Alexander Kurilshchikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8397928/publications.pdf

Version: 2024-02-01

65 papers

14,016 citations

34 h-index 66 g-index

83 all docs 83 docs citations

83 times ranked 16936 citing authors

#	Article	IF	CITATIONS
1	Environment dominates over host genetics in shaping human gut microbiota. Nature, 2018, 555, 210-215.	27.8	1,958
2	Population-level analysis of gut microbiome variation. Science, 2016, 352, 560-564.	12.6	1,716
3	Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science, 2016, 352, 565-569.	12.6	1,398
4	The neuroactive potential of the human gut microbiota in quality of life and depression. Nature Microbiology, 2019, 4, 623-632.	13.3	1,206
5	Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nature Genetics, 2019, 51, 600-605.	21.4	854
6	Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell, 2016, 167, 1125-1136.e8.	28.9	806
7	Large-scale association analyses identify host factors influencing human gut microbiome composition. Nature Genetics, 2021, 53, 156-165.	21.4	676
8	The effect of host genetics on the gut microbiome. Nature Genetics, 2016, 48, 1407-1412.	21.4	672
9	Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nature Communications, 2020, 11, 362.	12.8	416
10	Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Science Translational Medicine, 2018, 10, .	12.4	351
11	Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut, 2021, 70, 1287-1298.	12.1	246
12	Structural variation in the gut microbiome associates with host health. Nature, 2019, 568, 43-48.	27.8	244
13	Environmental factors shaping the gut microbiome in a Dutch population. Nature, 2022, 604, 732-739.	27.8	239
14	Host Genetics and Gut Microbiome: Challenges and Perspectives. Trends in Immunology, 2017, 38, 633-647.	6.8	219
15	Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nature Microbiology, 2019, 4, 1727-1736.	13.3	184
16	Intestinal microbiome composition and its relation to joint pain and inflammation. Nature Communications, 2019, 10, 4881.	12.8	176
17	Role of gut microbiota in chronic lowâ€grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies. Obesity Reviews, 2018, 19, 1719-1734.	6.5	169
18	Relationship between gut microbiota and circulating metabolites in population-based cohorts. Nature Communications, 2019, 10, 5813.	12.8	168

#	Article	lF	Citations
19	The long-term genetic stability and individual specificity of the human gut microbiome. Cell, 2021, 184, 2302-2315.e12.	28.9	166
20	Shared gut, but distinct oral microbiota composition in primary Sjögren's syndrome and systemic lupus erythematosus. Journal of Autoimmunity, 2019, 97, 77-87.	6.5	147
21	Gut Microbial Associations to Plasma Metabolites Linked to Cardiovascular Phenotypes and Risk. Circulation Research, 2019, 124, 1808-1820.	4.5	137
22	Effect of host genetics on the gut microbiome in 7,738 participants of the Dutch Microbiome Project. Nature Genetics, 2022, 54, 143-151.	21.4	132
23	Association of Insulin Resistance and Type 2 Diabetes With Gut Microbial Diversity. JAMA Network Open, 2021, 4, e2118811.	5.9	119
24	Analysis of 1135 gut metagenomes identifies sex-specific resistome profiles. Gut Microbes, 2019, 10, 358-366.	9.8	118
25	Studying the gut virome in the metagenomic era: challenges and perspectives. BMC Biology, 2019, 17, 84.	3.8	113
26	Meta-analysis of human genome-microbiome association studies: the MiBioGen consortium initiative. Microbiome, 2018, 6, 101.	11.1	109
27	Individual variations in cardiovascular-disease-related protein levels are driven by genetics and gut microbiome. Nature Genetics, 2018, 50, 1524-1532.	21.4	97
28	Microbiome Responses to an Uncontrolled Short-Term Diet Intervention in the Frame of the Citizen Science Project. Nutrients, 2018, 10, 576.	4.1	96
29	Gut microbial co-abundance networks show specificity in inflammatory bowel disease and obesity. Nature Communications, 2020, 11 , 4018 .	12.8	80
30	Genetic and Microbial Associations to Plasma and Fecal Bile Acids in Obesity Relate to Plasma Lipids and Liver Fat Content. Cell Reports, 2020, 33, 108212.	6.4	55
31	Detection of stable community structures within gut microbiota co-occurrence networks from different human populations. PeerJ, 2018, 6, e4303.	2.0	48
32	Challenges and future directions for studying effects of host genetics on the gut microbiome. Nature Genetics, 2022, 54, 100-106.	21.4	46
33	Comparative Metagenomic Profiling of Symbiotic Bacterial Communities Associated with Ixodes persulcatus, Ixodes pavlovskyi and Dermacentor reticulatus Ticks. PLoS ONE, 2015, 10, e0131413.	2.5	41
34	An association between chronic widespread pain and the gut microbiome. Rheumatology, 2021, 60, 3727-3737.	1.9	40
35	Stability of the human gut virome and effect of gluten-free diet. Cell Reports, 2021, 35, 109132.	6.4	34
36	Marked Changes in Gut Microbiota in Cardio-Surgical Intensive Care Patients: A Longitudinal Cohort Study. Frontiers in Cellular and Infection Microbiology, 2019, 9, 467.	3.9	32

