Lei Xing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8395484/publications.pdf

Version: 2024-02-01

13099 22166 17,793 416 68 113 citations h-index g-index papers 425 425 425 14152 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	NeRP: Implicit Neural Representation Learning With Prior Embedding for Sparsely Sampled Image Reconstruction. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 770-782.	11.3	36
2	Morphological Characteristics of Eroded Plaques with Noncritical Coronary Stenosis: An Optical Coherence Tomography Study. Journal of Atherosclerosis and Thrombosis, 2022, 29, 126-140.	2.0	7
3	Increased Vulnerability and Distinct Layered Phenotype at Culprit and Nonculprit Lesions in STEMI VersusÂNSTEMI. JACC: Cardiovascular Imaging, 2022, 15, 672-681.	5.3	15
4	Dose Prediction for Cervical Cancer Brachytherapy Using 3-D Deep Convolutional Neural Network. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 214-221.	3.7	2
5	Human-level comparable control volume mapping with a deep unsupervised-learning model for image-guided radiation therapy. Computers in Biology and Medicine, 2022, 141, 105139.	7.0	1
6	Attention-guided deep learning for gestational age prediction using fetal brain MRI. Scientific Reports, 2022, 12, 1408.	3.3	15
7	Novel-view X-ray projection synthesis through geometry-integrated deep learning. Medical Image Analysis, 2022, 77, 102372.	11.6	3
8	Mechanoporation enables rapid and efficient radiolabeling of stem cells for PET imaging. Scientific Reports, 2022, 12, 2955.	3.3	2
9	Meta-optimization for fully automated radiation therapy treatment planning. Physics in Medicine and Biology, 2022, 67, 055011.	3.0	4
10	Predicting peritoneal recurrence and disease-free survival from CT images in gastric cancer with multitask deep learning: a retrospective study. The Lancet Digital Health, 2022, 4, e340-e350.	12.3	45
11	Implicit neural representation for radiation therapy dose distribution. Physics in Medicine and Biology, 2022, 67, 125014.	3.0	7
12	Beam commissioning of the first clinical biologyâ€guided radiotherapy system. Journal of Applied Clinical Medical Physics, 2022, 23, e13607.	1.9	8
13	IMRT and SBRT Treatment Planning Study for the First Clinical Biology-Guided Radiotherapy System. Technology in Cancer Research and Treatment, 2022, 21, 153303382211002.	1.9	7
14	Treatment planning system commissioning of the first clinical biologyâ€guided radiotherapy machine. Journal of Applied Clinical Medical Physics, 2022, 23, .	1.9	9
15	Operator splitting for adaptive radiation therapy with nonlinear health dynamics. Optimization Methods and Software, 2022, 37, 2300-2323.	2.4	1
16	Relationship of Microchannels and Plaque Erosion in Patients with ST-Segment Elevation Myocardial Infarction: An Optical Coherence Tomography Study. Cardiology Discovery, 2022, 2, 83-88.	0.5	0
17	A geometry-informed deep learning framework for ultra-sparse 3D tomographic image reconstruction. Computers in Biology and Medicine, 2022, 148, 105710.	7.0	13
18	Shifting machine learning for healthcare from development to deployment and from models to data. Nature Biomedical Engineering, 2022, 6, 1330-1345.	22.5	69

#	Article	IF	Citations
19	A data-driven dimensionality-reduction algorithm for the exploration of patterns in biomedical data. Nature Biomedical Engineering, 2021, 5, 624-635.	22.5	20
20	Transformation-Consistent Self-Ensembling Model for Semisupervised Medical Image Segmentation. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 523-534.	11.3	240
21	Deep Sinogram Completion With Image Prior for Metal Artifact Reduction in CT Images. IEEE Transactions on Medical Imaging, 2021, 40, 228-238.	8.9	67
22	Pancoronary Plaque Characteristics in STEMI Caused by Culprit Plaque Erosion Versus Rupture. JACC: Cardiovascular Imaging, 2021, 14, 1235-1245.	5.3	29
23	Systemic and local factors associated with reduced thrombolysis in myocardial infarction flow in ST-segment elevation myocardial infarction patients with plaque erosion detected by intravascular optical coherence tomography. International Journal of Cardiovascular Imaging, 2021, 37, 399-409.	1.5	5
24	Outlook of the future landscape of artificial intelligence in medicine and new challenges. , 2021, , 503-526.		1
25	Artificial intelligence should be part of medical physics graduate program curriculum. Medical Physics, 2021, 48, 1457-1460.	3.0	6
26	Pulmonary Ventilation Maps Generated with Free-breathing Proton MRI and a Deep Convolutional Neural Network. Radiology, 2021, 298, 427-438.	7.3	16
27	Closing the Gap Between Deep Neural Network Modeling and Biomedical Decision-Making Metrics in Segmentation via Adaptive Loss Functions. IEEE Transactions on Medical Imaging, 2021, 40, 585-593.	8.9	16
28	Development and validation of a model to predict survival in colorectal cancer using a gradient-boosted machine. Gut, 2021, 70, 884-889.	12.1	30
29	Deep Neural Network With Consistency Regularization of Multi-Output Channels for Improved Tumor Detection and Delineation. IEEE Transactions on Medical Imaging, 2021, 40, 3369-3378.	8.9	19
30	Deep learning-augmented radiotherapy visualization with a cylindrical radioluminescence system. Physics in Medicine and Biology, 2021, 66, 045014.	3.0	2
31	Automated contour propagation of the prostate from pCT to CBCT images via deep unsupervised learning. Medical Physics, 2021, 48, 1764-1770.	3.0	20
32	Prior-image-based CT reconstruction using attenuation-mismatched priors. Physics in Medicine and Biology, 2021, 66, 064007.	3.0	2
33	Calibrated uncertainty estimation for interpretable proton computed tomography image correction using Bayesian deep learning. Physics in Medicine and Biology, 2021, 66, 065029.	3.0	3
34	Modularized dataâ€driven reconstruction framework for nonideal focal spot effect elimination in computed tomography. Medical Physics, 2021, 48, 2245-2257.	3.0	4
35	A robotically assisted 3D printed quality assurance lung phantom for Calypso. Physics in Medicine and Biology, 2021, 66, 074005.	3.0	3
36	Multi-Domain Image Completion for Random Missing Input Data. IEEE Transactions on Medical Imaging, 2021, 40, 1113-1122.	8.9	43

#	Article	IF	Citations
37	MR to ultrasound image registration with segmentationâ€based learning for HDR prostate brachytherapy. Medical Physics, 2021, 48, 3074-3083.	3.0	13
38	Estimating dual-energy CT imaging from single-energy CT data with material decomposition convolutional neural network. Medical Image Analysis, 2021, 70, 102001.	11.6	34
39	Independent verification of brachytherapy treatment plan by using deep learning inference modeling. Physics in Medicine and Biology, 2021, 66, 125014.	3.0	7
40	Development and Validation of an Interpretable Artificial Intelligence Model to Predict 10-Year Prostate Cancer Mortality. Cancers, 2021, 13, 3064.	3.7	8
41	Detection of Carotid Artery Stenosis with Intraplaque Hemorrhage and Neovascularization Using a Scanning Interferometer. Nano Letters, 2021, 21, 5714-5721.	9.1	0
42	Multicellular Spheroids as InÂVitro Models of Oxygen Depletion During FLASH Irradiation. International Journal of Radiation Oncology Biology Physics, 2021, 110, 833-844.	0.8	26
43	Noise2Context: Contextâ€assisted learning 3D thinâ€layer for lowâ€dose CT. Medical Physics, 2021, 48, 5794-5803.	3.0	12
44	Metal artifact reduction in 2D CT images with self-supervised cross-domain learning. Physics in Medicine and Biology, 2021, 66, 175003.	3.0	16
45	Rotation-Oriented Collaborative Self-Supervised Learning for Retinal Disease Diagnosis. IEEE Transactions on Medical Imaging, 2021, 40, 2284-2294.	8.9	41
46	Deep learningâ€augmented radioluminescence imaging for radiotherapy dose verification. Medical Physics, 2021, 48, 6820-6831.	3.0	4
47	Fully automated noncoplanar radiation therapy treatment planning. Medical Physics, 2021, 48, 7439-7449.	3.0	5
48	Deep learningâ€enabled EPIDâ€based 3D dosimetry for dose verification of stepâ€andâ€shoot radiotherapy. Medical Physics, 2021, 48, 6810-6819.	3.0	4
49	Pareto Optimal Projection Search (POPS): Automated Radiation Therapy Treatment Planning by Direct Search of the Pareto Surface. IEEE Transactions on Biomedical Engineering, 2021, 68, 2907-2917.	4.2	4
50	Geometry and statistics-preserving manifold embedding for nonlinear dimensionality reduction. Pattern Recognition Letters, 2021, 151, 155-162.	4.2	8
51	TransCT: Dual-Path Transformer for Low Dose Computed Tomography. Lecture Notes in Computer Science, 2021, , 55-64.	1.3	35
52	Smallâ€field measurement and Monte Carlo model validation of a novel imageâ€guided radiotherapy system. Medical Physics, 2021, 48, 7450-7460.	3.0	7
53	Relationship between non-culprit lesion plaque characteristics changes and in-stent neoatherosclerosis formation: 1-year follow-up optical coherence tomography study. Reviews in Cardiovascular Medicine, 2021, 22, 1693.	1.4	0
54	Automated hepatobiliary toxicity prediction after liver stereotactic body radiation therapy with deep learning-based portal vein segmentation. Neurocomputing, 2020, 392, 181-188.	5.9	6

