Roser Pleixats

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8399464/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Formation of Carbonâ^'Carbon Bonds under Catalysis by Transition-Metal Nanoparticles. Accounts of Chemical Research, 2003, 36, 638-643.	15.6	591
2	Palladium-Catalyzed Suzuki-Type Self-Coupling of Arylboronic Acids. A Mechanistic Study. Journal of Organic Chemistry, 1996, 61, 2346-2351.	3.2	320
3	Fluorous Phase Soluble Palladium Nanoparticles as Recoverable Catalysts for Suzuki Cross-Coupling and Heck Reactions. Organometallics, 2001, 20, 4524-4528.	2.3	149
4	Acid Activation in Phenyliodine Dicarboxylates: Direct Observation, Structures, and Implications. Journal of the American Chemical Society, 2016, 138, 12747-12750.	13.7	127
5	Recyclable organocatalysts based on hybrid silicas. Green Chemistry, 2016, 18, 881-922.	9.0	103
6	An Alternative to the Classical αâ€Arylation: The Transfer of an Intact 2â€lodoaryl from Arl(O ₂ CCF ₃) ₂ . Angewandte Chemie - International Edition, 2014, 53, 11298-11301.	13.8	102
7	Electrospray Ionization Mass Spectrometry Detection of Intermediates in the Palladium-Catalyzed Oxidative Self-Coupling of Areneboronic Acids. Journal of Organic Chemistry, 1999, 64, 3592-3594.	3.2	100
8	Preparation of 1,3-Diarylpropenes by Phosphine-Free Palladium(0)-Catalyzed Suzuki-Type Coupling of Allyl Bromides with Arylboronic Acids. Journal of Organic Chemistry, 1995, 60, 2396-2397.	3.2	99
9	Stereospecific preparation of ethyl (E) and (Z)-3-aryl-e-phenylpropenoates by heck reaction. Tetrahedron Letters, 1996, 37, 7449-7452.	1.4	79
10	DFT Mechanistic Study on Diene Metathesis Catalyzed by Ruâ€Based Grubbs–Hoveydaâ€Type Carbenes: The Key Role of Ï€â€Electron Density Delocalization in the Hoveyda Ligand. Chemistry - A European Journal, 2010, 16, 7331-7343.	3.3	78
11	Hybrid Organicâ€Inorganic Materials from Diâ€(2â€pyridyl)methylamineâ€Palladium Dichloride Complex as Recoverable Catalysts for Suzuki, Heck and Sonogashira Reactions. Advanced Synthesis and Catalysis, 2008, 350, 577-590.	4.3	77
12	Functionalized silica nanoparticles: classification, synthetic approaches and recent advances in adsorption applications. Nanoscale, 2021, 13, 15998-16016.	5.6	77
13	Recyclable Hybrid Silicaâ€Based Catalysts Derived from Pd–NHC Complexes for Suzuki, Heck and Sonogashira Reactions. European Journal of Organic Chemistry, 2012, 2012, 3625-3635.	2.4	69
14	Stereoselective Synthesis of Unsymmetrical β,β-Diarylacrylates by a Heckâ^'Matsuda Reaction: Versatile Building Blocks for Asymmetric Synthesis of β,β-Diphenylpropanoates, 3-Aryl-indole, and 4-Aryl-3,4-dihydro-quinolin-2-one and Formal Synthesis of (â^')-Indatraline. Journal of Organic Chemistry, 2011, 76, 857-869.	3.2	65
15	Phosphine-Free Perfluoro-Tagged Palladium Nanoparticles Supported on Fluorous Silica Gel: Application to the Heck Reaction. Organic Letters, 2008, 10, 561-564.	4.6	64
16	Palladium nanoparticles obtained from palladium salts and tributylamine in molten tetrabutylammonium bromide: their use for hydrogenolysis-free hydrogenation of olefins. New Journal of Chemistry, 2004, 28, 1550-1553.	2.8	62
