confusing lons on Purpose: How Many Parent Acid Molecules Can Be Incorporated in a Herbicidal Ionic Liquid?. ACS Sustainable Chemistry and Engineering, 2021, 9, 1941-1948.	6.7	11
27	A Third Generation Potentially Bifunctional Trithiol Chelate, Its nat,1XXSb(III) Complex, and Selective Chelation of Radioantimony (119Sb) from Its Sn Target. Inorganic Chemistry, 2021, 60, 15223-15232.	4.0	1
28	Crystal structures of metallocene complexes with uranium–germanium bonds. Acta Crystallographica Section E: Crystallographic Communications, 2021, 77, 1258-1262.	0.5	2
29	Comparative Coordination Chemistry of PNP and SNS Pincer Ruthenium Complexes. Organometallics, 2021, 40, 4066-4076.	2.3	6
30	Machine Learning Assisted Synthesis of Metal–Organic Nanocapsules. Journal of the American Chemical Society, 2020, 142, 1475-1481.	13.7	84
31	An Indiumâ€5eamed Hexameric Metal–Organic Cage as an Example of a Hexameric Pyrogallol[4]arene Capsule Conjoined Exclusively by Trivalent Metal Ions. Angewandte Chemie, 2020, 132, 8139-8142.	2.0	3
32	An Indiumâ€5eamed Hexameric Metal–Organic Cage as an Example of a Hexameric Pyrogallol[4]arene Capsule Conjoined Exclusively by Trivalent Metal Ions. Angewandte Chemie - International Edition, 2020, 59, 8062-8065.	13.8	17
33	Synthesis of Anhydrous Acetates for the Components of Nuclear Fuel Recycling in Dialkylimidazolium Acetate Ionic Liquids. Inorganic Chemistry, 2020, 59, 818-828.	4.0	14
34	Structural Consequences of Halogen Bonding in Dialkylimidazolium: A New Design Strategy for Ionic Liquids Illustrated with the I ₂ Cocrystal and Acetonitrile Solvate of 1,3-Dimethylimidazolium Iodide. Crystal Growth and Design, 2020, 20, 498-505.	3.0	4
35	Structure, Antioxidant and Anti-inflammatory Activities of the (4R)- and (4S)-epimers of S-Carboxymethyl-L-cysteine Sulfoxide. Pharmaceuticals, 2020, 13, 270.	3.8	1
36	Iron-Mediated C–C Bond Formation via Reductive Coupling with Carbon Dioxide. Organometallics, 2020, 39, 3562-3571.	2.3	13

#	Article	IF	CITATIONS
37	Crystallographic evidence of Watson–Crick connectivity in the base pair of anionic adenine with thymine. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18224-18230.	7.1	6
38	Two-Electron Reduction of a U(VI) Complex with Al(C ₅ Me ₅). Inorganic Chemistry, 2020, 59, 16137-16142.	4.0	12
39	Novel keto–enol tautomerism in 1,3,5-trihydroxybenzene systems. Chemical Communications, 2020, 56, 12985-12988.	4.1	4
40	Controlled hierarchical self-assembly of networked coordination nanocapsules <i>via</i> the use of molecular chaperones. Chemical Science, 2020, 11, 12547-12552.	7.4	10
41	Forcing Dicyanamide Coordination to f-Elements by Dissolution in Dicyanamide-Based Ionic Liquids. Inorganic Chemistry, 2020, 59, 7227-7237.	4.0	19
42	Comparative Insertion Reactivity of CO, CO2, tBuCN, and tBuNC into Thorium– and Uranium–Phosphorus Bonds. Organometallics, 2020, 39, 2152-2161.	2.3	19
43	Divergent uranium- <i>versus</i> phosphorus-based reduction of Me ₃ SiN ₃ with steric modification of phosphido ligands. Chemical Science, 2020, 11, 5830-5835.	7.4	17
44	Are ionic liquids and liquid coordination complexes really different? – Synthesis, characterization, and catalytic activity of AlCl ₃ /base catalysts. Chemical Communications, 2020, 56, 5362-5365.	4.1	16