#	Article	IF	Citations
55	Incorporating prior knowledge via volumetric deep residual network to optimize the reconstruction of sparsely sampled MRI. Magnetic Resonance Imaging, 2020, 66, 93-103.	1.8	29
56	Design and Preliminary Experience of a Tele-Radiotherapy System for a Medical Alliance in China. Telemedicine Journal and E-Health, 2020, 26, 235-243.	2.8	6
57	High-Frequency Irreversible Electroporation Using 5,000-V Waveforms to Create Reproducible 2- and 4-cm Ablation Zones—A Laboratory Investigation Using Mechanically Perfused Liver. Journal of Vascular and Interventional Radiology, 2020, 31, 162-168.e7.	0.5	15
58	Modified U-Net (mU-Net) With Incorporation of Object-Dependent High Level Features for Improved Liver and Liver-Tumor Segmentation in CT Images. IEEE Transactions on Medical Imaging, 2020, 39, 1316-1325.	8.9	252
59	Densely Connected Neural Network With Unbalanced Discriminant and Category Sensitive Constraints for Polyp Recognition. IEEE Transactions on Automation Science and Engineering, 2020, 17, 574-583.	5.2	26
60	Modified fast adaptive scatter kernel superposition (mfASKS) correction and its dosimetric impact on CBCTâ€based proton therapy dose calculation. Medical Physics, 2020, 47, 190-200.	3.0	10
61	Deep DoseNet: a deep neural network for accurate dosimetric transformation between different spatial resolutions and/or different dose calculation algorithms for precision radiation therapy. Physics in Medicine and Biology, 2020, 65, 035010.	3.0	30
62	Wireless Capsule Endoscopy: A New Tool for Cancer Screening in the Colon With Deep-Learning-Based Polyp Recognition. Proceedings of the IEEE, 2020, 108, 178-197.	21.3	53
63	Frequency, Predictors, Distribution, and Morphological Characteristics of Layered Culprit and Nonculprit Plaques of Patients With Acute Myocardial Infarction. Circulation: Cardiovascular Interventions, 2020, 13, e009125.	3.9	20
64	Automatic intraprostatic lesion segmentation in multiparametric magnetic resonance images with proposed multiple branch UNet. Medical Physics, 2020, 47, 6421-6429.	3.0	25
65	Beam data modeling of linear accelerators (linacs) through machine learning and its potential applications in fast and robust linac commissioning and quality assurance. Radiotherapy and Oncology, 2020, 153, 122-129.	0.6	14
66	Accelerating quantitative MR imaging with the incorporation of B1 compensation using deep learning. Magnetic Resonance Imaging, 2020, 72, 78-86.	1.8	15
67	Self-Supervised Feature Learning via Exploiting Multi-Modal Data for Retinal Disease Diagnosis. IEEE Transactions on Medical Imaging, 2020, 39, 4023-4033.	8.9	66
68	Technical Note: Evaluation of audiovisual biofeedback smartphone application for respiratory monitoring in radiation oncology. Medical Physics, 2020, 47, 5496-5504.	3.0	2
69	Deriving new soft tissue contrasts from conventional MR images using deep learning. Magnetic Resonance Imaging, 2020, 74, 121-127.	1.8	1
70	Deep Learning Prediction of Cancer Prevalence from Satellite Imagery. Cancers, 2020, 12, 3844.	3.7	4
71	Automatic Polyp Recognition in Colonoscopy Images Using Deep Learning and Two-Stage Pyramidal Feature Prediction. IEEE Transactions on Automation Science and Engineering, 2020, , 1-15.	5.2	34
72	Machine learning techniques for biomedical image segmentation: An overview of technical aspects and introduction to stateâ€ofâ€art applications. Medical Physics, 2020, 47, e148-e167.	3.0	151

#	Article	IF	Citations
73	Electro-thermal therapy: Microsecond duration pulsed electric field tissue ablation with dynamic temperature control algorithms. Computers in Biology and Medicine, 2020, 121, 103807.	7.0	8
74	Temperature Dependence of High Frequency Irreversible Electroporation Evaluated in a 3D Tumor Model. Annals of Biomedical Engineering, 2020, 48, 2233-2246.	2.5	21
75	Deep learning for identification of critical regions associated with toxicities after liver stereotactic body radiation therapy. Medical Physics, 2020, 47, 3721-3731.	3.0	22
76	Deep Learning-Based Spectral Unmixing for Optoacoustic Imaging of Tissue Oxygen Saturation. IEEE Transactions on Medical Imaging, 2020, 39, 3643-3654.	8.9	39
77	Relationship between elevated plasma ceramides and plaque rupture in patients with ST-segment elevation myocardial infarction. Atherosclerosis, 2020, 302, 8-14.	0.8	13
78	Deep learning applications in automatic needle segmentation in ultrasoundâ€guided prostate brachytherapy. Medical Physics, 2020, 47, 3797-3805.	3.0	11
79	Hybrid adversarialâ€discriminative network for leukocyte classification in leukemia. Medical Physics, 2020, 47, 3732-3744.	3.0	23
80	Verification of the machine delivery parameters of a treatment plan via deep learning. Physics in Medicine and Biology, 2020, 65, 195007.	3.0	13
81	A deep learning framework for prostate localization in cone beam CTâ€guided radiotherapy. Medical Physics, 2020, 47, 4233-4240.	3.0	21
82	Fast spot-scanning proton dose calculation method with uncertainty quantification using a three-dimensional convolutional neural network. Physics in Medicine and Biology, 2020, 65, 215007.	3.0	8
83	Restarted primal–dual Newton conjugate gradient method for enhanced spatial resolution of reconstructed cone-beam x-ray luminescence computed tomography images. Physics in Medicine and Biology, 2020, 65, 135008.	3.0	10
84	Screening for chronic obstructive pulmonary disease with artificial intelligence. The Lancet Digital Health, 2020, 2, e216-e217.	12.3	11
85	Difficulty-Aware Meta-learning for Rare Disease Diagnosis. Lecture Notes in Computer Science, 2020, , 357-366.	1.3	28
86	Automated multi-parameter high-dose-rate brachytherapy quality assurance via radioluminescence imaging. Physics in Medicine and Biology, 2020, 65, 225005.	3.0	7
87	Data-driven dose calculation algorithm based on deep U-Net. Physics in Medicine and Biology, 2020, 65, 245035.	3.0	22
88	Deep learning-enhanced LED-based photoacoustic imaging. , 2020, , .		7
89	Deciphering tissue relaxation parameters from a single MR image using deep learning. , 2020, , .		3
90	Superpixel Region Merging Based on Deep Network for Medical Image Segmentation. ACM Transactions on Intelligent Systems and Technology, 2020, 11, 1-22.	4.5	13

#	Article	IF	Citations
91	Highâ€speed Xâ€rayâ€induced luminescence computed tomography. Journal of Biophotonics, 2020, 13, e202000066.	2.3	4
92	Second window near-infrared dosimeter (NIR2D) system for radiation dosimetry. Physics in Medicine and Biology, 2020, 65, 175013.	3.0	0
93	Food based contrast agents for photoacoustic imaging. , 2020, , .		0
94	Obtaining dual-energy computed tomography (CT) information from a single-energy CT image for quantitative imaging analysis of living subjects by using deep learning. Pacific Symposium on Biocomputing, 2020, 25, 139-148.	0.7	6
95	Deep Generative Adversarial Neural Networks for Compressive Sensing MRI. IEEE Transactions on Medical Imaging, 2019, 38, 167-179.	8.9	373
96	A radiomics approach based on support vector machine using MR images for preoperative lymph node status evaluation in intrahepatic cholangiocarcinoma. Theranostics, 2019, 9, 5374-5385.	10.0	108
97	Real-Time Radiation Treatment Planning with Optimality Guarantees via Cluster and Bound Methods. INFORMS Journal on Computing, 2019, 31, 544-558.	1.7	5
98	Incorporating imaging information from deep neural network layers into image guided radiation therapy (IGRT). Radiotherapy and Oncology, 2019, 140, 167-174.	0.6	28
99	Prostate Segmentation with Encoder-Decoder Densely Connected Convolutional Network (Ed-Densenet)., 2019,,.		18
100	Markerless Pancreatic Tumor Target Localization Enabled By Deep Learning. International Journal of Radiation Oncology Biology Physics, 2019, 105, 432-439.	0.8	49
101	Range and dose verification in proton therapy using proton-induced positron emitters and recurrent neural networks (RNNs). Physics in Medicine and Biology, 2019, 64, 175009.	3.0	19
102	Optimizing efficiency and safety in external beam radiotherapy using automated plan check (APC) tool and six sigma methodology. Journal of Applied Clinical Medical Physics, 2019, 20, 56-64.	1.9	16
103	Fully automatic segmentation of type B aortic dissection from CTA images enabled by deep learning. European Journal of Radiology, 2019, 121, 108713.	2.6	61
104	Reduced acquisition time for Lâ€shell xâ€ray fluorescence computed tomography using polycapillary xâ€ray optics. Medical Physics, 2019, 46, 5696-5702.	3.0	7
105	Technical Note: Machine learning approaches for range and dose verification in proton therapy using protonâ€induced positron emitters. Medical Physics, 2019, 46, 5748-5757.	3.0	14
106	Culprit lesion morphology in young patients with ST-segment elevated myocardial infarction: A clinical, angiographic and optical coherence tomography study. Atherosclerosis, 2019, 289, 94-100.	0.8	21
107	Augmented Bladder Tumor Detection Using Deep Learning. European Urology, 2019, 76, 714-718.	1.9	117
108	Tensor framelet based iterative image reconstruction algorithm for low-dose multislice helical CT. PLoS ONE, 2019, 14, e0210410.	2.5	2

