Chuanyue Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8395431/publications.pdf

Version: 2024-02-01

41344 53230 7,767 115 49 85 citations h-index g-index papers 116 116 116 6157 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	PINCH-1 promotes IGF-1 receptor expression and skin cancer progression through inhibition of the GRB10-NEDD4 complex. Theranostics, 2022, 12, 2613-2630.	10.0	4
2	Kindlin-2 promotes Src-mediated tyrosine phosphorylation of androgen receptor and contributes to breast cancer progression. Cell Death and Disease, 2022, 13, .	6.3	3
3	RSU-1 interaction with prohibitin-2 links cell–extracellular matrix detachment to downregulation of ERK signaling. Journal of Biological Chemistry, 2021, 296, 100109.	3.4	4
4	A mechanoresponsive PINCH-1-Notch2 interaction regulates smooth muscle differentiation of human placental mesenchymal stem cells. Stem Cells, 2021, 39, 650-668.	3.2	8
5	Complex structures of Rsu1 and PINCH1 reveal a regulatory mechanism of the ILK/PINCH/Parvin complex for F-actin dynamics. ELife, 2021, 10 , .	6.0	9
6	Kindlin-2 Acts as a Key Mediator of Lung Fibroblast Activation and Pulmonary Fibrosis Progression. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 54-69.	2.9	8
7	How signaling pathways link extracellular mechanoâ€environment to proline biosynthesis: A hypothesis. BioEssays, 2021, 43, 2100116.	2.5	4
8	PINCH-1 promotes î"1-pyrroline-5-carboxylate synthase expression and contributes to proline metabolic reprogramming in lung adenocarcinoma. Amino Acids, 2021, 53, 1875-1890.	2.7	2
9	Extracellular matrix stiffness regulates mitochondrial dynamics through PINCH-1- and kindlin-2-mediated signalling. Current Research in Cell Biology, 2021, 2, 100008.	2.4	17
10	PINCH-1 interacts with myoferlin to promote breast cancer progression and metastasis. Oncogene, 2020, 39, 2069-2087.	5.9	16
11	PINCH-1 regulates mitochondrial dynamics to promote proline synthesis and tumor growth. Nature Communications, 2020, 11, 4913.	12.8	44
12	Kindlin-2 promotes rear focal adhesion disassembly and directional persistence in cell migration. Journal of Cell Science, 2020, 134, .	2.0	3
13	RSU-1 Maintains Integrity of Caenorhabditis elegans Vulval Muscles by Regulating α-Actinin. G3: Genes, Genomes, Genetics, 2020, 10, 2507-2517.	1.8	1
14	Focal adhesion protein Kindlin-2 regulates bone homeostasis in mice. Bone Research, 2020, 8, 2.	11.4	50
15	Kindlin-2 modulates MafA and \hat{l}^2 -catenin expression to regulate \hat{l}^2 -cell function and mass in mice. Nature Communications, 2020, 11, 484.	12.8	38
16	Mitochondrial dynamics links PINCH-1 signaling to proline metabolic reprogramming and tumor growth. Cell Stress, 2020, 5, 23-25.	3.2	2
17	Mechano-regulation of proline metabolism and cancer progression by kindlin-2. Molecular and Cellular Oncology, 2019, 6, 1596003.	0.7	7
18	A PINCH-1–Smurf1 signaling axis mediates mechano-regulation of BMPR2 and stem cell differentiation. Journal of Cell Biology, 2019, 218, 3773-3794.	5.2	11