17	Recyclable silica-supported prolinamide organocatalysts for direct asymmetric Aldol reaction in water. Green Chemistry, 2012, 14, 1601.	9.0	60
18	Organic–inorganic hybrid silica materials containing imidazolium and dihydroimidazolium salts as recyclable organocatalysts for Knoevenagel condensations. Green Chemistry, 2009, 11, 1815.	9.0	59

#	Article	IF	CITATIONS
19	Imidazolium-derived organosilicas for catalytic applications. Catalysis Science and Technology, 2011, 1, 1544.	4.1	59
20	Palladium Nanoparticles in Suzuki Cross ouplings: Tapping into the Potential of Trisâ€Imidazolium Salts for Nanoparticle Stabilization. Advanced Synthesis and Catalysis, 2012, 354, 651-662.	4.3	59
21	Direct Assembly of Polyarenes via Câ^'C Coupling Using PIFA/BF ₃ ·Et ₂ O. Journal of the American Chemical Society, 2010, 132, 17980-17982.	13.7	56
22	Mechanistic Insights into Ringâ€Closing Enyne Metathesis with the Secondâ€Generation Grubbs–Hoveyda Catalyst: A DFT Study. Chemistry - A European Journal, 2011, 17, 7506-7520.	3.3	56
23	FeCl3-catalyzed conjugate addition of secondary amines, imidazole and pyrazole to methyl 2-acetamidoacrylate. Preparation of β-dialkylamino-αalanine and β-(N-heteroaryi)-α-alanine derivatives. Tetrahedron, 1995, 51, 8355-8362.	1.9	55
24	Palladium(0)-Catalyzed Allylation of Highly Acidic and Nonnucleophilic Anilines. The Origin of Stereochemical Scrambling When Using Allylic Carbonates. Journal of Organic Chemistry, 1998, 63, 6160-6166.	3.2	55
25	Waterâ€Soluble Palladium Nanoparticles: Click Synthesis and Applications as a Recyclable Catalyst in Suzuki Crossâ€Couplings in Aqueous Media. European Journal of Organic Chemistry, 2010, 2010, 5090-5099.	2.4	55
26	Hydrosilylation of Internal Alkynes Catalyzed by Tris―Imidazolium Salt‣tabilized Palladium Nanoparticles. Advanced Synthesis and Catalysis, 2014, 356, 179-188.	4.3	55
27	Palladium(0) Complexes of a 15-Membered Macrocyclic Triolefin as a Recoverable Catalyst - Monomer- and Polystyrene-Anchored Versions. European Journal of Organic Chemistry, 2000, 2000, 239-243.	2.4	53
28	Hybrid organic–inorganic silica materials containing di(2-pyridyl)methylamine–palladium dichloride complex as recyclable catalysts for Suzuki cross-coupling reactions. Tetrahedron Letters, 2006, 47, 2399-2403.	1.4	53
29	Hybrid-Bridged Silsesquioxane as Recyclable Metathesis Catalyst Derived from a Bis-Silylated Hoveyda-Type Ligand. Advanced Synthesis and Catalysis, 2006, 348, 751-762.	4.3	53
30	lonic Liquid Crystals Based on Mesitylene-Containing Bis- and Trisimidazolium Salts. Langmuir, 2008, 24, 259-265.	3.5	52
31	Oxidative Addition of Allylic Carbonates to Palladium(0) Complexes: Reversibility and Isomerization. Chemistry - A European Journal, 2000, 6, 3372-3376.	3.3	50
32	Organometallic chemistry of 15-membered tri-olefinic macrocycles: catalysis by palladium(0) complexes in carbon–carbon bond-forming reactions. Journal of Organometallic Chemistry, 2004, 689, 3669-3684.	1.8	49
33	Density Functional Study on the Regioselectivity of Nucleophilic Attack in 1,3-Disubstituted (Diphosphino)(η3-allyl)palladium Cations. Organometallics, 1999, 18, 4934-4941.	2.3	48
34	Preparation of Tricyclic and Tetracyclic Benzoxepin Derivatives by One-Pot Enyne Metathesis/Diels-Alder Reaction. Synlett, 2001, 2001, 1784-1786.	1.8	48