#	Article	IF	CITATIONS
109	Controlled Nano–Bio Interface of Functional Nanoprobes for in Vivo Monitoring Enzyme Activity in Tumors. ACS Nano, 2019, 13, 1153-1167.	14.6	16
110	Dose distribution prediction in isodose featureâ€preserving voxelization domain using deep convolutional neural network. Medical Physics, 2019, 46, 2978-2987.	3.0	27
111	Task Group 174 Report: Utilization of [18 F]Fluorodeoxyglucose Positron Emission Tomography ([18) Tj ETQq1 I	l 0.78431 3.6	4 rgBT /Ove
112	Potential of Gd-EOB-DTPA as an imaging biomarker for liver injury estimation after radiation therapy. Hepatobiliary and Pancreatic Diseases International, 2019, 18, 354-359.	1.3	8
113	Simulation studies of time reversalâ€based protoacoustic reconstruction for range and dose verification in proton therapy. Medical Physics, 2019, 46, 3649-3662.	3.0	21
114	Projectionâ€domain scatter correction for cone beam computed tomography using a residual convolutional neural network. Medical Physics, 2019, 46, 3142-3155.	3.0	55
115	Incorporating dosimetric features into the prediction of 3D VMAT dose distributions using deep convolutional neural network. Physics in Medicine and Biology, 2019, 64, 125017.	3.0	35
116	Attentionâ€aware fully convolutional neural network with convolutional long shortâ€term memory network for ultrasoundâ€based motion tracking. Medical Physics, 2019, 46, 2275-2285.	3.0	22
117	Neural Networks for Deep Radiotherapy Dose Analysis and Prediction of Liver SBRT Outcomes. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 1821-1833.	6.3	25
118	A novel range-verification method using ionoacoustic wave generated from spherical gold markers for particle-beam therapy: a simulation study. Scientific Reports, 2019, 9, 4011.	3.3	9
119	Self-attention convolutional neural network for improved MR image reconstruction. Information Sciences, 2019, 490, 317-328.	6.9	65
120	In Vivo Translation of the CIRPI System: Revealing Molecular Pathology of Rabbit Aortic Atherosclerotic Plaques. Journal of Nuclear Medicine, 2019, 60, 1308-1316.	5.0	2
121	Obtaining dual-energy computed tomography (CT) information from a single-energy CT image for quantitative imaging analysis of living subjects by using deep learning. , 2019, , .		10
122	Upconversion Luminescence Imaging of Tumors with EGFR-Affibody Conjugated Nanophosphors. MRS Advances, 2019, 4, 2461-2470.	0.9	2
123	Factor 10 Expedience of Monthly Linac Quality Assurance via an Ion Chamber Array and Automation Scripts. Technology in Cancer Research and Treatment, 2019, 18, 153303381987689.	1.9	5
124	Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning. Nature Biomedical Engineering, 2019, 3, 880-888.	22.5	163
125	A convex optimization approach to radiation treatment planning with dose constraints. Optimization and Engineering, 2019, 20, 277-300.	2.4	10
126	Prostate cancer classification with multiparametric MRI transfer learning model. Medical Physics, 2019, 46, 756-765.	3.0	98

#	Article	IF	CITATIONS
127	Dosimetric featuresâ€driven machine learning model for DVH prediction in VMAT treatment planning. Medical Physics, 2019, 46, 857-867.	3.0	34
128	Harnessing the power of deep learning for volumetric CT imaging with single or limited number of projections. , 2019, , .		5
129	A deep learning approach for dual-energy CT imaging using a single-energy CT data. , 2019, , .		11
130	X-ray-induced shortwave infrared luminescence computed tomography. Optics Letters, 2019, 44, 4769.	3.3	9
131	High spatial resolution x-ray luminescence computed tomography and x-ray fluorescence computed tomography. , 2019, , .		1
132	Automatic marker-free target positioning and tracking for image-guided radiotherapy and interventions. , 2019, , .		0
133	Artificial intelligence will soon change the landscape of medical physics research and practice. Medical Physics, 2018, 45, 1791-1793.	3.0	57
134	Coded-Aperture Compressed Sensing X-Ray Luminescence Tomography. IEEE Transactions on Biomedical Engineering, 2018, 65, 1892-1895.	4.2	18
135	A unified material decomposition framework for quantitative dual―and tripleâ€energy CT imaging. Medical Physics, 2018, 45, 2964-2977.	3.0	19
136	Synergistically Enhancing the Therapeutic Effect of Radiation Therapy with Radiation Activatable and Reactive Oxygen Species-Releasing Nanostructures. ACS Nano, 2018, 12, 4946-4958.	14.6	101
137	Reduction of Muscle Contractions during Irreversible Electroporation Therapy Using High-Frequency Bursts of Alternating Polarity Pulses: A Laboratory Investigation in an ExÂVivo Swine Model. Journal of Vascular and Interventional Radiology, 2018, 29, 893-898.e4.	0.5	46
138	Superpixel-based and boundary-sensitive convolutional neural network for automated liver segmentation. Physics in Medicine and Biology, 2018, 63, 095017.	3.0	73
139	Nonculprit Plaque Characteristics in Patients With Acute Coronary Syndrome Caused by Plaque Erosion vs Plaque Rupture. JAMA Cardiology, 2018, 3, 207.	6.1	63
140	Selection of external beam radiotherapy approaches for precise and accurate cancer treatment. Journal of Radiation Research, 2018, 59, i2-i10.	1.6	28
141	Radiomics and radiogenomics for precision radiotherapy. Journal of Radiation Research, 2018, 59, i25-i31.	1.6	74
142	Strategies for prediction and mitigation of radiation-induced liver toxicity. Journal of Radiation Research, 2018, 59, i40-i49.	1.6	33
143	Generalized Adaptive Gaussian Markov Random Field for X-Ray Luminescence Computed Tomography. IEEE Transactions on Biomedical Engineering, 2018, 65, 2130-2133.	4.2	19
144	Optimization of a single insertion electrode array for the creation of clinically relevant ablations using high-frequency irreversible electroporation. Computers in Biology and Medicine, 2018, 95, 107-117.	7.0	23