45	Benchtop access to anhydrous actinide N-donor coordination complexes using ionic liquids. Chemical Communications, 2020, 56, 4232-4235.	4.1	12
46	Controlling the Interface between Salts, Solvates, Co-crystals, and Ionic Liquids with Non-stoichiometric Protic Azolium Azolates. Crystal Growth and Design, 2020, 20, 2608-2616.	3.0	5
47	Dehydration of UO ₂ Cl ₂ ·3H ₂ O and Nd(NO ₃) ₃ ·6H ₂ O with a Soft Donor Ligand and Comparison of Their Interactions through X-ray Diffraction and Theoretical Investigation. Inorganic Chemistry, 2020, 59, 2861-2869.	4.0	8
48	A fivefold UO22+ node is a path to dodecagonal quasicrystal approximants in coordination polymers. Science Advances, 2020, 6, eaay7685.	10.3	11
49	Construction of Polymeric Metal–Organic Nanocapsule Networks via Supramolecular Coordination-Driven Self-Assembly. Journal of the American Chemical Society, 2020, 142, 7270-7275.	13.7	47
50	Crystal structure of (<i>E</i>)-3-methoxy- <i>N′</i> -(1-(pyridin-2-yl)ethylidene)benzohydrazide, C ₁₅ H ₁₅ N ₃ O ₂ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2020, 235, 907-909.	0.3	2
51	Crystal structure of (<i>R</i> , <i>S</i>)-2-hydroxy-4-(methylsulfanyl)butanoic acid. Acta Crystallographica Section E: Crystallographic Communications, 2020, 76, 562-566.	0.5	1
52	Intramolecular 1,5-SN σ-hole interaction in (<i>E</i>)- <i>N</i> ′-(pyridin-4-ylmethylidene)thiophene-2-carbohydrazide. Acta Crystallographica Section E: Crystallographic Communications, 2020, 76, 557-561.	0.5	5
53	4-(Dimethylamino)benzohydrazide. IUCrData, 2020, 5, .	0.3	0
54	Steric influence of salicylaldehyde-based Schiff base ligands on the formation of trans-[Re(PR3)2(Schiff base)]+ complexes. Dalton Transactions, 2019, 48, 12943-12955.	3.3	5

#	Article	IF	CITATIONS
55	Synthesis and Utility of Neptunium(III) Hydrocarbyl Complex. Angewandte Chemie - International Edition, 2019, 58, 14891-14895.	13.8	14
56	NHC–Au(I) catalyzed enantioselective intramolecular [4+3] cycloaddition of furan propargyl esters. Journal of Organometallic Chemistry, 2019, 898, 120865.	1.8	8
57	Synthesis and Utility of Neptunium(III) Hydrocarbyl Complex. Angewandte Chemie, 2019, 131, 15033-15037.	2.0	1
58	Thorium(IV) and Uranium(IV) Phosphaazaallenes. Inorganics, 2019, 7, 105.	2.7	18
59	A Uranyl Metal Organic Framework Arising from the Coordination of a Partially Hydrolyzed Tetrauranyl Node with the Tautomerically Diverse 1,4-(Diamidoximyl)benzene Ligand. Crystal Growth and Design, 2019, 19, 5466-5470.	3.0	8
60	Water in Solutions of Chaotropic and Kosmotropic Salts: A Differential Scanning Calorimetry Investigation. Journal of Chemical & Engineering Data, 2019, 64, 4781-4792.	1.9	6
61	Dataset of asymmetric intramolecular [4+3] cycloaddition reactions catalyzed by NHC-gold(I) complexes. Data in Brief, 2019, 26, 104409.	1.0	1
62	Cocrystallization of C-Propyl Pyrogallol[4]arene and the Pharmaceutical Gabapentin. Journal of Chemical Crystallography, 2019, 49, 119-124.	1.1	1
63	Biomimetic Self-Assembly of Co ^{II} -Seamed Hexameric Metal–Organic Nanocapsules. Journal of the American Chemical Society, 2019, 141, 9151-9154.	13.7	22