35	Hybrid Organicâ€Inorganic Materials Derived from a Monosilylated Hoveydaâ€type Ligand as Recyclable Diene and Enyne Metathesis Catalysts. Advanced Synthesis and Catalysis, 2007, 349, 1701-1713.	4.3	48
36	Sol–gel immobilized Hoveyda–Grubbs complex through the NHC ligand: A recyclable metathesis catalyst. Journal of Molecular Catalysis A, 2012, 357, 59-66.	4.8	46

#	Article	IF	CITATIONS
37	Palladium-catalyzed allylation of pyrimidine-2,4-diones (uracils) and of 6-membered heterocyclic ambident sulfur nucleophiles. Tetrahedron, 1993, 49, 1457-1464.	1.9	44
38	Allylic Substitution Mediated by Water and Palladium:Â Unusual Role of a Palladium(II) Catalyst and ESI-MS Analysis. Organometallics, 2004, 23, 4796-4799.	2.3	44
39	Recoverable Palladium Catalysts for Suzuki–Miyaura Cross―Coupling Reactions Based on Organicâ€Inorganic Hybrid Silica Materials Containing Imidazolium and Dihydroimidazolium Salts. Advanced Synthesis and Catalysis, 2008, 350, 2566-2574.	4.3	44
40	Recent Advances on Antimicrobial and Anti-Inflammatory Cotton Fabrics Containing Nanostructures. Molecules, 2021, 26, 3008.	3.8	42
41	Dehydroacetic Acid, Triacetic Acid Lactone, and Related Pyrones. Advances in Heterocyclic Chemistry, 1992, 53, 1-84.	1.7	41
42	Preparation of benzo[b]thiophenes by Pd(0)-catalyzed intramolecular cyclization of allyl (and) Tj ETQq0 0 0 rgBT	Overlock	2 10 Tf 50 542
43	Palladium(0)-catalyzed allylation of highly acidic and non-nucleophilic arenesulfonamides, sulfamide, and cyanamide. I Tetrahedron, 1998, 54, 14869-14884.	1.9	40
44	Palladium Nanoparticles Entrapped in Heavily Fluorinated Compounds. Chemistry of Materials, 2006, 18, 716-722.	6.7	38
45	Hybrid silica materials derived from Hoveyda–Grubbs ruthenium carbenes. Electronic effects of the nitro group on the activity and recyclability as diene and enyne metathesis catalysts. Tetrahedron, 2008, 64, 6770-6781.	1.9	38
46	Preparation of a hybrid organic–inorganic material containing macrocyclic triolefinic 15-membered palladium(0) complexCatalytic activity in Suzuki cross-coupling and butadiene telomerization reactions. Applied Catalysis A: General, 2006, 297, 117-124.	4.3	37
47	Rhodium Nanoflowers Stabilized by a Nitrogenâ€Rich PEGâ€Tagged Substrate as Recyclable Catalyst for the Stereoselective Hydrosilylation of Internal Alkynes. Advanced Synthesis and Catalysis, 2015, 357, 89-99.	4.3	37
48	4-amino-6-methyl-2-pyran-2-one. Preparation and reactions with aromatic aldehydes. Tetrahedron, 1990, 46, 7885-7892.	1.9	36
49	Preparation of Nitrogen-Containing 15-Membered Triolefinic Macrocycles: (E,E,E)-1,6,11-Tris(arylsulfonyl)-1,6,11-triazacyclopentadeca-3,8,13-trienes. European Journal of Organic Chemistry, 2001, 2001, 329-337.	2.4	36
50	15-Membered triolefinic macrocycles as stabilizers of palladium(0) nanoparticles. New Journal of Chemistry, 2006, 30, 1584-1594.	2.8	36
51	Palladium nanoparticles stabilised by polyfluorinated chains. Chemical Communications, 2002, , 60-61.	4.1	35
52	A macrocyclic triolefinic palladium(0) complex covalently anchored to a mesostructured silica as active and reusable catalyst for Suzuki cross-coupling reactions. Tetrahedron Letters, 2004, 45, 8789-8791.	1.4	35