#	Article	IF	CITATIONS
145	A computation study on an integrated alternating direction method of multipliers for large scale optimization. Optimization Letters, 2018, 12, 3-15.	1.6	3
146	Cumulative dose of radiation therapy of hepatocellular carcinoma patients and its deterministic relation to radiation-induced liver disease. Medical Dosimetry, 2018, 43, 258-266.	0.9	5
147	Treatment of Cancer In Vitro Using Radiation and High-Frequency Bursts of Submicrosecond Electrical Pulses. IEEE Transactions on Biomedical Engineering, 2018, 65, 928-935.	4.2	17
148	Differences in coronary plaque morphology between East Asian and Western White patients. Coronary Artery Disease, 2018, 29, 597-602.	0.7	5
149	Line-Enhanced Deformable Registration of Pulmonary Computed Tomography Images Before and After Radiation Therapy With Radiation-Induced Fibrosis. Technology in Cancer Research and Treatment, 2018, 17, 153303461774941.	1.9	2
150	Rare-Earth-Doped Nanoparticles for Short-Wave Infrared Fluorescence Bioimaging and Molecular Targeting of $\hat{l}_{sub} < \hat{l}_{sub} ^2 < l$	1.4	10
151	Editorial: Machine Learning With Radiation Oncology Big Data. Frontiers in Oncology, 2018, 8, 416.	2.8	5
152	RIIS-DenseNet: Rotation-Invariant andÂlmage Similarity Constrained Densely Connected Convolutional Network for Polyp Detection. Lecture Notes in Computer Science, 2018, , 620-628.	1.3	12
153	Isodose featureâ€preserving voxelization (IFPV) for radiation therapy treatment planning. Medical Physics, 2018, 45, 3321-3329.	3.0	4
154	Polarized xâ€ray excitation for scatter reduction in xâ€ray fluorescence computed tomography. Medical Physics, 2018, 45, 3741-3748.	3.0	13
155	Segmentation of parotid glands from registered CT and MR images. Physica Medica, 2018, 52, 33-41.	0.7	33
156	Monte Carlo tree search -based non-coplanar trajectory design for station parameter optimized radiation therapy (SPORT). Physics in Medicine and Biology, 2018, 63, 135014.	3.0	13
157	Feasibility of optimizing intensityâ€modulated radiation therapy plans based on measured mucosal dose adjacent to dental fillings and toxicity outcomes. Journal of Applied Clinical Medical Physics, 2018, 19, 444-452.	1.9	0
158	Burst and continuous high frequency irreversible electroporation protocols evaluated in a 3D tumor model. Physics in Medicine and Biology, 2018, 63, 135022.	3.0	26
159	Learning deconvolutional deep neural network for high resolution medical image reconstruction. Information Sciences, 2018, 468, 142-154.	6.9	58
160	Development of deep neural network for individualized hepatobiliary toxicity prediction after liver <pre><scp>SBRT</scp></pre> /scp>. Medical Physics, 2018, 45, 4763-4774.	3.0	103
161	A Dual-Modality Hybrid Imaging System Harnesses Radioluminescence and Sound to Reveal Molecular Pathology of Atherosclerotic Plaques. Scientific Reports, 2018, 8, 8992.	3.3	8
162	Imaging cellular pharmacokinetics of 18F-FDG and 6-NBDG uptake by inflammatory and stem cells. PLoS ONE, 2018, 13, e0192662.	2.5	1

#	Article	IF	CITATIONS
163	Effective anti-thrombotic therapy without stenting: intravascular optical coherence tomography-based management in plaque erosion (the EROSION study). European Heart Journal, 2017, 38, ehw381.	2.2	214
164	Robust Estimation of Electron Density From Anatomic Magnetic Resonance Imaging of the Brain Using a Unifying Multi-Atlas Approach. International Journal of Radiation Oncology Biology Physics, 2017, 97, 849-857.	0.8	11
165	Binary moving-blocker-based scatter correction in cone-beam computed tomography with width-truncated projections: proof of concept. Physics in Medicine and Biology, 2017, 62, 2176-2193.	3.0	12
166	Fully automated quantitative cephalometry using convolutional neural networks. Journal of Medical Imaging, 2017, 4, 014501.	1.5	168
167	Segmentation of Pathological Structures by Landmark-Assisted Deformable Models. IEEE Transactions on Medical Imaging, 2017, 36, 1457-1469.	8.9	40
168	Clinical Significance of Lipid-Rich PlaqueÂDetected by Optical CoherenceÂTomography. Journal of the American College of Cardiology, 2017, 69, 2502-2513.	2.8	142
169	Using a handheld stereo depth camera to overcome limited fieldâ€ofâ€view in simulation imaging for radiation therapy treatment planning. Medical Physics, 2017, 44, 1857-1864.	3.0	9
170	Development of an autonomous treatment planning strategy for radiation therapy with effective use of populationâ€based prior data. Medical Physics, 2017, 44, 389-396.	3.0	30
171	Lipid-lowering therapy stabilizes the complexity of non-culprit plaques in human coronary artery: a quantitative assessment using OCT bright spot algorithm. International Journal of Cardiovascular Imaging, 2017, 33, 453-461.	1.5	7
172	Segmentation of organsâ€atâ€risks in head and neck <scp>CT</scp> images using convolutional neural networks. Medical Physics, 2017, 44, 547-557.	3.0	398
173	Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours. Physics in Medicine and Biology, 2017, 62, 272-288.	3.0	20
174	Combining deep learning with anatomical analysis for segmentation of the portal vein for liver SBRT planning. Physics in Medicine and Biology, 2017, 62, 8943-8958.	3.0	65
175	Differences in coronary plaque characteristics between patients with and those without peripheral arterial disease. Coronary Artery Disease, 2017, 28, 658-663.	0.7	4
176	Dynamic neointimal pattern after drug-eluting stent implantation defined by optical coherence tomography. Coronary Artery Disease, 2017, 28, 557-563.	0.7	2
177	A new sparse optimization scheme for simultaneous beam angle and fluence map optimization in radiotherapy planning. Physics in Medicine and Biology, 2017, 62, 6428-6445.	3.0	10
178	Low-dose 4D cone-beam CT via joint spatiotemporal regularization of tensor framelet and nonlocal total variation. Physics in Medicine and Biology, 2017, 62, 6408-6427.	3.0	13
179	Segmentation-free x-ray energy spectrum estimation for computed tomography using dual-energy material decomposition. Journal of Medical Imaging, 2017, 4, 023506.	1.5	21
180	Low Endothelial Shear Stress Predicts Evolution to High-Risk Coronary Plaque Phenotype in the Future. Circulation: Cardiovascular Interventions, 2017, 10, .	3.9	35

#	Article	IF	CITATIONS
181	Using measurable dosimetric quantities to characterize the inter-structural tradeoff in inverse planning. Physics in Medicine and Biology, 2017, 62, 6804-6821.	3.0	3
182	SYNTAX Score and Pre- and Poststent Optical Coherence Tomography Findings in the Left Anterior Descending Coronary Artery in Patients With Stable Angina Pectoris. American Journal of Cardiology, 2017, 120, 898-903.	1.6	6
183	Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method. IEEE Transactions on Medical Imaging, 2017, 36, 225-235.	8.9	43
184	EROSION Study (Effective Anti-Thrombotic Therapy Without Stenting: Intravascular Optical Coherence) Tj ETQq0 10, .	0 0 rgBT /0 3.9	Overlock 10 113
185	Synthesis, Characterization, and Biomedical Applications of a Targeted Dual-Modal Near-Infrared-II Fluorescence and Photoacoustic Imaging Nanoprobe. ACS Nano, 2017, 11, 12276-12291.	14.6	137
186	Pixel responseâ€based <scp>EPID</scp> dosimetry for patient specific <scp>QA</scp> . Journal of Applied Clinical Medical Physics, 2017, 18, 9-17.	1.9	15
187	Asymmetric Waveforms Decrease Lethal Thresholds in High Frequency Irreversible Electroporation Therapies. Scientific Reports, 2017, 7, 40747.	3.3	41
188	Localization of in-stent neoatherosclerosis in relation to curvatures and bifurcations after stenting. Journal of Thoracic Disease, 2016, 8, 3530-3536.	1.4	6
189	X-ray fluorescence computed tomography with a compton camera for a clinical application. , 2016, , .		O
190	Comparison of a large area CZT detector to a spectroscopic CdTe detector for X-ray fluorescence computed tomography. , 2016, , .		2
191	Feasibility study of Compton cameras for x-ray fluorescence computed tomography with humans. Physics in Medicine and Biology, 2016, 61, 8521-8540.	3.0	19
192	A depthâ€sensing technique on 3Dâ€printed compensator for total body irradiation patient measurement and treatment planning. Medical Physics, 2016, 43, 6137-6144.	3.0	18
193	Dosimetric analysis of isocentrically shielded volumetric modulated arc therapy for locally recurrent nasopharyngeal cancer. Scientific Reports, 2016, 6, 25959.	3.3	O
194	Automatic multiorgan segmentation in CT images of the male pelvis using regionâ€specific hierarchical appearance cluster models. Medical Physics, 2016, 43, 5426-5436.	3.0	11
195	Optimization of rotational arc station parameter optimized radiation therapy. Medical Physics, 2016, 43, 4973-4982.	3.0	7
196	Application programming in C# environment with recorded user software interactions and its application in autopilot of VMAT/IMRT treatment planning. Journal of Applied Clinical Medical Physics, 2016, 17, 189-203.	1.9	11
197	A modelâ€based scatter artifacts correction for cone beam CT. Medical Physics, 2016, 43, 1736-1753.	3.0	48
198	Flexible radioluminescence imaging for FDGâ€guided surgery. Medical Physics, 2016, 43, 5298-5306.	3.0	7