#	Article	IF	CITATIONS
19	TSA restores hair follicle-inductive capacity of skin-derived precursors. Scientific Reports, 2019, 9, 2867.	3.3	18
20	\hat{l}_{\pm} -Parvin promotes breast cancer progression and metastasis through interaction with G3BP2 and regulation of TWIST1 signaling. Oncogene, 2019, 38, 4856-4874.	5.9	12
21	Kindlin-2 links mechano-environment to proline synthesis and tumor growth. Nature Communications, 2019, 10, 845.	12.8	85
22	Focal adhesion proteins Pinch1 and Pinch2 regulate bone homeostasis in mice. JCI Insight, 2019, 4, .	5.0	28
23	Kindlin-2 regulates mesenchymal stem cell differentiation through control of YAP1/TAZ. Journal of Cell Biology, 2018, 217, 1431-1451.	5.2	71
24	Migfilin promotes migration and invasion in glioma by driving EGFR and MMP-2 signalings: A positive feedback loop regulation. Journal of Genetics and Genomics, 2017, 44, 557-565.	3.9	10
25	Structural basis of kindlin-mediated integrin recognition and activation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9349-9354.	7.1	130
26	Kindlin-2 Association with Rho GDP-Dissociation Inhibitor α Suppresses Rac1 Activation and Podocyte Injury. Journal of the American Society of Nephrology: JASN, 2017, 28, 3545-3562.	6.1	38
27	Aging Reduces an ERRalpha-Directed Mitochondrial Glutaminase Expression Suppressing Glutamine Anaplerosis and Osteogenic Differentiation of Mesenchymal Stem Cells. Stem Cells, 2017, 35, 411-424.	3.2	54
28	HDAC10 promotes angiogenesis in endothelial cells through the PTPN22/ERK axis. Oncotarget, 2017, 8, 61338-61349.	1.8	26
29	Cancer Stem Cells Protect Nonâ€5tem Cells From Anoikis: Bystander Effects. Journal of Cellular Biochemistry, 2016, 117, 2289-2301.	2.6	32
30	Phosphatidylinositol 3-Kinase/Akt Mediates Integrin Signaling To Control RNA Polymerase I Transcriptional Activity. Molecular and Cellular Biology, 2016, 36, 1555-1568.	2.3	27
31	Kindlin-2 interacts with \hat{l}^2 -catenin and YB-1 to enhance <i>EGFR</i> transcription during glioma progression. Oncotarget, 2016, 7, 74872-74885.	1.8	27
32	Kindlin-2 controls TGF- \hat{l}^2 signalling and Sox9 expression to regulate chondrogenesis. Nature Communications, 2015, 6, 7531.	12.8	93
33	Impaired Bone Homeostasis in Amyotrophic Lateral Sclerosis Mice with Muscle Atrophy. Journal of Biological Chemistry, 2015, 290, 8081-8094.	3.4	32
34	Heterozygote of TAP1 Codon637 decreases susceptibility to HPV infection but increases susceptibility to esophageal cancer among the Kazakh populations. Journal of Experimental and Clinical Cancer Research, 2015, 34, 70.	8.6	19
35	Kindlin-2 Tyrosine Phosphorylation and Interaction with Src Serve as a Regulatable Switch in the Integrin Outside-in Signaling Circuit. Journal of Biological Chemistry, 2014, 289, 31001-31013.	3.4	33
36	Migfilin's elimination from osteoarthritic chondrocytes further promotes the osteoarthritic phenotype via β-catenin upregulation. Biochemical and Biophysical Research Communications, 2013, 430, 494-499.	2.1	7

3

#	Article	IF	Citations
37	Migfilin, \hat{l} ±-parvin and \hat{l}^2 -parvin are differentially expressed in ovarian serous carcinoma effusions, primary tumors and solid metastases. Gynecologic Oncology, 2013, 128, 364-370.	1.4	7
38	Role of PINCH and Its Partner Tumor Suppressor Rsu-1 in Regulating Liver Size and Tumorigenesis. PLoS ONE, 2013, 8, e74625.	2.5	33
39	Critical Role of Filamin-binding LIM Protein 1 (FBLP-1)/Migfilin in Regulation of Bone Remodeling. Journal of Biological Chemistry, 2012, 287, 21450-21460.	3.4	57
40	Migfilin Regulates Esophageal Cancer Cell Motility through Promoting GSK-3β–Mediated Degradation of β-Catenin. Molecular Cancer Research, 2012, 10, 273-281.	3.4	27
41	Migfilin Protein Promotes Migration and Invasion in Human Glioma through Epidermal Growth Factor Receptor-mediated Phospholipase $C \cdot \hat{l}^3$ and STAT3 Protein Signaling Pathways. Journal of Biological Chemistry, 2012, 287, 32394-32405.	3.4	30
42	ILK: a pseudokinase in the center stage of cell-matrix adhesion and signaling. Current Opinion in Cell Biology, 2012, 24, 607-613.	5.4	105
43	PINCH1 Is Transcriptional Regulator in Podocytes That Interacts with WT1 and Represses Podocalyxin Expression. PLoS ONE, 2011, 6, e17048.	2.5	20
44	Protection against Fas-induced fulminant hepatic failure in liver specific integrin linked kinase knockout mice. Comparative Hepatology, 2011, 10, 11.	0.9	4
45	Kindlin-2 regulates podocyte adhesion and fibronectin matrix deposition through interactions with phosphoinositides and integrins. Journal of Cell Science, 2011, 124, 879-891.	2.0	92
46	Structural Basis of Phosphoinositide Binding to Kindlin-2 Protein Pleckstrin Homology Domain in Regulating Integrin Activation. Journal of Biological Chemistry, 2011, 286, 43334-43342.	3.4	95
47	α-Actinin-4 and CLP36 Protein Deficiencies Contribute to Podocyte Defects in Multiple Human Glomerulopathies. Journal of Biological Chemistry, 2011, 286, 30795-30805.	3.4	21
48	Interaction of Integrin-Linked Kinase and Miniature Chromosome Maintenance 7–Mediating Integrin α7 Induced Cell Growth Suppression. Cancer Research, 2010, 70, 4375-4384.	0.9	26
49	Tyrosine Phosphorylation of Integrin \hat{I}^2 3 Regulates Kindlin-2 Binding and Integrin Activation. Journal of Biological Chemistry, 2010, 285, 30370-30374.	3.4	46
50	Inhibition of integrin-linked kinase blocks podocyte epithelial–mesenchymal transition and ameliorates proteinuria. Kidney International, 2010, 78, 363-373.	5.2	134
51	Mechanical signals control SOX-9, VEGF, and c-Myc expression and cell proliferation during inflammation via integrin-linked kinase, B-Raf, and ERK1/2-dependent signaling in articular chondrocytes. Arthritis Research and Therapy, 2010, 12, R106.	3.5	56
52	Migfilin contributes to cellâ€matrix adhesionâ€mediated survival signaling through direct interaction with Src. FASEB Journal, 2010, 24, 39.2.	0.5	0
53	Migfilin, a Molecular Switch in Regulation of Integrin Activation. Journal of Biological Chemistry, 2009, 284, 4713-4722.	3.4	98
54	Migfilin Interacts with Src and Contributes to Cell-Matrix Adhesion-mediated Survival Signaling. Journal of Biological Chemistry, 2009, 284, 34308-34320.	3.4	33