64	Structural Diversity in Tetrakis(4-pyridyl)porphyrin Supramolecular Building Blocks. Crystal Growth and Design, 2019, 19, 3529-3542.	3.0	9
65	In Search of Locally Produced Arsenic Sorbents via Impregnation of Cotton with Magnetite Nanoparticles Using Choline Acetate. Advanced Sustainable Systems, 2019, 3, 1800170.	5.3	0
66	Formation of an α-Diimine from Isocyanide Coupling Using Thorium(IV) and Uranium(IV) Phosphido–Methyl Complexes. Organometallics, 2019, 38, 1733-1740.	2.3	11
67	Crystallographic Insights into the Behavior of Highly Acidic Metal Cations in Ionic Liquids from Reactions of Titanium Tetrachloride with [1-Butyl-3-Methylimidazolium][X] Ionic Liquids (X = Chloride,) Tj ETQq1	l 1 .0.7 843	144rgBT /Ove
68	Can Melting Point Trends Help Us Develop New Tools To Control the Crystal Packing of Weakly Interacting Ions?. Crystal Growth and Design, 2018, 18, 597-601.	3.0	11
69	Lanthanide complexes with zwitterionic amidoximes stabilized by noncoordinating water molecules. Supramolecular Chemistry, 2018, 30, 411-417.	1.2	2
70	Site-Specific Metal Chelation Facilitates the Unveiling of Hidden Coordination Sites in an Fe ^{II} /Fe ^{III} -Seamed Pyrogallol[4]arene Nanocapsule. Journal of the American Chemical Society, 2018, 140, 15611-15615.	13.7	17
71	Technetium and Rhenium Schiff Base Compounds for Nuclear Medicine: Syntheses of Rhenium Analogues to ^{99m} Tc-Furifosmin. Inorganic Chemistry, 2018, 57, 12920-12933.	4.0	40
72	Polyoxometalate catalysts for biomass dissolution: understanding and design. Physical Sciences Reviews, 2018, 3, .	0.8	0

#	Article	IF	CITATIONS
73	Synthesis of 3-(Arylsulfonyl)-3-pyrrolines from Allenyl Sulfonamides by Silver Ion Catalysis. Organic Letters, 2018, 20, 5723-5726.	4.6	15
74	Structure and properties of [(4,6- ^t Bu ₂ C ₆ H ₂ O) ₂ Se] ₂ An(THF) An = U, Np, and their reaction with <i>p</i> benzoquinone. Chemical Communications, 2018, 54, 10435-10438.	_{24.1}	ub _{}.} 12
75	Mixed metal double salt ionic liquids comprised of [HN ₂₂₂] ₂ [ZnCl ₄] and AlCl ₃ provide tunable Lewis acid catalysts related to the ionic environment. Dalton Transactions, 2018, 47, 7795-7803.	3.3	27
76	Elucidating the triethylammonium acetate system: Is it molecular or is it ionic?. Journal of Molecular Liquids, 2018, 269, 126-131.	4.9	24
77	A Multi omponent Sensor System for Detection of Amphiphilic Compounds. Angewandte Chemie - International Edition, 2018, 57, 12741-12744.	13.8	52
78	New Reactions for Old Ions: Cage Rearrangements, Hydrolysis, and Two-Electron Reduction of <i>nido</i> -Decaborane in Neat 1-Ethyl-3-Methylimidazolium Acetate. ACS Omega, 2018, 3, 8491-8496.	3.5	4
79	A Multi omponent Sensor System for Detection of Amphiphilic Compounds. Angewandte Chemie, 2018, 130, 12923-12926.	2.0	4
80	Four-electron reduction chemistry using a uranium(<scp>iii</scp>) phosphido complex. Dalton Transactions, 2018, 47, 8189-8192.	3.3	30
81	Combustion Behavior of High Energy Density Borane–Aluminum Nanoparticles in Hypergolic Ionic Liquids. Energy & Fuels, 2018, 32, 7898-7908.	5.1	10
82	Singlet Oxygen Production and Tunable Optical Properties of Deacetylated Chitin-Porphyrin Crosslinked Films. Biomacromolecules, 2018, 19, 3291-3300.	5.4	20