#	Article	IF	CITATIONS
199	Serial Optical Coherence Tomography and Intravascular Ultrasound Analysis of Gender Difference in Changes of Plaque Phenotype in Response to Lipid-Lowering Therapy. American Journal of Cardiology, 2016, 117, 1890-1895.	1.6	5
200	Automatic deformable surface registration for medical applications by radial basis function-based robust point-matching. Computers in Biology and Medicine, 2016, 77, 173-181.	7.0	7
201	Production of Spherical Ablations Using Nonthermal Irreversible Electroporation: A Laboratory Investigation Using a Single Electrode and Grounding Pad. Journal of Vascular and Interventional Radiology, 2016, 27, 1432-1440.e3.	0.5	20
202	Automating quality assurance of digital linear accelerators using a radioluminescent phosphor coated phantom and optical imaging. Physics in Medicine and Biology, 2016, 61, L29-L37.	3.0	12
203	High Resolution X-ray-Induced Acoustic Tomography. Scientific Reports, 2016, 6, 26118.	3.3	50
204	Coronary Plaque Characteristics Associated With Reduced TIMI (Thrombolysis in Myocardial) Tj ETQq0 0 0 rgBT / Cardiovascular Interventions, 2016, 9, .	Overlock 1 3.9	10 Tf 50 547 12
205	Fabrication of a customized bone scaffold using a homemade medical 3D printer for comminuted fractures. Journal of the Korean Physical Society, 2016, 69, 852-857.	0.7	2
206	Novel benzo-bis(1,2,5-thiadiazole) fluorophores for in vivo NIR-II imaging of cancer. Chemical Science, 2016, 7, 6203-6207.	7.4	263
207	Using edge-preserving algorithm with non-local mean for significantly improved image-domain material decomposition in dual-energy CT. Physics in Medicine and Biology, 2016, 61, 1332-1351.	3.0	35
208	Comparison of Intensive Versus Moderate Lipid-Lowering Therapy on Fibrous Cap and Atheroma Volume of Coronary Lipid-Rich Plaque Using Serial Optical Coherence Tomography and Intravascular Ultrasound Imaging. American Journal of Cardiology, 2016, 117, 800-806.	1.6	73
209	Association between cholesterol crystals and culprit lesion vulnerability in patients with acute coronary syndrome: An optical coherence tomography study. Atherosclerosis, 2016, 247, 111-117.	0.8	44
210	Prognostic Imaging Biomarkers in Glioblastoma: Development and Independent Validation on the Basis of Multiregion and Quantitative Analysis of MR Images. Radiology, 2016, 278, 546-553.	7.3	90
211	Early Change in Metabolic Tumor Heterogeneity during Chemoradiotherapy and Its Prognostic Value for Patients with Locally Advanced Non-Small Cell Lung Cancer. PLoS ONE, 2016, 11, e0157836.	2.5	53
212	Minimizing normal tissue dose spillage via broad-range optimization of hundreds of intensity modulated beams for treating multiple brain targets. Journal of Radiosurgery and SBRT, 2016, 4, 107-115.	0.2	0
213	Monitoring external beam radiotherapy using realâ€time beam visualization. Medical Physics, 2015, 42, 5-13.	3.0	22
214	Automatic liver contouring for radiotherapy treatment planning. Physics in Medicine and Biology, 2015, 60, 7461-7483.	3.0	8
215	Simultaneous beam sampling and aperture shape optimization for SPORT. Medical Physics, 2015, 42, 1012-1022.	3.0	15
216	Independent calculation of monitor units for VMAT and SPORT. Medical Physics, 2015, 42, 918-924.	3.0	10

#	Article	IF	CITATIONS
217	Theoretical detection threshold of the protonâ€acoustic range verification technique. Medical Physics, 2015, 42, 5735-5744.	3.0	35
218	Development of an accurate EPIDâ€based output measurement and dosimetric verification tool for electron beam therapy. Medical Physics, 2015, 42, 4190-4198.	3.0	4
219	Protonâ€induced xâ€ray fluorescence CT imaging. Medical Physics, 2015, 42, 900-907.	3.0	16
220	Impact of Age on Stent Strut Coverage and Neointimal Remodeling as Assessed by Optical Coherence Tomography. Medicine (United States), 2015, 94, e2246.	1.0	3
221	Efficient Radioisotope Energy Transfer by Gold Nanoclusters for Molecular Imaging. Small, 2015, 11, 4002-4008.	10.0	23
222	Experimental validation of L-shell x-ray fluorescence computed tomography imaging: phantom study. Journal of Medical Imaging, 2015, 2, 043501.	1.5	21
223	Beam's-eye-view dosimetrics (BEVD) guided rotational station parameter optimized radiation therapy (SPORT) planning based on reweighted total-variation minimization. Physics in Medicine and Biology, 2015, 60, N71-N82.	3.0	12
224	Optimized Detector Angular Configuration Increases the Sensitivity of X-ray Fluorescence Computed Tomography (XFCT). IEEE Transactions on Medical Imaging, 2015, 34, 1140-1147.	8.9	33
225	Analysis of Long-Term 4-Dimensional Computed Tomography Regional Ventilation After Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2015, 92, 683-690.	0.8	17
226	Scintillating Balloon-Enabled Fiber-Optic System for Radionuclide Imaging of Atherosclerotic Plaques. Journal of Nuclear Medicine, 2015, 56, 771-777.	5.0	4
227	Strained Cyclooctyne as a Molecular Platform for Construction of Multimodal Imaging Probes. Angewandte Chemie - International Edition, 2015, 54, 5981-5984.	13.8	97
228	Optimization approaches to volumetric modulated arc therapy planning. Medical Physics, 2015, 42, 1367-1377.	3.0	56
229	\hat{l}^2 -Radioluminescence Imaging: A Comparative Evaluation with Cerenkov Luminescence Imaging. Journal of Nuclear Medicine, 2015, 56, 1458-1464.	5.0	14
230	X-ray-Induced Shortwave Infrared Biomedical Imaging Using Rare-Earth Nanoprobes. Nano Letters, 2015, 15, 96-102.	9.1	120
231	SUâ€Eâ€Jâ€130: Automating Liver Segmentation Via Combined Global and Local Optimization. Medical Physics, 2015, 42, 3294-3294.	3.0	O
232	SUâ€Eâ€Jâ€131: Augmenting Atlasâ€Based Segmentation by Incorporating Image Features Proximal to the Atlas Contours. Medical Physics, 2015, 42, 3294-3295.	3.0	0
233	Fiber-Optic System for Dual-Modality Imaging of Clucose Probes 18F-FDG and 6-NBDG in Atherosclerotic Plaques. PLoS ONE, 2014, 9, e108108.	2.5	10
234	X-Ray Luminescence and X-Ray Fluorescence Computed Tomography: New Molecular Imaging Modalities. IEEE Access, 2014, 2, 1051-1061.	4.2	53

#	Article	IF	Citations
235	Dual-gated volumetric modulated arc therapy. Radiation Oncology, 2014, 9, 209.	2.7	7
236	Quality control procedures for dynamic treatment delivery techniques involving couch motion. Medical Physics, 2014, 41, 081712.	3.0	14
237	PHD Inhibition Mitigates and Protects Against Radiation-Induced Gastrointestinal Toxicity via HIF2. Science Translational Medicine, 2014, 6, 236ra64.	12.4	120
238	Accuracy of surface registration compared to conventional volumetric registration in patient positioning for headâ€andâ€neck radiotherapy: A simulation study using patient data. Medical Physics, 2014, 41, 121701.	3.0	14
239	Cerenkov Luminescence Endoscopy: Improved Molecular Sensitivity with \hat{l}^2 (sup> \hat{a}^2 (/sup>-Emitting Radiotracers. Journal of Nuclear Medicine, 2014, 55, 1905-1909.	5.0	39
240	A unifying probabilistic Bayesian approach to derive electron density from MRI for radiation therapy treatment planning. Physics in Medicine and Biology, 2014, 59, 6595-6606.	3.0	75
241	L-shell x-ray fluorescence computed tomography (XFCT) imaging of Cisplatin. Physics in Medicine and Biology, 2014, 59, 219-232.	3.0	29
242	A Fourier-based compressed sensing technique for accelerated CT image reconstruction using first-order methods. Physics in Medicine and Biology, 2014, 59, 3097-3119.	3.0	13
243	Distinct Morphological Features of RupturedÂCulprit Plaque for Acute Coronary Events Compared to Those With Silent RuptureÂand Thin-Cap Fibroatheroma. Journal of the American College of Cardiology, 2014, 63, 2209-2216.	2.8	179
244	Order of Magnitude Sensitivity Increase in X-ray Fluorescence Computed Tomography (XFCT) Imaging With an Optimized Spectro-Spatial Detector Configuration: Theory and Simulation. IEEE Transactions on Medical Imaging, 2014, 33, 1119-1128.	8.9	35
245	Transferring Biomarker into Molecular Probe: Melanin Nanoparticle as a Naturally Active Platform for Multimodality Imaging. Journal of the American Chemical Society, 2014, 136, 15185-15194.	13.7	338
246	Hard X-ray-induced optical luminescence via biomolecule-directed metal clusters. Chemical Communications, 2014, 50, 3549-3551.	4.1	43
247	Synergistic Assembly of Heavy Metal Clusters and Luminescent Organic Bridging Ligands in Metal–Organic Frameworks for Highly Efficient X-ray Scintillation. Journal of the American Chemical Society, 2014, 136, 6171-6174.	13.7	198
248	Assessing the Dosimetric Impact of Real-Time Prostate Motion During Volumetric Modulated Arc Therapy. International Journal of Radiation Oncology Biology Physics, 2014, 88, 1167-1174.	0.8	24
249	Nonisocentric Treatment Strategy for Breast Radiation Therapy: A Proof of Concept Study. International Journal of Radiation Oncology Biology Physics, 2014, 88, 920-926.	0.8	9
250	Inverse planning in the age of digital LINACs: station parameter optimized radiation therapy (SPORT). Journal of Physics: Conference Series, 2014, 489, 012065.	0.4	6
251	Poster - Thur Eve - 38: Feasibility of a Table-Top Total Body Irradiation Technique using Robotic Couch Motion. Medical Physics, 2014, 41, 15-15.	3.0	0
252	Xâ€ray acoustic computed tomography with pulsed xâ€ray beam from a medical linear accelerator. Medical Physics, 2013, 40, 010701.	3.0	64