53	Ethyl N-(diphenylmethylene)glycinate as anionic glycine equivalent. Monoalkylation, dialkylation and Michael additions under solid-liquid phase-transfer catalysis. Tetrahedron, 1996, 52, 8365-8386.	1.9	33
54	Palladium(0)-catalyzed allylation of highly acidic and non-nucleophilic arenesulfonamides, sulfamide, and cyanamide. II. Formation of medium and large heterocycles. Tetrahedron, 1998, 54, 14885-14904.	1.9	33

#	Article	IF	CITATIONS
55	Highly diastereoselective monoalkylation and Michael addition of N-(diphenylmethylene)glycinesultam under solid–liquid phase-transfer catalysis conditions using potassium carbonate as base. Tetrahedron: Asymmetry, 1998, 9, 1967-1977.	1.8	33
56	The first 1,3-dithiol-2-ylidene donor–π–acceptor chromophores containing an azine spacer: synthesis, electrochemical and nonlinear optical properties. Journal of Materials Chemistry, 2001, 11, 374-380.	6.7	32
5 7	Palladium-catalyzed allylation of 3-hydroxyisoxazole, 5-isoxazolone and 5-pyrazolone Systems. Tetrahedron, 1994, 50, 515-528.	1.9	30
58	Palladium(0)-catalysed allylation of uracils and thiouracils. Influence of the solvent on the regioselectivity of the allylation. Tetrahedron, 1996, 52, 9521-9534.	1.9	30
59	Stereospecific Preparation of (E) and (Z)-3,3-Diarylacrylonitriles by Heck Reaction. Synlett, 1997, 1997, 1157-1158.	1.8	30
60	Preparation and NMR Spectroscopy of (1,2-Bis(diphenylphosphino)ethane)(η3-1,3-diarylallyl)- palladium Tetrafluoroborates. Correlation of Chemical Shifts with Hammett Substituent Constants and with the Regioselectivity of Nucleophilic Attack. Organometallics, 1997, 16, 205-209.	2.3	30
61	Water-soluble metal nanoparticles with PEG-tagged 15-membered azamacrocycles as stabilizers. Dalton Transactions, 2009, , 7748.	3.3	30
62	DFT Study on the Recovery of Hoveyda–Grubbsâ€Type Catalyst Precursors in Enyne and Diene Ringâ€Closing Metathesis. Chemistry - A European Journal, 2013, 19, 14553-14565.	3.3	30
63	Palladium(0)-catalyzed allylation of uracils and 2-thiouracils drastic effect of an aqueous reaction medium on the regioselectivity. Tetrahedron Letters, 1994, 35, 7085-7088.	1.4	29
64	3-Aryl and 5-aryl-4-methoxy-6-methyl-2H-pyran-2-ones by Suzuki cross-coupling reactions of 3- and 5-halogeno-4-methoxy-6-methyl-2H-pyran-2-ones. Tetrahedron, 1998, 54, 7813-7818.	1.9	29
65	Suzuki Cross-Couplings on Aryl (Heteroaryl) Bromides and Chlorides with Bulky Aliphatic Phosphines/Pd(0)-Triolefinic Macrocyclic Catalyst. Synlett, 2006, 2006, 3001-3004.	1.8	29
66	15-Membered macrocyclic triolefin: role in recovering active palladium catalyst for the telomerization of butadiene with methanol. Tetrahedron Letters, 2001, 42, 7055-7057.	1.4	28
67	Theoretical Study on the Regioselectivity of Nucleophilic Attack in Silyl-Substituted (Diphosphino) (η3-allyl)palladium Cations. Organometallics, 2002, 21, 2407-2412.	2.3	28
68	Synthesis of Ruthenium Nanoparticles Stabilized by Heavily Fluorinated Compounds. Advanced Functional Materials, 2006, 16, 2008-2015.	14.9	28
69	Heck, Sonogashira, and Hiyama Reactions Catalyzed by Palladium Nanoparticles Stabilized by Tris″midazolium Salt. European Journal of Organic Chemistry, 2014, 2014, 3001-3008.	2.4	28