#	Article	IF	CITATIONS
37	Yoghurt consumption is associated with changes in the composition of the human gut microbiome and metabolome. BMC Microbiology, 2022, 22, 39.	3.3	31
38	Discovery, diversity, and functional associations of crAss-like phages in human gut metagenomes from four Dutch cohorts. Cell Reports, 2022, 38, 110204.	6.4	30
39	Unbiased approach to profile the variety of small non-coding RNA of human blood plasma with massively parallel sequencing technology. Expert Opinion on Biological Therapy, 2012, 12, S43-S51.	3.1	29
40	Integrated fecal microbiome–metabolome signatures reflect stress and serotonin metabolism in irritable bowel syndrome. Gut Microbes, 2022, 14, 2063016.	9.8	28
41	Whole exome sequencing analyses reveal gene–microbiota interactions in the context of IBD. Gut, 2021, 70, gutjnl-2019-319706.	12.1	26
42	A Two-Sample Mendelian Randomization Analysis Investigates Associations Between Gut Microbiota and Celiac Disease. Nutrients, 2020, 12, 1420.	4.1	26
43	Evolutionary time-scale of primate bocaviruses. Infection, Genetics and Evolution, 2013, 14, 265-274.	2.3	25
44	Genetic, parental and lifestyle factors influence telomere length. Communications Biology, 2022, 5, .	4.4	23
45	Immunochip meta-analysis in European and Argentinian populations identifies two novel genetic loci associated with celiac disease. European Journal of Human Genetics, 2020, 28, 313-323.	2.8	21
46	Lytic bacteriophage PM16 specific for Proteus mirabilis: a novel member of the genus Phikmvvirus. Archives of Virology, 2016, 161, 2457-2472.	2.1	20
47	Genetic diversity of Ixodes pavlovskyi and I. persulcatus (Acari: Ixodidae) from the sympatric zone in the south of Western Siberia and Kazakhstan. Experimental and Applied Acarology, 2015, 67, 441-456.	1.6	19
48	The systemic tumor response to RNase A treatment affects the expression of genes involved in maintaining cell malignancy. Oncotarget, 2017, 8, 78796-78810.	1.8	19
49	Alteration of the exDNA profile in blood serum of LLC-bearing mice under the decrease of tumour invasion potential by bovine pancreatic DNase I treatment. PLoS ONE, 2017, 12, e0171988.	2.5	19
50	MicroRNA Drop in the Bloodstream and MicroRNA Boost in the Tumour Caused by Treatment with Ribonuclease A Leads to an Attenuation of Tumour Malignancy. PLoS ONE, 2013, 8, e83482.	2.5	18
51	Isolation and characterization of a group of new Proteus bacteriophages. Archives of Virology, 2018, 163, 2189-2197.	2.1	18
52	Role of the gut microbiome in mediating lactose intolerance symptoms. Gut, 2022, 71, 215-217.	12.1	18
53	Whole-Genome Sequencing of Borrelia garinii BgVir, Isolated from Taiga Ticks (Ixodes persulcatus). Journal of Bacteriology, 2012, 194, 5713-5713.	2.2	16
54	Human bocavirus in hospitalized children with acute gastroenteritis in Russia from 2010 to 2012. Infection, Genetics and Evolution, 2016, 37, 143-149.	2.3	16

#	Article	IF	CITATIONS
55	GWAS of stool frequency provides insights into gastrointestinal motility and irritable bowel syndrome. Cell Genomics, 2021, 1, 100069.	6. 5	15
56	A comparative study of cell-free apoptotic and genomic DNA using FISH and massive parallel sequencing. Expert Opinion on Biological Therapy, 2012, 12, S11-S17.	3.1	14
57	Genetic diversity of group a rotavirus isolates found in Western Siberia in 2007–2011. Molecular Genetics, Microbiology and Virology, 2012, 27, 174-183.	0.3	12
58	Gut Microbiota Composition of Biliary Atresia Patients Before Kasai Portoenterostomy Associates With Long-term Outcome. Journal of Pediatric Gastroenterology and Nutrition, 2021, 73, 485-490.	1.8	10
59	Complete Genome Sequencing of Borrelia valaisiana and Borrelia afzelii Isolated from Ixodes persulcatus Ticks in Western Siberia. Genome Announcements, 2014, 2, .	0.8	7
60	A novel thermophilic Aeribacillus bacteriophage AP45 isolated from the Valley of Geysers, Kamchatka: genome analysis suggests the existence of a new genus within the Siphoviridae family. Extremophiles, 2019, 23, 599-612.	2.3	7
61	A combination of fecal calprotectin and human beta-defensin 2 facilitates diagnosis and monitoring of inflammatory bowel disease. Gut Microbes, 2021, 13, 1943288.	9.8	4
62	Microbial Impact on Plasma Metabolites is Linked to the Cardiovascular Risk and Phenotypes. Atherosclerosis Supplements, 2018, 32, 118-119.	1.2	2
63	IBD Genetics and the Gut Microbiome. , 2019, , 231-248.		1
64	Gut microbiome composition and its relation to joint pain and inflammation. Osteoarthritis and Cartilage, 2019, 27, S26.	1.3	0
65	P006 Host-genetics, dysbiosis, and clinical history explains fecal metabolic alterations in patients with Inflammatory Bowel Disease. Journal of Crohn's and Colitis, 2021, 15, S128-S128.	1.3	0