#	Article	IF	Citations
253	Tissue feature-based intra-fractional motion tracking for stereoscopic x-ray image guided radiotherapy. Physics in Medicine and Biology, 2013, 58, 3615-3630.	3.0	14
254	Toward a web-based real-time radiation treatment planning system in a cloud computing environment. Physics in Medicine and Biology, 2013, 58, 6525-6540.	3.0	11
255	First Demonstration of Multiplexed X-Ray Fluorescence Computed Tomography (XFCT) Imaging. IEEE Transactions on Medical Imaging, 2013, 32, 262-267.	8.9	79
256	Automatic Prostate Tracking and Motion Assessment in Volumetric Modulated Arc Therapy With an Electronic Portal Imaging Device. International Journal of Radiation Oncology Biology Physics, 2013, 86, 762-768.	0.8	23
257	Clinical Implementation of Intrafraction Cone Beam Computed Tomography Imaging During Lung Tumor Stereotactic Ablative Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2013, 87, 917-923.	0.8	32
258	X-ray excitable luminescent polymer dots doped with an iridium(iii) complex. Chemical Communications, 2013, 49, 4319.	4.1	33
259	Development of XFCT imaging strategy for monitoring the spatial distribution of platinum-based chemodrugs: Instrumentation and phantom validation. Medical Physics, 2013, 40, 030701.	3.0	33
260	X-ray induced photoacoustic tomography. Proceedings of SPIE, 2013, , .	0.8	5
261	An assessment of PTV margin based on actual accumulated dose for prostate cancer radiotherapy. Physics in Medicine and Biology, 2013, 58, 7733-7744.	3.0	22
262	Cone beam CT imaging with limited angle of projections and prior knowledge for volumetric verification of non-coplanar beam radiation therapy: a proof of concept study. Physics in Medicine and Biology, 2013, 58, 7777-7789.	3.0	6
263	Sequentially reweighted TV minimization for CT metal artifact reduction. Medical Physics, 2013, 40, 071907.	3.0	18
264	Singleâ€scan patientâ€specific scatter correction in computed tomography using peripheral detection of scatter and compressed sensing scatter retrieval. Medical Physics, 2013, 40, 011907.	3.0	14
265	Development of a fast and feasible spectrum modeling technique for flattening filter free beams. Medical Physics, 2013, 40, 041721.	3.0	3
266	Optimization of normalized prescription isodose selection for stereotactic body radiation therapy: Conventional vs robotic linac. Medical Physics, 2013, 40, 051705.	3.0	19
267	DASSIM-RT is likely to become the method of choice over conventional IMRT and VMAT for delivery of highly conformal radiotherapy. Medical Physics, 2013, 40, 020601.	3.0	8
268	Development and clinical evaluation of automatic fiducial detection for tumor tracking in cine megavoltage images during volumetric modulated arc therapy. Medical Physics, 2013, 40, 031708.	3.0	23
269	Improving IMRT delivery efficiency with reweighted L1â€minimization for inverse planning. Medical Physics, 2013, 40, 071719.	3.0	6
270	An adaptive planning strategy for station parameter optimized radiation therapy (SPORT): Segmentally boosted VMAT. Medical Physics, 2013, 40, 050701.	3.0	45

#	Article	IF	CITATIONS
271	An introduction to molecular imaging in radiation oncology: A report by the AAPM Working Group on Molecular Imaging in Radiation Oncology (WGMIR). Medical Physics, 2013, 40, 101501.	3.0	10
272	First study of onâ€treatment volumetric imaging during respiratory gated VMAT. Medical Physics, 2013, 40, 040701.	3.0	18
273	Evaluation of the deformation and corresponding dosimetric implications in prostate cancer treatment. Physics in Medicine and Biology, 2012, 57, 5361-5379.	3.0	45
274	Scatter correction in coneâ€beam CT via a half beam blocker technique allowing simultaneous acquisition of scatter and image information. Medical Physics, 2012, 39, 2386-2395.	3.0	43
275	Intraoperative Imaging of Tumors Using Cerenkov Luminescence Endoscopy: A Feasibility Experimental Study. Journal of Nuclear Medicine, 2012, 53, 1579-1584.	5.0	111
276	Total-Variation Regularization Based Inverse Planning for Intensity Modulated Arc Therapy. Technology in Cancer Research and Treatment, 2012, 11, 149-162.	1.9	6
277	Radioluminescent nanophosphors enable multiplexed small-animal imaging. Optics Express, 2012, 20, 11598.	3.4	50
278	Nonculprit Plaques in Patients With Acute Coronary Syndromes Have More Vulnerable Features Compared With Those With Non–Acute Coronary Syndromes. Circulation: Cardiovascular Imaging, 2012, 5, 433-440.	2.6	188
279	4D cone beam CT via spatiotemporal tensor framelet. Medical Physics, 2012, 39, 6943-6946.	3.0	66
280	An end-to-end examination of geometric accuracy of IGRT using a new digital accelerator equipped with onboard imaging system. Physics in Medicine and Biology, 2012, 57, 757-769.	3.0	35
281	Significance of intraplaque neovascularisation for vulnerability: optical coherence tomography study. Heart, 2012, 98, 1504-1509.	2.9	68
282	Tracking the motion trajectories of junction structures in 4D CT images of the lung. Physics in Medicine and Biology, 2012, 57, 4905-4930.	3.0	16
283	Efficient IMRT inverse planning with a new L1-solver: template for first-order conic solver. Physics in Medicine and Biology, 2012, 57, 4139-4153.	3.0	8
284	Improved compressed sensing-based cone-beam CT reconstruction using adaptive prior image constraints. Physics in Medicine and Biology, 2012, 57, 2287-2307.	3.0	73
285	Dose optimization with firstâ€order totalâ€variation minimization for dense angularly sampled and sparse intensity modulated radiation therapy (DASSIMâ€RT). Medical Physics, 2012, 39, 4316-4327.	3.0	11
286	Response to "Comment on â€~Bridging the gap between IMRT and VMAT: Dense angularly sampled and sparse intensity modulated radiation therapy'―[Med. Phys. 38, 4912-4919 (2011)]. Medical Physics, 2012, 39, 1676-1676.	3.0	5
287	Evaluation of the geometric accuracy of surrogateâ€based gated VMAT using intrafraction kilovoltage xâ€ray images. Medical Physics, 2012, 39, 2686-2693.	3.0	35
288	Investigation of X-ray Fluorescence Computed Tomography (XFCT) and K-Edge Imaging. IEEE Transactions on Medical Imaging, 2012, 31, 1620-1627.	8.9	81

#	Article	IF	Citations
289	Intrafraction Verification of Gated RapidArc by Using Beam-Level Kilovoltage X-Ray Images. International Journal of Radiation Oncology Biology Physics, 2012, 83, e709-e715.	0.8	27
290	Practical implementation of a collapsed cone convolution algorithm for a radiation treatment planning system. Journal of the Korean Physical Society, 2012, 61, 2073-2083.	0.7	8
291	Volumetric modulated arc therapy planning method for supine craniospinal irradiation. Journal of Radiation Oncology, 2012, 1, 291-297.	0.7	19
292	Predictors for Neoatherosclerosis. Circulation: Cardiovascular Imaging, 2012, 5, 660-666.	2.6	143
293	Facile Synthesis of Amine-Functionalized Eu3+-Doped La(OH)3 Nanophosphors for Bioimaging. Nanoscale Research Letters, 2011, 6, 24.	5.7	21
294	Inverse planning for IMRT with nonuniform beam profiles using totalâ€variation regularization (TVR). Medical Physics, 2011, 38, 57-66.	3.0	27
295	3D Bayesian Tracking with a Single Imager for Real-Time Image Guidance in Prostate Radiation Therapy. , 2011, , .		0
296	Dose verification for respiratory-gated volumetric modulated arc therapy. Physics in Medicine and Biology, 2011, 56, 4827-4838.	3.0	40
297	Bridging the gap between IMRT and VMAT: Dense angularly sampled and sparse intensity modulated radiation therapy. Medical Physics, 2011, 38, 4912-4919.	3.0	30
298	Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure. Physics in Medicine and Biology, 2011, 56, N175-N181.	3.0	41
299	GPU computing in medical physics: A review. Medical Physics, 2011, 38, 2685-2697.	3.0	245
300	Iterative prescription refinement in fully discretized inverse problems of radiation therapy planning. Inverse Problems in Science and Engineering, 2011, 19, 1125-1137.	1.2	0
301	Metal artifact reduction in xâ€ray computed tomography (CT) by constrained optimization. Medical Physics, 2011, 38, 701-711.	3.0	130
302	A Bayesian approach to realâ€ŧime 3D tumor localization via monoscopic xâ€ғay imaging during treatment delivery. Medical Physics, 2011, 38, 4205-4214.	3.0	38
303	Initial application of a geometric QA tool for integrated MV and kV imaging systems on three image guided radiotherapy systems. Medical Physics, 2011, 38, 2335-2341.	3.0	15
304	Ultrafast and scalable cone-beam CT reconstruction using MapReduce in a cloud computing environment. Medical Physics, 2011, 38, 6603-6609.	3.0	32
305	Synthesis and Radioluminescence of PEGylated Eu ³⁺ â€doped Nanophosphors as Bioimaging Probes. Advanced Materials, 2011, 23, H195-9.	21.0	121
306	Multisource modeling of flattening filter free (FFF) beam and the optimization of model parameters. Medical Physics, 2011, 38, 1931-1942.	3.0	31