70	15-Membered triolefinic macrocycles, their coordination chemistry with transition metals, and the catalytic properties of their palladium metal complexes. A review Arkivoc, 2004, 2004, 109-129.	0.5	28
71	Prolinamide bridged silsesquioxane as an efficient, eco-compatible and recyclable chiral organocatalyst. New Journal of Chemistry, 2011, 35, 2766.	2.8	27
72	C-Allylation of L-ascorbic acid under palladium(0) catalysis. Journal of Organic Chemistry, 1990, 55, 4925-4928.	3.2	26

#	Article	IF	CITATIONS
73	Palladium-catalyzed allylation of 5-membered heterocyclic ambident sulfur nucleophiles. Tetrahedron, 1993, 49, 1465-1470.	1.9	26
74	(1,2-Bis(diphenylphosphino)ethane)(.eta.3-1-arylallyl)palladium Tetrafluoroborates. Distribution of the Positive Charge Density by Correlation of NMR Chemical Shifts with Hammett Substituent Constants. Organometallics, 1995, 14, 2463-2469.	2.3	26
75	The First Transition Metal Complexes of 15-Membered Triolefinic Macrocycles: (E,E,E)-1,6,11-Tris(arenesulfonyl)-1,6,11-triazacyclopentadeca-3,8,13-triene Complexes of Palladium(0), Platinum(0), and Silver(I). European Journal of Inorganic Chemistry, 2001, 2001, 1999-2006.	2.0	26
76	15-Membered Triolefinic Macrocycles â^' Catalytic Role of (E,E,E)-1,6,11-Tris(arenesulfonyl)-1,6,11-triazacyclopentadeca-3,8,13-triene Complexes of Palladium(0) in the Presence of Phosphanes. European Journal of Organic Chemistry, 2003, 2003, 274-283.	2.4	25
77	Catalytic applications of recyclable silica immobilized NHC–ruthenium complexes. Tetrahedron, 2013, 69, 341-348.	1.9	25
78	(1-(Dimethylamino)-2-(diphenylphosphino)ethane)(η3-1-arylallyl)palladium Tetrafluoroborates. Preparation, Isomeric Equilibria, and Correlations of NMR Chemical Shifts with Hammett Substituent Constants. Journal of Organic Chemistry, 1996, 61, 758-763.	3.2	24
79	The Effect of Chloride Ions on the Mechanism of the Oxidative Addition of Cyclic Allylic Carbonates to Pd0 Complexes by Formation of Neutral[(η1-allyl)PdClL2] Complexes. European Journal of Organic Chemistry, 2005, 2005, 4277-4286.	2.4	23
80	Waterâ€Soluble Gold Nanoparticles: From Catalytic Selective Nitroarene Reduction in Water to Refractive Index Sensing. Chemistry - an Asian Journal, 2015, 10, 2437-2443.	3.3	23
81	Recyclable Mesoporous Organosilica Nanoparticles Derived from Proline-Valinol Amides for Asymmetric Organocatalysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 14815-14828.	6.7	22
82	Synthesis of α-substituted and α,α-disubstituted α-amino acids by controlled mono- and dialkylation of ethyl N-diphenylmethyleneglycinate. Tetrahedron Letters, 1993, 34, 8535-8538.	1.4	21
83	A Method for the Alkylation at C-3 of 4-Hydroxy-6-methyl-2-pyrone (Triacetic Acid Lactone). Synthesis, 1984, 1984, 430-431.	2.3	20
84	Palladium-Catalyzed Preparation of Dialkyl Allylphosphonates. A New Preparation of Diethyl 2-Oxoethylphosphonate. Synthetic Communications, 1992, 22, 2219-2228.	2.1	20
85	Direct Arylation of Oligonaphthalenes Using PIFA/BF ₃ ·Et ₂ O: From Double Arylation to Larger Oligoarene Products. Journal of Organic Chemistry, 2013, 78, 8169-8175.	3.2	20
86	Anti-inflammatory Cotton Fabrics and Silica Nanoparticles with Potential Topical Medical Applications. ACS Applied Materials & amp; Interfaces, 2020, 12, 25658-25675.	8.0	20
