Joel Leja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/839807/publications.pdf

Version: 2024-02-01

85541 76326 7,678 73 40 71 citations h-index g-index papers 75 75 75 4592 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Diagnosing DASH: A Catalog of Structural Properties for the COSMOS-DASH Survey. Astrophysical Journal, 2022, 925, 34.	4.5	12
2	Hubble Space Telescope Observations of GW170817: Complete Light Curves and the Properties of the Galaxy Merger of NGC 4993. Astrophysical Journal, 2022, 926, 49.	4.5	16
3	Fast, Slow, Early, Late: Quenching Massive Galaxies at z â^¼ 0.8. Astrophysical Journal, 2022, 926, 134.	4.5	70
4	SQulGGL⃗E: Studying Quenching in Intermediate-z Galaxiesâ€"Gas, AnguL⃗ar Momentum, and Evolution. Astrophysical Journal, 2022, 926, 89.	4.5	20
5	The Lick Observatory Supernova Search follow-up program: photometry data release of 70 SESNe. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3195-3214.	4.4	7
6	Physical Properties of the Host Galaxies of Ca-rich Transients. Astrophysical Journal, 2022, 927, 199.	4.5	7
7	How Well Can We Measure Galaxy Dust Attenuation Curves? The Impact of the Assumed Star-dust Geometry Model in Spectral Energy Distribution Fitting. Astrophysical Journal, 2022, 931, 14.	4.5	15
8	A Bayesian Population Model for the Observed Dust Attenuation in Galaxies. Astrophysical Journal, 2022, 932, 54.	4.5	13
9	The Diverse Molecular Gas Content of Massive Galaxies Undergoing Quenching at z \hat{a}^4 1. Astrophysical Journal Letters, 2021, 909, L11.	8.3	24
10	Stellar Population Inference with Prospector. Astrophysical Journal, Supplement Series, 2021, 254, 22.	7.7	259
11	Spatially resolved star formation and inside-out quenching in the TNG50 simulation and 3D-HST observations. Monthly Notices of the Royal Astronomical Society, 2021, 508, 219-235.	4.4	56
12	Chronicling the Host Galaxy Properties of the Remarkable Repeating FRB 20201124A. Astrophysical Journal Letters, 2021, 919, L23.	8.3	45
13	Quenching of star formation from a lack of inflowing gas to galaxies. Nature, 2021, 597, 485-488.	27.8	36
14	Recent Star Formation in a Massive Slowly Quenched Lensed Quiescent Galaxy at $z=1.88$. Astrophysical Journal Letters, 2021, 907, L8.	8.3	18
15	Reproducing the UVJ Color Distribution of Star-forming Galaxies at 0.5 < z < 2.5 with a Geometric Model of Dust Attenuation. Astrophysical Journal Letters, 2021, 922, L32.	8.3	16
16	High Molecular-gas to Dust Mass Ratios Predicted in Most Quiescent Galaxies. Astrophysical Journal Letters, 2021, 922, L30.	8.3	17
17	Ubiquitous [O ii] Emission in Quiescent Galaxies at z â‰^0.85 from the LEGA-C Survey*. Astrophysical Journal, 2021, 923, 18.	4.5	8
18	SPECULATOR: Emulating Stellar Population Synthesis for Fast and Accurate Galaxy Spectra and Photometry. Astrophysical Journal, Supplement Series, 2020, 249, 5.	7.7	33