#	Article	IF	Citations
55	Structural Basis of Focal Adhesion Localization of LIM-only Adaptor PINCH by Integrin-linked Kinase. Journal of Biological Chemistry, 2009, 284, 5836-5844.	3.4	32
56	Targeted Ablation of PINCH1 and PINCH2 From Murine Myocardium Results in Dilated Cardiomyopathy and Early Postnatal Lethality. Circulation, 2009, 120, 568-576.	1.6	53
57	The Pseudoactive Site of ILK Is Essential for Its Binding to α-Parvin and Localization to Focal Adhesions. Molecular Cell, 2009, 36, 819-830.	9.7	157
58	Liver-specific ablation of integrin-linked kinase in mice results in abnormal histology, enhanced cell proliferation, and hepatomegaly. Hepatology, 2008, 48, 1932-1941.	7.3	79
59	Kindlins: essential regulators of integrin signalling and cell–matrix adhesion. EMBO Reports, 2008, 9, 1203-1208.	4.5	223
60	Expression of integrin-linked kinase and its binding partners in chondrosarcoma: Association with prognostic significance. European Journal of Cancer, 2008, 44, 2518-2525.	2.8	36
61	Kindler Syndrome and Periodontal Disease: Review of the Literature and a 12â€Year Followâ€Up Case. Journal of Periodontology, 2008, 79, 961-966.	3.4	48
62	Roles of PINCH-2 in regulation of glomerular cell shape change and fibronectin matrix deposition. American Journal of Physiology - Renal Physiology, 2008, 295, F253-F263.	2.7	11
63	PINCH-1 Regulates the ERK-Bim Pathway and Contributes to Apoptosis Resistance in Cancer Cells. Journal of Biological Chemistry, 2008, 283, 2508-2517.	3.4	67
64	A Suppressive Role of Mitogen Inducible Gene-2 in Mesenchymal Cancer Cell Invasion. Molecular Cancer Research, 2008, 6, 715-724.	3.4	41
65	Kindlin-2 (Mig-2): a co-activator of \hat{l}^2 3 integrins. Journal of Cell Biology, 2008, 181, 439-446.	5.2	314
66	Focal Adhesion. Cell Adhesion and Migration, 2007, 1, 13-18.	2.7	45
67	Integrin-linked Kinase Regulates N-WASp-mediated Actin Polymerization and Tension Development in Tracheal Smooth Muscle. Journal of Biological Chemistry, 2007, 282, 34568-34580.	3.4	51
68	TGF-β1 Regulates the PINCH-1–Integrin-Linked Kinase–α-Parvin Complex in Glomerular Cells. Journal of the American Society of Nephrology: JASN, 2007, 18, 66-73.	6.1	34
69	The MIG-2/Integrin Interaction Strengthens Cell-Matrix Adhesion and Modulates Cell Motility. Journal of Biological Chemistry, 2007, 282, 20455-20466.	3.4	154
70	PINCH-1 Promotes Tubular Epithelial-to-Mesenchymal Transition by Interacting with Integrin-Linked Kinase. Journal of the American Society of Nephrology: JASN, 2007, 18, 2534-2543.	6.1	58
71	\hat{l}^21 -Integrin Signaling is Essential for Lens Fiber Survival. Gene Regulation and Systems Biology, 2007, 1, 117762500700100.	2.3	1
72	Integrin-linked kinase is involved in matrix-induced hepatocyte differentiation. Biochemical and Biophysical Research Communications, 2007, 353, 638-643.	2.1	35