83	3. Polyoxometalate catalysts for biomass dissolution: understanding and design. , 2018, , 23-42.		0
84	Crystal structure of Zn(ZnCl ₄) ₂ (Cho) ₂ : the transformation of ions to neutral species in a deep eutectic system. Chemical Communications, 2017, 53, 5449-5452.	4.1	6
85	Metal carbonate complexes formed through the capture of ambient O2 and CO2 by elemental metals in 1-methylimidazole: molecular Cu(CO3)(MeIm)3 and polymeric M(CO3)(MeIm)2·2H2O (M = Co, Zn). Dalton Transactions, 2017, 46, 8920-8923.	3.3	6
86	Group IIIA Halometallate Ionic Liquids: Speciation and Applications in Catalysis. ACS Catalysis, 2017, 7, 7014-7028.	11.2	61
87	Double salt ionic liquids based on 1-ethyl-3-methylimidazolium acetate and hydroxyl-functionalized ammonium acetates: strong effects of weak interactions. Physical Chemistry Chemical Physics, 2017, 19, 26934-26943.	2.8	20
88	Separate mechanisms of ion oligomerization tune the physicochemical properties of n-butylammonium acetate: cation-base clusters vs. anion-acid dimers. Physical Chemistry Chemical Physics, 2017, 19, 25544-25554.	2.8	18
89	Understanding Carbon Dioxide Solubility in Ionic Liquids by Exploring the Link with Liquid Clathrate Formation. Chemistry - A European Journal, 2017, 23, 14332-14337.	3.3	12
90	Formation of ionic co-crystals of amphoteric azoles directed by the ionic liquid co-former 1-ethyl-3-methylimidazolium acetate. Chemical Communications, 2017, 53, 8569-8572.	4.1	10

#	Article	IF	CITATIONS
91	Acyclovir as an Ionic Liquid Cation or Anion Can Improve Aqueous Solubility. ACS Omega, 2017, 2, 3483-3493.	3.5	36
92	15N-, 13C- and 1H-NMR Spectroscopy Characterization and Growth Inhibitory Potency of a Combi-Molecule Synthesized by Acetylation of an Unstable Monoalkyltriazene. Molecules, 2017, 22, 1183.	3.8	7
93	Structure-directing effects of ionic liquids in the ionothermal synthesis of metal–organic frameworks. IUCrJ, 2017, 4, 380-392.	2.2	48
94	Structural and Theoretical Study of Salts of the [B ₉ H ₁₄] ^{â^'} Ion: Isolation of Multiple Isomers and Implications for Energy Storage. ChemPlusChem, 2016, 81, 922-925.	2.8	8
95	Structural and Theoretical Study of Salts of the [B9 H14]â^' Ion: Isolation of Multiple Isomers and Implications for Energy Storage. ChemPlusChem, 2016, 81, 903-903.	2.8	0
96	Synthesis of Biomimetic Zinc Complexes for CO2 Activation and the Influence of Steric Changes in the Ttz Ligands [Ttz = Tris(triazolyl)borate]. European Journal of Inorganic Chemistry, 2016, 2016, 2495-2507.	2.0	14
97	Stripping Uranium from Seawater-Loaded Sorbents with the Ionic Liquid Hydroxylammonium Acetate in Acetic Acid for Efficient Reuse. Industrial & Engineering Chemistry Research, 2016, 55, 4321-4327.	3.7	4
98	Using Crystal Structures of Ionic Compounds to Explore Complexation and Extraction of Rare Earth Elements in Ionic Liquids. Green Chemistry and Sustainable Technology, 2016, , 21-42.	0.7	4
99	Crystal structure of 4′-bromo-2,5-dihydroxy-2′,5′-dimethoxy-[1,1′-biphenyl]-3,4-dicarbonitrile. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 667-670.	0.5	1
100	Crystal structure of 4,4′-dibromo-2′,5′-dimethoxy-[1,1′-biphenyl]-2,5-dione (BrHBQBr). Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 1454-1456.	0.5	4