87	Rhodiumâ€NHC Hybrid Silica Materials as Recyclable Catalysts for [2+2+2] Cycloaddition Reactions of Alkynes. European Journal of Organic Chemistry, 2014, 2014, 6242-6251.	2.4	19
88	Palladium(0)-Catalyzed Allylation of Ambident Nucleophilic Aromatic Heterocycles. Advances in Heterocyclic Chemistry, 1996, 66, 73-129.	1.7	18
89	Structural NMR Studies on Aryl-Substitutedï€-Allyl-Pd(II) Complexes by Concerted Use ofGradient-Based Experiments. , 1997, 35, 227-236.		18
90	Organic–inorganic hybrid materials containing 15-membered azamacrocyclic triolefinic palladium(0) complexes. Journal of Molecular Catalysis A, 2007, 269, 204-213.	4.8	18

#	Article	IF	CITATIONS
91	Gold nanoparticles stabilized by PEG-tagged imidazolium salts as recyclable catalysts for the synthesis of propargylamines and the cycloisomerization of γ-alkynoic acids. New Journal of Chemistry, 2020, 44, 6130-6141.	2.8	17
92	The synthetic approaches, properties, classification and heavy metal adsorption applications of periodic mesoporous organosilicas. Separation and Purification Technology, 2021, 277, 119453.	7.9	17
93	Cold nanoparticles entrapped in heavily fluorinated compounds. Journal of Fluorine Chemistry, 2005, 126, 1435-1438.	1.7	16
94	Tsuji–Trost allylations with palladium recovery by phosphines/Pd(0)-triolefinic macrocyclic catalysts. Journal of Organometallic Chemistry, 2010, 695, 1231-1236.	1.8	15
95	Sol–Gel Immobilized Nâ€Heterocyclic Carbene Gold Complex as a Recyclable Catalyst for the Rearrangement of Allylic Esters and the Cycloisomerization of γâ€Alkynoic Acids. ChemCatChem, 2016, 8, 2824-2831.	3.7	15
96	A novel bidentate silicon containing ligand: cyclopentadienyldimethylsilane. Journal of Organometallic Chemistry, 1990, 381, C1-C6.	1.8	14
97	Copper(I) Oxide Mediated Perfluoroalkylation of Anilines. Synlett, 1999, 1999, 1996-1998.	1.8	14
98	Chiral and Stable Palladium(0) Complexes of Polyunsaturated Aza-macrocyclic Ligands:  Synthesis and Structural Analysis. Organometallics, 2006, 25, 5612-5620.	2.3	14
99	Silica and hybrid silica hollow spheres from imidazolium-based templating agents. Journal of Materials Chemistry, 2011, 21, 1058-1063.	6.7	14
100	The photoreactions of 2-fluoro-4-nitroanisole with amines. The search for new biochemical photoprobes. Tetrahedron Letters, 1989, 30, 2427-2428.	1.4	13
101	The silicon effect on the regioselectivity of the Tsuji-Trost reaction. Experimental and theoretical approaches. Journal of Organometallic Chemistry, 2003, 687, 337-345.	1.8	13
102	Rate and Mechanism of the Oxidative Addition of Aryl Halides to Palladium(0) Complexes Generated <i>in Situ</i> from a Pd(0)â^`Triolefinic Macrocyclic Complex and Phosphines. Organometallics, 2008, 27, 2421-2427.	2.3	13
103	Formation of nanocomposites of platinum nanoparticles embedded into heavily fluorinated aniline and displaying long range organization. Journal of Materials Chemistry, 2008, 18, 660-666.	6.7	13
104	Organic-Inorganic Hybrid Silica Material Derived from a Monosilylated Grubbs-Hoveyda Ruthenium Carbene as a Recyclable Metathesis Catalyst. Molecules, 2010, 15, 5756-5767.	3.8	12