#	Article	IF	CITATIONS
73	TGF- \hat{l}^21 -induced PINCH-1-ILK- $\hat{l}\pm$ -parvin complex formation regulates mesangial cell proliferation and hypertrophy. Experimental and Molecular Medicine, 2007, 39, 514-523.	7.7	8
74	Loss of integrin linked kinase from mouse hepatocytesin vitro andin vivo results in apoptosis and hepatitis. Hepatology, 2007, 45, 1025-1034.	7.3	55
75	Tissue-type plasminogen activator promotes murine myofibroblast activation through LDL receptorâ \in "related protein 1 â \in "mediated integrin signaling. Journal of Clinical Investigation, 2007, 117, 3821-32.	8.2	91
76	Focal Adhesion: A Focal Point in Current Cell Biology and Molecular Medicine. Cell Adhesion and Migration, 2007, 1, 13-18.	2.7	68
77	Beta1-integrin signaling is essential for lens fiber survival. Gene Regulation and Systems Biology, 2007, 1, 177-89.	2.3	12
78	Integrin-linked kinase regulates Bergmann glial differentiation during cerebellar development. Molecular and Cellular Neurosciences, 2006, 33, 109-125.	2.2	50
79	Essential Role of Integrin-Linked Kinase in Podocyte Biology. Journal of the American Society of Nephrology: JASN, 2006, 17, 2164-2175.	6.1	123
80	Migfilin Interacts with Vasodilator-stimulated Phosphoprotein (VASP) and Regulates VASP Localization to Cell-Matrix Adhesions and Migration. Journal of Biological Chemistry, 2006, 281, 12397-12407.	3.4	57
81	PINCH, N(i)ck and the ILK: network wiring at cell–matrix adhesions. Trends in Cell Biology, 2005, 15, 460-466.	7.9	96
82	Migfilin and its binding partners: from cell biology to human diseases. Journal of Cell Science, 2005, 118, 659-664.	2.0	66
83	Formation and Phosphorylation of the PINCH-1–Integrin Linked Kinase–α-Parvin Complex Are Important for Regulation of Renal Glomerular Podocyte Adhesion, Architecture, and Survival. Journal of the American Society of Nephrology: JASN, 2005, 16, 1966-1976.	6.1	58
84	Physical and functional association of migfilin with cell-cell adhesions. Journal of Cell Science, 2005, 118, 697-710.	2.0	42
85	Molecular Dissection of PINCH-1 Reveals a Mechanism of Coupling and Uncoupling of Cell Shape Modulation and Survival. Journal of Biological Chemistry, 2005, 280, 27631-27637.	3.4	51
86	Assembly and Signaling of Adhesion Complexes. Current Topics in Developmental Biology, 2005, 68, 183-225.	2.2	45
87	Structure of an Ultraweak Protein-Protein Complex and Its Crucial Role in Regulation of Cell Morphology and Motility. Molecular Cell, 2005, 17, 513-523.	9.7	116
88	Distinct Roles of Two Structurally Closely Related Focal Adhesion Proteins, \hat{l}_{\pm} -Parvins and \hat{l}^2 -Parvins, in Regulation of Cell Morphology and Survival. Journal of Biological Chemistry, 2004, 279, 41695-41705.	3.4	84
89	The PINCH–ILK–parvin complexes: assembly, functions and regulation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1692, 55-62.	4.1	137
90	Structural and functional insights into PINCH LIM4 domain–mediated integrin signaling. Nature Structural and Molecular Biology, 2003, 10, 558-564.	8.2	64