101	Nonstoichiometric, Protic Azolium Azolate Ionic Liquids Provide Unique Environments for Nâ€Đonor Coordination Chemistry. Chemistry - A European Journal, 2015, 21, 17196-17199.	3.3	11
102	Chemistry: Develop ionic liquid drugs. Nature, 2015, 528, 188-189.	27.8	176
103	Ionic Fluids Containing Both Strongly and Weakly Interacting Ions of the Same Charge Have Unique Ionic and Chemical Environments as a Function of Ion Concentration. ChemPhysChem, 2015, 16, 993-1002.	2.1	27
104	Aminopyridine complexes of Cr(III) basic carboxylates as potential polymer precursors: Synthesis, characterization, and crystal structure of [Cr3O(propionate)6(X-aminopyridine)3]+ (X = 3 or 4). Polyhedron, 2015, 100, 17-27.	2.2	10
105	Electrical conductivity in two mixed-valence liquids. Physical Chemistry Chemical Physics, 2015, 17, 14107-14114.	2.8	7
106	Isolation of Uranyl Dicyanamide Complexes from N-Donor Ionic Liquids. Inorganic Chemistry, 2015, 54, 10323-10334.	4.0	12
107	Synthesis of 4-sulfonatobenzylphosphines and their application in aqueous-phase palladium-catalyzed cross-coupling. Journal of Organometallic Chemistry, 2015, 777, 16-24.	1.8	12
108	Studies of the Pathways Open to Copper Water Oxidation Catalysts Containing Proximal Hydroxy Groups During Basic Electrocatalysis. Inorganic Chemistry, 2014, 53, 12689-12698.	4.0	120

#	Article	IF	CITATIONS
109	Surface modification of ionic liquid-spun chitin fibers for the extraction of uranium from seawater: seeking the strength of chitin and the chemical functionality of chitosan. Green Chemistry, 2014, 16, 1828-1836.	9.0	121
110	Diâ€ <i>tert</i> â€butylneopentylphosphine (DTBNpP): An Efficient Ligand in the Palladiumâ€Catalyzed αâ€Arylation of Ketones. European Journal of Organic Chemistry, 2014, 2014, 7395-7404.	2.4	20
111	Structural clues to UO ₂ ²⁺ /VO ₂ ⁺ competition in seawater extraction using amidoxime-based extractants. Chemical Communications, 2014, 50, 12504-12507.	4.1	102
112	Evaluating Ionic Liquids as Hypergolic Fuels: Exploring Reactivity from Molecular Structure. Energy & Fuels, 2014, 28, 3460-3473.	5.1	76
113	Nonaborane and Decaborane Cluster Anions Can Enhance the Ignition Delay in Hypergolic Ionic Liquids and Induce Hypergolicity in Molecular Solvents. Inorganic Chemistry, 2014, 53, 4770-4776.	4.0	38
114	Cocrystals of 10-Methylphenthiazine and 1,3-Dinitrobenzene: Implications for the Optical Sensing of TNT-Based Explosives. ACS Applied Materials & amp; Interfaces, 2013, 5, 7647-7653.	8.0	21
115	Fused Spirocyclic Imidazolone Ketals. Angewandte Chemie - International Edition, 2013, 52, 10871-10873.	13.8	8
116	Coordination and extraction of mercury(ii) with an ionic liquid-based thione extractant. Dalton Transactions, 2013, 42, 12908.	3.3	27
117	Understanding the Effects of Ionicity in Salts, Solvates, Co-Crystals, Ionic Co-Crystals, and Ionic Liquids, Rather than Nomenclature, Is Critical to Understanding Their Behavior. Crystal Growth and Design, 2013, 13, 965-975.	3.0	115
118	Azolium azolates from reactions of neutral azoles with 1,3-dimethyl-imidazolium-2-carboxylate, 1,2,3-trimethyl-imidazolium hydrogen carbonate, and N,N-dimethyl-pyrrolidinium hydrogen carbonate. New Journal of Chemistry, 2013, 37, 1461.	2.8	12