#	Article	IF	CITATIONS
307	Linac-Based Image Guided Intensity Modulated Radiation Therapy. Medical Radiology, 2011, , 275-312.	0.1	O
308	Development of a Beam Source Modeling Technique for a Flattening Filter Free (FFF) Beam., 2011,,.		0
309	Monte Carlo simulation of photon migration in a cloud computing environment with MapReduce. Journal of Biomedical Optics, 2011, 16, 125003.	2.6	31
310	A binary image reconstruction technique for accurate determination of the shape and location of metal objects in x-ray computed tomography. Journal of X-Ray Science and Technology, 2010, 18, 403-414.	1.0	17
311	37, 5627-5633.	3.0	27
312	37, 2351-2358.	3.0	35
313	Clinical development of a failure detectionâ€based online repositioning strategy for prostate IMRT—Experiments, simulation, and dosimetry study. Medical Physics, 2010, 37, 5287-5297.	3.0	14
314	Registration of on-board X-ray images with 4DCT: A proposed method of phase and setup verification for gated radiotherapy. Physica Medica, 2010, 26, 117-125.	0.7	2
315	X-Ray Luminescence Computed Tomography via Selective Excitation: A Feasibility Study. IEEE Transactions on Medical Imaging, 2010, 29, 1992-1999.	8.9	148
316	American Society for Therapeutic Radiology and Oncology (ASTRO) and American College of Radiology (ACR) Practice Guidelines for Image-Guided Radiation Therapy (IGRT). International Journal of Radiation Oncology Biology Physics, 2010, 76, 319-325.	0.8	90
317	Optimized Hybrid Megavoltage-Kilovoltage Imaging Protocol for Volumetric Prostate Arc Therapy. International Journal of Radiation Oncology Biology Physics, 2010, 78, 595-604.	0.8	18
318	A Failure Detection Strategy for Intrafraction Prostate Motion Monitoring With On-Board Imagers for Fixed-Gantry IMRT. International Journal of Radiation Oncology Biology Physics, 2010, 78, 904-911.	0.8	14
319	Toward Truly Optimal IMRT Dose Distribution: Inverse Planning with Voxel-specific Penalty. Technology in Cancer Research and Treatment, 2010, 9, 629-636.	1.9	13
320	A Patient Set-up Protocol Based on Partially Blocked Cone-beam CT. Technology in Cancer Research and Treatment, 2010, 9, 191-198.	1.9	9
321	Compressed sensing based coneâ€beam computed tomography reconstruction with a firstâ€order	3.0	212
322	Accurate determination of the shape and location of metal objects in x-ray computed tomography. Proceedings of SPIE, 2010, , .	0.8	2
323	Metal artifact reduction in computed tomography by constrained optimization. , 2010, , .		3
324	Fast and accurate marker-based projective registration method for uncalibrated transmission electron microscope tilt series. Physics in Medicine and Biology, 2010, 55, 3417-3440.	3.0	3

#	Article	IF	Citations
325	A unified framework for 3D radiation therapy and IMRT planning: plan optimization in the beamlet domain by constraining or regularizing the fluence map variations. Physics in Medicine and Biology, 2010, 55, N521-N531.	3.0	6
326	Dose reconstruction for volumetric modulated arc therapy (VMAT) using cone-beam CT and dynamic log files. Physics in Medicine and Biology, 2010, 55, 3597-3610.	3.0	55
327	Tomographic molecular imaging of x-ray-excitable nanoparticles. Optics Letters, 2010, 35, 3345.	3.3	129
328	Sinogram preprocessing and binary reconstruction for determination of the shape and location of metal objects in computed tomography (CT). Medical Physics, 2010, 37, 5867-5875.	3.0	13
329	Three-Dimensional Conformal Radiotherapy and Intensity-Modulated Radiotherapy. , 2010, , 170-192.		0
330	Image-Guided Adaptive Radiotherapy. , 2010, , 213-223.		2
331	Iterative image reconstruction for CBCT using edgeâ€preserving prior. Medical Physics, 2009, 36, 252-260.	3.0	162
332	Scatter correction for coneâ€beam CT in radiation therapy. Medical Physics, 2009, 36, 2258-2268.	3.0	161
333	Conceptual formulation on four-dimensional inverse planning for intensity modulated radiation therapy. Physics in Medicine and Biology, 2009, 54, N255-N266.	3.0	10
334	Predicting respiratory tumor motion with multi-dimensional adaptive filters and support vector regression. Physics in Medicine and Biology, 2009, 54, 5735-5748.	3.0	98
335	Noise Reduction in Low-Dose X-Ray Fluoroscopy for Image-Guided Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2009, 74, 637-643.	0.8	17
336	Tissue Feature-Based and Segmented Deformable Image Registration for Improved Modeling of Shear Movement of Lungs. International Journal of Radiation Oncology Biology Physics, 2009, 74, 1256-1265.	0.8	31
337	Image-Guided Radiotherapy in Near Real Time With Intensity-Modulated Radiotherapy Megavoltage Treatment Beam Imaging. International Journal of Radiation Oncology Biology Physics, 2009, 75, 603-610.	0.8	27
338	Beam's-Eye-View Dosimetrics–Guided Inverse Planning for Aperture-Modulated Arc Therapy. International Journal of Radiation Oncology Biology Physics, 2009, 75, 1587-1595.	0.8	18
339	Search for IMRT inverse plans with piecewise constant fluence maps using compressed sensing techniques. Medical Physics, 2009, 36, 1895-1905.	3.0	39
340	Four-dimensional inverse treatment planning with inclusion of implanted fiducials in IMRT segmented fields. Medical Physics, 2009, 36, 2215-2221.	3.0	43
341	Multiscale registration of planning CT and daily cone beam CT images for adaptive radiation therapy. Medical Physics, 2009, 36, 4-11.	3.0	50
342	Noise suppression in scatter correction for coneâ€beam CT. Medical Physics, 2009, 36, 741-752.	3.0	104

#	Article	IF	Citations
343	Noise correlation in CBCT projection data and its application for noise reduction in low-dose CBCT. Proceedings of SPIE, 2009, , .	0.8	2
344	Quality Assurance of Positron Emission Tomography/Computed Tomography for Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2008, 71, S38-S42.	0.8	11
345	Retrospective IMRT Dose Reconstruction Based on Cone-Beam CT and MLC Log-File. International Journal of Radiation Oncology Biology Physics, 2008, 70, 634-644.	0.8	99
346	Automated Contour Mapping With a Regional Deformable Model. International Journal of Radiation Oncology Biology Physics, 2008, 70, 599-608.	0.8	30
347	Four-Dimensional Image Registration for Image-Guided Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2008, 71, 578-586.	0.8	23
348	Intrafractional Motion of the Prostate During Hypofractionated Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2008, 72, 236-246.	0.8	184
349	Development of a QA phantom and automated analysis tool for geometric quality assurance of onâ€board MV and kV xâ€ray imaging systems. Medical Physics, 2008, 35, 1497-1506.	3.0	51
350	Using total-variation regularization for intensity modulated radiation therapy inverse planning with field-specific numbers of segments. Physics in Medicine and Biology, 2008, 53, 6653-6672.	3.0	50
351	The use of EPIDâ€measured leaf sequence files for IMRT dose reconstruction in adaptive radiation therapy. Medical Physics, 2008, 35, 5019-5029.	3.0	23
352	Auto-propagation of contours for adaptive prostate radiation therapy. Physics in Medicine and Biology, 2008, 53, 4533-4542.	3.0	50
353	Dose reduction for kilovotage cone-beam computed tomography in radiation therapy. Physics in Medicine and Biology, 2008, 53, 2897-2909.	3.0	81
354	Individualized gating windows based on four-dimensional CT information for respiration-gated radiotherapy. Physics in Medicine and Biology, 2008, 53, 165-175.	3.0	24
355	A fiducial detection algorithm for real-time image guided IMRT based on simultaneous MV and kV imaging. Medical Physics, 2008, 35, 3554-3564.	3.0	48
356	Featureâ€based rectal contour propagation from planning CT to cone beam CT. Medical Physics, 2008, 35, 4450-4459.	3.0	51
357	Objective assessment of deformable image registration in radiotherapy: A multiâ€institution study. Medical Physics, 2008, 35, 5944-5953.	3.0	132
358	Multiscale deformable registration of noisy medical images. Mathematical Biosciences and Engineering, 2008, 5, 125-144.	1.9	22
359	Automated contour mapping using sparse volume sampling for 4D radiation therapy. Medical Physics, 2007, 34, 4023-4029.	3.0	14
360	Kilovoltage imaging is more suitable than megavoltage imaging for guiding radiation therapy. Medical Physics, 2007, 34, 4563-4566.	3.0	10