105	Oxidative Breakdown of Iodoalkanes to Catalytically Active Iodine Species: A Case Study in the αâ€Tosyloxylation of Ketones. ChemCatChem, 2014, 6, 468-472.	3.7	12
106	The search for new biochemical photoprobes. II. The nucleophilic photosubstitution of 2-fluoro-4-nitroanisole Tetrahedron, 1989, 45, 7817-7826.	1.9	11
107	Ethyl <i>N</i> â€{diphenylmethylene)glycinate as anionic glycine equivalent transition metal mediated preparation of bicyclic and tricyclic α,I±â€disubstituted αâ€amino acids and derivatives. Liebigs Annalen, 1995, 1995, 1807-1814.	0.8	11
108	Palladium(0)-Catalyzed Reaction of Acidic Anilines with (Z)-2-Butene-1,4-diyl Dicarbonate – Preparation ofN-Aryl-4-vinyloxazolidin-2-ones. European Journal of Organic Chemistry, 1999, 1999, 181-186.	2.4	11

#	Article	IF	CITATIONS
109	Self-assembled platinum nanoparticles into heavily fluorinated templates: reactive gas effect on the morphology. New Journal of Chemistry, 2009, 33, 1529.	2.8	11
110	Antibiotic protected silver nanoparticles for microbicidal cotton. Tetrahedron, 2019, 75, 102-108.	1.9	11
111	An expeditious preparation of .eta.3-allylpalladium tetrafluoroborates using the 2,4,6-triphenylpyridine neutral leaving group. Organometallics, 1994, 13, 397-398.	2.3	10
112	Sol–gel immobilized aryl iodides for the catalytic oxidative α-tosyloxylation of ketones. Reactive and Functional Polymers, 2013, 73, 192-199.	4.1	10
113	Recyclable Silicaâ€Supported Proline Sulphonamide Organocatalysts for Asymmetric Direct Aldol Reaction ChemistrySelect, 2016, 1, 6741-6748.	1.5	10
114	Soluble Pt Nanoparticles Stabilized by a Trisâ€imidazolium Tetrafluoroborate as Efficient and Recyclable Catalyst for the Stereoselective Hydrosilylation of Alkynes. ChemistrySelect, 2018, 3, 11486-11493.	1.5	10
115	Periodic Mesoporous Organosilica Nanoparticles with BOC Group, towards HIFU Responsive Agents. Molecules, 2020, 25, 974.	3.8	10
116	The photosubstitution of 2-fluoro-4-nitroanisole with n-hexylamine. Evidence of two different triplet excited states in a dual mechanistic pathway Tetrahedron, 1990, 46, 1343-1352.	1.9	9
117	Diels-Alder Reactions of 1,1-Disubstituted 3,4-Dimethylene-cyclopentanes. Preparation of Indanes and Diazaindanes. Synthetic Communications, 1993, 23, 601-612.	2.1	9
118	Non-Catalyzed C-Alkylation of Phenols With Cyclic Secondary Alkyl Bromides. Synthetic Communications, 1996, 26, 3885-3895.	2.1	9
119	Metal complexes of 15-membered triolefinic macrocycles. (E,E,Z)-1,6,11-Tris[(2,4,6-triisopropylphenyl)sulfonyl]-1,6,11-triazacyclopentadeca-3,8,13-triene and its palladium(0), platinum(0), and silver(I) complexes. Tetrahedron Letters, 2001, 42, 4337-4339.	1.4	9
120	Nickel Nanoparticles Stabilized by Trisimidazolium Salts: Synthesis, Characterization and Application as Recyclable Catalysts for the Reduction of Nitroarenes. ChemistrySelect, 2018, 3, 8597-8603.	1.5	9
121	Selective capture of palladium(II) from highly acidic solution by proline-valinol amide functionalized silica nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129374.	4.7	9
122	Bicyclic Compounds Structurally Relted to Dehydroacetic Acid and Triacetic Acid Lactone. Heterocycles, 1994, 37, 585.	0.7	8