119	Exploring the Structure of Nitrogen-Rich Ionic Liquids and Their Binding to the Surface of Oxide-Free Boron Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 5693-5707.	3.1	45
120	Hydrophobic vs. hydrophilic ionic liquid separations strategies in support of continuous pharmaceutical manufacturing. RSC Advances, 2013, 3, 10019.	3.6	27
121	Trineopentylphosphine: A Conformationally Flexible Ligand for the Coupling of Sterically Demanding Substrates in the Buchwald–Hartwig Amination and Suzuki–Miyaura Reaction. Journal of Organic Chemistry, 2013, 78, 4649-4664.	3.2	85
122	Procainium Acetate Versus Procainium Acetate Dihydrate: Irreversible Crystallization of a Room-Temperature Active Pharmaceutical-Ingredient Ionic Liquid upon Hydration. Crystal Growth and Design, 2013, 13, 3290-3293.	3.0	15
123	Innentitelbild: Fused Spirocyclic Imidazolone Ketals (Angew. Chem. 41/2013). Angewandte Chemie, 2013, 125, 10858-10858.	2.0	0
124	Highly selective extraction of the uranyl ion with hydrophobic amidoxime-functionalized ionic liquids via Î-2 coordination. RSC Advances, 2012, 2, 8526.	3.6	102
125	Tuning azolium azolate ionic liquids to promote surface interactions with titanium nanoparticles leading to increased passivation and colloidal stability. Physical Chemistry Chemical Physics, 2012, 14, 13194.	2.8	8
126	Synthesis, limitations, and thermal properties of energetically-substituted, protonated imidazolium picrate and nitrate salts and further comparison with their methylated analogs. New Journal of Chemistry, 2012, 36, 702-722.	2.8	37

#	Article	IF	CITATIONS
127	Reactivity of N-cyanoalkyl-substituted imidazolium halide salts by simple elution through an azide anion exchange resin. Science China Chemistry, 2012, 55, 1683-1687.	8.2	2
128	Zinc-assisted synthesis of imidazolium-tetrazolate bi-heterocyclic zwitterions with variable alkyl bridge length. Science China Chemistry, 2012, 55, 1620-1626.	8.2	1
129	Anhydrous Caffeine Hydrochloride and Its Hydration. Crystal Growth and Design, 2012, 12, 4658-4662.	3.0	9
130	Synthesis of N-cyanoalkyl-functionalized imidazolium nitrate and dicyanamide ionic liquids with a comparison of their thermal properties for energetic applications. New Journal of Chemistry, 2011, 35, 1701.	2.8	27
131	Failures of fractional crystallization: ordered co-crystals of isomers and near isomers. Acta Crystallographica Section B: Structural Science, 2011, 67, 79-93.	1.8	28
132	Network Diversity through Decoration of Trigonalâ€Prismatic Nodes: Twoâ€Step Crystal Engineering of Cationic Metal–Organic Materials. Angewandte Chemie - International Edition, 2011, 50, 11421-11424.	13.8	118
133	Demonstration of Chemisorption of Carbon Dioxide in 1,3â€Dialkylimidazolium Acetate Ionic Liquids. Angewandte Chemie - International Edition, 2011, 50, 12024-12026.	13.8	349
134	Crystallization of Uranyl Salts from Dialkylimidazolium Ionic Liquids or Their Precursors. European Journal of Inorganic Chemistry, 2010, 2010, 2760-2767.	2.0	24
135	More examples of the 15-crown-5H ₂ O— <i>M</i> —OH ₂ 15-crown-5 motif, <i>M</i> = Al ³⁺ , Cr ³⁺ and Pd ²⁺ . Acta Crystallographica Section B: Structural Science, 2010, 66, 213-221.	1.8	44