#	Article	IF	Citations
91	Migfilin and Mig-2 Link Focal Adhesions to Filamin and the Actin Cytoskeleton and Function in Cell Shape Modulation. Cell, 2003, 113, 37-47.	28.9	330
92	Integration of Cell Attachment, Cytoskeletal Localization, and Signaling by Integrin-linked Kinase (ILK), CH-ILKBP, and the Tumor Suppressor PTEN. Molecular Biology of the Cell, 2003, 14, 4813-4825.	2.1	129
93	CH-ILKBP regulates cell survival by facilitating the membrane translocation of protein kinase B/Akt. Journal of Cell Biology, 2003, 160, 1001-1008.	5.2	63
94	PINCH-1 Is an Obligate Partner of Integrin-linked Kinase (ILK) Functioning in Cell Shape Modulation, Motility, and Survival. Journal of Biological Chemistry, 2003, 278, 51324-51333.	3.4	185
95	Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. Journal of Clinical Investigation, 2003, 112, 503-516.	8.2	314
96	A Critical Role of the PINCH-Integrin-linked Kinase Interaction in the Regulation of Cell Shape Change and Migration. Journal of Biological Chemistry, 2002, 277, 318-326.	3.4	103
97	Regulation of fibronectin matrix deposition and cell proliferation by the PINCHâ€ILKâ€CHâ€ILKBP complex. FASEB Journal, 2002, 16, 1298-1300.	0.5	75
98	Characterization of PINCH-2, a New Focal Adhesion Protein That Regulates the PINCH-1-ILK Interaction, Cell Spreading, and Migration. Journal of Biological Chemistry, 2002, 277, 38328-38338.	3.4	97
99	Assembly of the PINCH-ILK-CH-ILKBP complex precedes and is essential for localization of each component to cell-matrix adhesion sites. Journal of Cell Science, 2002, 115, 4777-4786.	2.0	173
100	Nck-2 interacts with focal adhesion kinase and modulates cell motility. International Journal of Biochemistry and Cell Biology, 2002, 34, 791-805.	2.8	34
101	The Distribution and Regulation of Integrin-Linked Kinase in Normal and Diabetic Kidneys. American Journal of Pathology, 2001, 159, 1735-1742.	3.8	78
102	Integrin-linked kinase (ILK) and its interactors. Journal of Cell Biology, 2001, 155, 505-510.	5.2	435
103	Identification and kinetic analysis of the interaction between Nck-2 and DOCK180. FEBS Letters, 2001, 491, 193-199.	2.8	39
104	Src homology 3 domain-dependent interaction of Nck-2 with insulin receptor substrate-1. Biochemical Journal, 2001, 354, 315.	3.7	16
105	Src homology 3 domain-dependent interaction of Nck-2 with insulin receptor substrate-1. Biochemical Journal, 2001, 354, 315-322.	3.7	17
106	A New Focal Adhesion Protein That Interacts with Integrin-Linked Kinase and Regulates Cell Adhesion and Spreading. Journal of Cell Biology, 2001, 153, 585-598.	5.2	212
107	Solution Structure of the Focal Adhesion Adaptor PINCH LIM1 Domain and Characterization of Its Interaction with the Integrin-linked Kinase Ankyrin Repeat Domain. Journal of Biological Chemistry, 2001, 276, 4932-4939.	3.4	70
108	ILK interactions. Journal of Cell Science, 2001, 114, 2549-2550.	2.0	37

#	Article	IF	CITATIONS
109	The Roles of Integrin-Linked Kinase in the Regulation of Myogenic Differentiation. Journal of Cell Biology, 2000, 150, 861-872.	5.2	72
110	The LIM-Only Protein PINCH Directly Interacts with Integrin-Linked Kinase and Is Recruited to Integrin-Rich Sites in Spreading Cells. Molecular and Cellular Biology, 1999, 19, 2425-2434.	2.3	278
111	Expression of the Integrin-Linked Kinase (ILK) in Mouse Skin. American Journal of Pathology, 1998, 153, 367-372.	3.8	30
112	Integrin-linked Protein Kinase Regulates Fibronectin Matrix Assembly, E-cadherin Expression, and Tumorigenicity. Journal of Biological Chemistry, 1998, 273, 528-536.	3.4	257
113	Nck-2, a Novel Src Homology2/3-containing Adaptor Protein That Interacts with the LIM-only Protein PINCH and Components of Growth Factor Receptor Kinase-signaling Pathways. Molecular Biology of the Cell, 1998, 9, 3367-3382.	2.1	174
114	Identification and characterization of a mouse protein kinase that is highly homologous to human integrin-linked kinase1The sequence data have been deposited with the GenBank (accession number) Tj ETQq0 0	04gBT/C)vezłock 10 Tf
115	Integrin Mediated Fibronectin Matrix Assembly Trends in Glycoscience and Glycotechnology, 1996, 8, 315-325.	0.1	2