#	Article	IF	CITATIONS
19	The GOGREEN survey: post-infall environmental quenching fails to predict the observed age difference between quiescent field and cluster galaxies at $\langle i\rangle z\langle i\rangle \hat{A}$ > $\hat{A}1$. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5317-5342.	4.4	37
20	Revealing the relation between black hole growth and host-galaxy compactness among star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4989-5008.	4.4	27
21	A New Census of the 0.2Â<ÂzÂ<Â3.0 Universe. I. The Stellar Mass Function. Astrophysical Journal, 2020, 893, 111.	4.5	71
22	REQUIEM-2D Methodology: Spatially Resolved Stellar Populations of Massive Lensed Quiescent Galaxies from Hubble Space Telescope 2D Grism Spectroscopy. Astrophysical Journal, 2020, 900, 184.	4.5	15
23	How Well Can We Measure the Stellar Mass of a Galaxy: The Impact of the Assumed Star Formation History Model in SED Fitting. Astrophysical Journal, 2020, 904, 33.	4.5	95
24	The Distant, Galaxy Cluster Environment of the Short GRB 161104A at z $\hat{a}^{1}/4$ 0.8 and a Comparison to the Short GRB Host Population. Astrophysical Journal, 2020, 904, 52.	4.5	17
25	Discovery of the Optical Afterglow and Host Galaxy of Short GRB 181123B at zÂ=Â1.754: Implications for Delay Time Distributions. Astrophysical Journal Letters, 2020, 898, L32.	8.3	24
26	Brackett-Î ³ Âas a Gold-standard Test of Star Formation Rates Derived from SED Fitting. Astrophysical Journal, 2020, 898, 165.	4.5	4
27	SN 2016iet: The Pulsational or Pair Instability Explosion of a Low-metallicity Massive CO Core Embedded in a Dense Hydrogen-poor Circumstellar Medium. Astrophysical Journal, 2019, 881, 87.	4.5	28
28	The tidal disruption event AT2017eqx: spectroscopic evolution from hydrogen rich to poor suggests an atmosphere and outflow. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1878-1893.	4.4	49
29	COSMOS-DASH: The Evolution of the Galaxy Size–Mass Relation since zÂâ^1⁄4Â3 from New Wide-field WFC3 Imaging Combined with CANDELS/3D-HST. Astrophysical Journal, 2019, 880, 57.	4.5	118
30	Discovery of a Dark, Massive, ALMA-only Galaxy at zÂâ^¼Â5–6 in a Tiny 3 mm Survey. Astrophysical Journal, 2019, 884, 154.	4.5	70
31	Beyond <i>UVJ</i> : More Efficient Selection of Quiescent Galaxies with Ultraviolet/Mid-infrared Fluxes. Astrophysical Journal Letters, 2019, 880, L9.	8.3	46
32	Lick Observatory Supernova Search follow-up program: photometry data release of 93 Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3882-3907.	4.4	52
33	The Hubble Legacy Field GOODS-S Photometric Catalog. Astrophysical Journal, Supplement Series, 2019, 244, 16.	7.7	47
34	Model-independent constraints on the hydrogen-ionizing emissivity at z & amp;gt; 6. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2669-2676.	4.4	42
35	An Older, More Quiescent Universe from Panchromatic SED Fitting of the 3D-HST Survey. Astrophysical Journal, 2019, 877, 140.	4.5	156
36	Measuring the Delay Time Distribution of Binary Neutron Stars. III. Using the Individual Star Formation Histories of Gravitational-wave Event Host Galaxies in the Local Universe. Astrophysical Journal Letters, 2019, 878, L14.	8.3	15

#	Article	IF	CITATIONS
37	How to Measure Galaxy Star Formation Histories. II. Nonparametric Models. Astrophysical Journal, 2019, 876, 3.	4.5	248
38	Millimeter Mapping at zÂâ^¼Â1: Dust-obscured Bulge Building and Disk Growth. Astrophysical Journal, 2019, 870, 130.	4.5	33
39	How to Measure Galaxy Star Formation Histories. I. Parametric Models. Astrophysical Journal, 2019, 873, 44.	4.5	156
40	An older, more quiescent universe from panchromatic SED fitting of the 3D-HST survey. Proceedings of the International Astronomical Union, 2019, 15, 99-102.	0.0	0
41	Hot Dust in Panchromatic SED Fitting: Identification of Active Galactic Nuclei and Improved Galaxy Properties. Astrophysical Journal, 2018, 854, 62.	4.5	54
42	zfourge: Extreme 5007 Ã Emission May Be a Common Early-lifetime Phase for Star-forming Galaxies at zÂ>Â2.5. Astrophysical Journal, 2018, 869, 141.	4.5	13
43	Deriving Physical Properties from Broadband Photometry with Prospector: Description of the Model and a Demonstration of its Accuracy Using 129 Galaxies in the Local Universe. Astrophysical Journal, 2017, 837, 170.	4.5	312
44	A New Method for Wide-field Near-IR Imaging with the <i> Hubble Space Telescope </i> i> Publications of the Astronomical Society of the Pacific, 2017, 129, 015004.	3.1	22
45	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale. Astrophysical Journal Letters, 2017, 848, L22.	8.3	107
46	PS16dtm: A Tidal Disruption Event in a Narrow-line Seyfert 1 Galaxy. Astrophysical Journal, 2017, 843, 106.	4.5	125
47	The Superluminous Supernova SN 2017egm in the Nearby Galaxy NGC 3191: A Metal-rich Environment Can Support a Typical SLSN Evolution. Astrophysical Journal Letters, 2017, 845, L8.	8.3	51
48	EVIDENCE FOR NON-STELLAR REST-FRAME NEAR-IR EMISSION ASSOCIATED WITH INCREASED STAR FORMATION IN GALAXIES AT zÂâ^1/4Â1. Astrophysical Journal Letters, 2016, 819, L4.	8.3	5
49	THE RELATION BETWEEN [O III] / H \hat{l}^2 AND SPECIFIC STAR FORMATION RATE IN GALAXIES AT z \hat{a}^4 2. Astrophysical Journal Letters, 2016, 828, L11.	8.3	16
50	WHERE STARS FORM: INSIDE-OUT GROWTH AND COHERENT STAR FORMATION FROM HST HαÂMAPS OF 3200 GALAXIES ACROSS THE MAIN SEQUENCE AT 0.7Â< zÂ<Â1.5. Astrophysical Journal, 2016, 828, 27.	4.5	166
51	THE 3D-HST SURVEY: <i>HUBBLE SPACE TELESCOPE</i> WFC3/G141 GRISM SPECTRA, REDSHIFTS, AND EMISSION LINE MEASUREMENTS FOR â°1/4100,000 GALAXIES. Astrophysical Journal, Supplement Series, 2016, 225, 27.	7.7	513
52	LEVERAGING 3D-HST GRISM REDSHIFTS TO QUANTIFY PHOTOMETRIC REDSHIFT PERFORMANCE. Astrophysical Journal, 2016, 822, 30.	4.5	26
53	FORMING COMPACT MASSIVE GALAXIES. Astrophysical Journal, 2015, 813, 23.	4.5	240
54	GALAXY STRUCTURE AS A DRIVER OF THE STAR FORMATION SEQUENCE SLOPE AND SCATTER. Astrophysical Journal Letters, 2015, 811, L12.	8.3	98