123	Synthesis of Cyclenâ€Functionalized Ethenyleneâ€Based Periodic Mesoporous Organosilica Nanoparticles and Metalâ€Ion Adsorption Studies. ChemNanoMat, 2020, 6, 1625-1634.	2.8	7
124	Preparation of nitrogen-containing 20-membered tetraolefinic macrocycles: (E,E,E,E)-1,6,11,16-tetra(arylsulfonyl)-1,6,11,16-tetraazacycloicosa-3,8,13,18-tetraenes. Tetrahedron Letters, 2001, 42, 9001-9003.	1.4	6
125	Silica-immobilized N,O-prolinate ruthenium benzylidene complexes for catalytic applications. Journal of Sol-Gel Science and Technology, 2013, 65, 93-103.	2.4	6
126	Rhodium Nanoparticles Stabilized by PEG-Tagged Imidazolium Salts as Recyclable Catalysts for the Hydrosilylation of Internal Alkynes and the Reduction of Nitroarenes. Catalysts, 2020, 10, 1195.	3.5	6

#	Article	IF	CITATIONS
127	Preparation, antimicrobial evaluation, and mutagenicity of [2-hydroxyaryl]-[1-methyl-5-nitro-1H-2-imidazolyl]methanols, [5-tert-Butyl-2-methylaminophenyl]-[1-methyl-5-nitro-1H-2-imidazolyl]methanol, and [2-Hydroxyaryl]-[1-methyl-5-nitro-1H-2-imidazolyl] ketones. Bioorganic and Medicinal Chemistry, 1997, 5,	3.0	5
128	Preparation and Characterization of Novel Mixed Periodic Mesoporous Organosilica Nanoparticles. Materials, 2020, 13, 1569.	2.9	5
129	Synthesis of triethoxysilylated cyclen derivatives, grafting on magnetic mesoporous silica nanoparticles and application to metal ion adsorption. RSC Advances, 2021, 11, 10777-10784.	3.6	5
130	Preparation of <i>5H</i> -6-(2,4-Difluorophenyl)pyrazolo-[1,2- <i>a</i>][1,2,4]-triazol-4-ium Chloride. An Example of a New Type of Heterocyclic Salt. Synthetic Communications, 1993, 23, 1245-1250.	2.1	4
131	Preparation, antimicrobial evaluation and mutagenicity of differently substituted [2-hydroxyaryl]-[1-methyl-5-nitro-1H-2-imidazolyl]methanols. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 1781-1784.	2.2	4
132	Nanostructuring of Ionic Bridged Silsesquioxanes. Chemistry - an Asian Journal, 2013, 8, 2235-2241.	3.3	4
133	Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to the structure determination of medium and large macrocycles formed by palladium(0)-catalyzed allylation of arenesulfonamides, sulfamide, and cyanamide. , 1999, 13, 2359-2365.		3
134	Crystal structure of trans-(benzenethiolato)-chlorobis(triphenylphosphine)palladium(II), Pd(SC ₆ H ₅)(P(C ₆ H ₅) ₃) ₂ Cl. Zeitschrift Fur Kristallographie - Crystalline Materials, 1993, 208, 249-252.	0.8	2
135	The Tsuji–Trost Reaction and Related Carbon–Carbon Bond Formation Reactions: Palladium-Catalyzed Allylation with Allyl Carbonates. , 0, , 1707-1767.		1
136	Nucleophilic Aromatic Substitution on 4-Fluorophenylsulfonamides: Nitrogen, Oxygen, and Sulfur Nucleophiles. Synlett, 2005, 2005, 449-452.	1.8	1
137	Formation of Carbon—Carbon Bonds under Catalysis by Transition-Metal Nanoparticles ChemInform, 2003, 34, no.	0.0	0
138	15-Membered Triolefinic Macrocycles, Their Coordination Chemistry with Transition Metals, and the Catalytic Properties of Their Palladium Metal Complexes ChemInform, 2004, 35, no.	0.0	0
139	Palladium Nanoparticles Obtained from Palladium Salts and Tributylamine in Molten Tetrabutylammonium Bromide: Their Use for Hydrogenolysis-Free Hydrogenation of Olefins ChemInform, 2005, 36, no.	0.0	0