#	Article	IF	CITATIONS
361	CT image registration in sinogram space. Medical Physics, 2007, 34, 3596-3602.	3.0	8
362	Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation. Physics in Medicine and Biology, 2007, 52, 685-705.	3.0	270
363	Formulating adaptive radiation therapy (ART) treatment planning into a closed-loop control framework. Physics in Medicine and Biology, 2007, 52, 4137-4153.	3.0	85
364	Enhanced 4D coneâ€beam CT with interâ€phase motion model. Medical Physics, 2007, 34, 3688-3695.	3.0	105
365	Optimizing 4D cone-beam CT acquisition protocol for external beam radiotherapy. International Journal of Radiation Oncology Biology Physics, 2007, 67, 1211-1219.	0.8	97
366	Computational Challenges for Image-Guided Radiation Therapy: Framework and Current Research. Seminars in Radiation Oncology, 2007, 17, 245-257.	2.2	58
367	Stereotactic Body Radiation Therapy in Multiple Organ Sites. Journal of Clinical Oncology, 2007, 25, 947-952.	1.6	401
368	Hybrid multiscale landmark and deformable image registration. Mathematical Biosciences and Engineering, 2007, 4, 711-737.	1.9	32
369	Model-based image reconstruction for four-dimensional PET. Medical Physics, 2006, 33, 1288-1298.	3.0	187
370	Image interpolation in 4D CT using a BSpline deformable registration model. International Journal of Radiation Oncology Biology Physics, 2006, 64, 1537-1550.	0.8	89
371	Overview of image-guided radiation therapy. Medical Dosimetry, 2006, 31, 91-112.	0.9	380
372	Image registration with auto-mapped control volumes. Medical Physics, 2006, 33, 1165-1179.	3.0	39
373	Reducing respiratory motion artifacts in positron emission tomography through retrospective stacking. Medical Physics, 2006, 33, 2632-2641.	3.0	51
374	Four-dimensional cone-beam computed tomography using an on-board imager. Medical Physics, 2006, 33, 3825-3833.	3.0	176
375	Molecular/Functional Image-guided Intensity Modulated Radiation Therapy. , 2006, , 187-198.		1
376	Multiscale Image Registration. Mathematical Biosciences and Engineering, 2006, 3, 389-418.	1.9	31
377	Narrow band deformable registration of prostate magnetic resonance imaging, magnetic resonance spectroscopic imaging, and computed tomography studies. International Journal of Radiation Oncology Biology Physics, 2005, 62, 595-605.	0.8	47
378	Dose–volume based ranking of incident beam direction and its utility in facilitating IMRT beam placement. International Journal of Radiation Oncology Biology Physics, 2005, 63, 584-593.	0.8	30

#	Article	IF	CITATIONS
379	In vivo prostate magnetic resonance spectroscopic imaging using two-dimensional J-resolved PRESS at 3 T. Magnetic Resonance in Medicine, 2005, 53, 1177-1182.	3.0	26
380	Quantitation of thea prioridosimetric capabilities of spatial points in inverse planning and its significant implication in defining IMRT solution space. Physics in Medicine and Biology, 2005, 50, 1469-1482.	3.0	21
381	The value of PET/CT is being over-sold as a clinical tool in radiation oncology. Medical Physics, 2005, 32, 1457-1459.	3.0	14
382	Investigation of using a power function as a cost function in inverse planning optimization. Medical Physics, 2005, 32, 920-927.	3.0	4
383	Incorporating model parameter uncertainty into inverse treatment planning. Medical Physics, 2004, 31, 2711-2720.	3.0	13
384	Implementing IMRT in clinical practice: a joint document of the American Society for Therapeutic Radiology and Oncology and the American Association of Physicists in Medicine. International Journal of Radiation Oncology Biology Physics, 2004, 58, 1616-1634.	0.8	211
385	Clinical knowledge-based inverse treatment planning. Physics in Medicine and Biology, 2004, 49, 5101-5117.	3.0	41
386	Inverse treatment planning with adaptively evolving voxel-dependent penalty scheme. Medical Physics, 2004, 31, 2839-2844.	3.0	36
387	Multiobjective evolutionary optimization of the number of beams, their orientations and weights for intensity-modulated radiation therapy. Physics in Medicine and Biology, 2004, 49, 747-770.	3.0	90
388	Feasibility study of beam orientation class-solutions for prostate IMRT. Medical Physics, 2004, 31, 2863-2870.	3.0	42
389	Plug pattern optimization for gamma knife radiosurgery treatment planning. International Journal of Radiation Oncology Biology Physics, 2003, 55, 420-427.	0.8	26
390	Incorporating leaf transmission and head scatter corrections into step-and-shoot leaf sequences for IMRT. International Journal of Radiation Oncology Biology Physics, 2003, 55, 1121-1134.	0.8	19
391	Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT subcommittee of the AAPM radiation therapy committee. Medical Physics, 2003, 30, 2089-2115.	3.0	693
392	Therapeutic treatment plan optimization with probability density-based dose prescription. Medical Physics, 2003, 30, 655-666.	3.0	7
393	Segment-based dose optimization using a genetic algorithm. Physics in Medicine and Biology, 2003, 48, 2987-2998.	3.0	98
394	IMRT dose shaping with regionally variable penalty scheme. Medical Physics, 2003, 30, 544-551.	3.0	37
395	Aperture modulated arc therapy. Physics in Medicine and Biology, 2003, 48, 1333-1344.	3.0	69
396	Independent monitor unit calculation for intensity modulated radiotherapy using the MIMiC multileaf collimator. Medical Physics, 2002, 29, 2041-2051.	3.0	44

#	Article	IF	CITATIONS
397	A three-source model for the calculation of head scatter factors. Medical Physics, 2002, 29, 2024-2033.	3.0	37
398	Inverse planning for functional image-guided intensity-modulated radiation therapy. Physics in Medicine and Biology, 2002, 47, 3567-3578.	3.0	50
399	Using voxel-dependent importance factors for interactive DVH-based dose optimization. Physics in Medicine and Biology, 2002, 47, 1659-1669.	3.0	53
400	Incorporating prior knowledge into beam orientaton optimization in IMRT. International Journal of Radiation Oncology Biology Physics, 2002, 54, 1565-1574.	0.8	113
401	Linear algebraic methods applied to intensity modulated radiation therapy. Physics in Medicine and Biology, 2001, 46, 2587-2606.	3.0	7
402	Role of beam orientation optimization in intensity-modulated radiation therapy. International Journal of Radiation Oncology Biology Physics, 2001, 50, 551-560.	0.8	133
403	Pseudo beam's-eye–view as applied to beam orientation selection in intensity-modulated radiation therapy. International Journal of Radiation Oncology Biology Physics, 2001, 51, 1361-1370.	0.8	94
404	A dose-volume histogram based optimization algorithm for ultrasound guided prostate implants. Medical Physics, 2000, 27, 2286-2292.	3.0	11
405	Computer verification of fluence map for intensity modulated radiation therapy. Medical Physics, 2000, 27, 2084-2092.	3.0	42
406	Inverse planning incorporating organ motion. Medical Physics, 2000, 27, 1573-1578.	3.0	96
407	Matching photon and electron fields with dynamic intensity modulation. Medical Physics, 1999, 26, 2379-2384.	3.0	22
408	Dosimetric verification of a commercial inverse treatment planning system. Physics in Medicine and Biology, 1999, 44, 463-478.	3.0	111
409	A three-dimensional algorithm for optimizing beam weights and wedge filters. Medical Physics, 1998, 25, 1858-1865.	3.0	27
410	Optimization of relative weights and wedge angles in treatment planning. Medical Physics, 1997, 24, 215-221.	3.0	17
411	Iterative methods for inverse treatment planning. Physics in Medicine and Biology, 1996, 41, 2107-2123.	3.0	92
412	Monitor unit calculation for intensity modulated photon field. , 0, , .		0
413	Inverse planning incorporating organ motion., 0,,.		0
414	Pseudo-biologic plan scoring for treatment plan evaluation. , 0, , .		0

#	Article	IF	CITATIONS
415	Implementation of a Clarkson summation algorithm for dose verification in MLC-based IMRT. , 0, , .		0
416	Medical Imaging Modalities in Radiotherapy. Medical Radiology, 0, , 625-639.	0.1	0