#	Article	IF	CITATIONS
55	RECONCILING THE OBSERVED STAR-FORMING SEQUENCE WITH THE OBSERVED STELLAR MASS FUNCTION. Astrophysical Journal, 2015, 798, 115.	4.5	59
56	On the importance of using appropriate spectral models to derive physical properties of galaxies at 0.7Â<ÂzÂ<Â2.8. Monthly Notices of the Royal Astronomical Society, 2015, 447, 786-805.	4.4	61
57	3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES. Astrophysical Journal, Supplement Series, 2014, 214, 24.	7.7	728
58	3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE-MASS DISTRIBUTION SINCE $\langle i \rangle z \langle i \rangle = 3$. Astrophysical Journal, 2014, 788, 28.	4.5	944
59	DENSE CORES IN GALAXIES OUT TO $\langle i \rangle z \langle i \rangle = 2.5$ IN SDSS, UltraVISTA, AND THE FIVE 3D-HST/CANDELS FIELDS. Astrophysical Journal, 2014, 791, 45.	4.5	111
60	OBSERVATIONS OF ENVIRONMENTAL QUENCHING IN GROUPS IN THE 11 GYR SINCE $\langle i \rangle_z \langle j \rangle_z = 2.5$: DIFFERENT QUENCHING FOR CENTRAL AND SATELLITE GALAXIES. Astrophysical Journal, 2014, 789, 164.	4.5	74
61	CONSTRAINING THE LOW-MASS SLOPE OF THE STAR FORMATION SEQUENCE AT 0.5 < <i>z</i> < <i>z</i> <<2.5. Astrophysical Journal, 2014, 795, 104.	4.5	646
62	A massive galaxy in its core formation phase three billion years after the Big Bang. Nature, 2014, 513, 394-397.	27.8	71
63	THE RADIAL DISTRIBUTION OF STAR FORMATION IN GALAXIES AT <i>z</i> \hat{a}^4 1 FROM THE 3D-HST SURVEY. Astrophysical Journal Letters, 2013, 763, L16.	8.3	48
64	GALAXY ENVIRONMENTS OVER COSMIC TIME: THE NON-EVOLVING RADIAL GALAXY DISTRIBUTIONS AROUND MASSIVE GALAXIES SINCE $\langle i \rangle z \langle j \rangle = 1.6$. Astrophysical Journal, 2013, 769, 31.	4.5	26
65	TRACING GALAXIES THROUGH COSMIC TIME WITH NUMBER DENSITY SELECTION. Astrophysical Journal, 2013, 766, 33.	4.5	74
66	THE ASSEMBLY OF MILKY-WAY-LIKE GALAXIES SINCE <i>z</i> \hat{a}^4 2.5. Astrophysical Journal Letters, 2013, 771, L35.	8.3	202
67	THE STRUCTURAL EVOLUTION OF MILKY-WAY-LIKE STAR-FORMING GALAXIES SINCE $\langle i \rangle z < i \rangle \hat{a}^{1}/4 \ 1.3$. Astrophysical Journal, 2013, 778, 115.	al 4.5	45
68	TIGHT CORRELATIONS BETWEEN MASSIVE GALAXY STRUCTURAL PROPERTIES AND DYNAMICS: THE MASS FUNDAMENTAL PLANE WAS IN PLACE BY <i>z</i> â ¹ / ₄ 2. Astrophysical Journal Letters, 2013, 779, L21.	8.3	56
69	EXPLORING THE CHEMICAL LINK BETWEEN LOCAL ELLIPTICALS AND THEIR HIGH-REDSHIFT PROGENITORS. Astrophysical Journal Letters, 2013, 778, L24.	8.3	15
70	3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE <i>HUBBLE SPACE TELESCOPE</i> Astrophysical Journal, Supplement Series, 2012, 200, 13.	7.7	536
71	Which Galaxy Property Best Predicts Quiescence?. Proceedings of the International Astronomical Union, 2012, 8, 177-177.	0.0	0
72	RESULTS OF THE LICK OBSERVATORY SUPERNOVA SEARCH FOLLOW-UP PHOTOMETRY PROGRAM: <i>BVRI</i> LIGHT CURVES OF 165 TYPE Ia SUPERNOVAE. Astrophysical Journal, Supplement Series, 2010, 190, 418-448.	7.7	200

#	Article	IF	CITATIONS
73	Predicting fully self-consistent satellite richness, galaxy growth and starformation rates from the STastical sEmi-Empirical modeL steel Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	10