
Zuofeng Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8395225/publications.pdf Version: 2024-02-01

7HOFENC 7HIL

#	Article	IF	CITATIONS
1	Control of a key transition from prostrate to erect growth in rice domestication. Nature Genetics, 2008, 40, 1360-1364.	21.4	411
2	<i>TAC1</i> , a major quantitative trait locus controlling tiller angle in rice. Plant Journal, 2007, 52, 891-898.	5.7	281
3	Origin of seed shattering in rice (Oryza sativa L.). Planta, 2007, 226, 11-20.	3.2	215
4	<i>LABA1</i> , a Domestication Gene Associated with Long, Barbed Awns in Wild Rice. Plant Cell, 2015, 27, 1875-1888.	6.6	178
5	Genetic control of inflorescence architecture during rice domestication. Nature Communications, 2013, 4, 2200.	12.8	134
6	A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nature Plants, 2017, 3, 17064.	9.3	133
7	<i>GAD1</i> Encodes a Secreted Peptide That Regulates Grain Number, Grain Length, and Awn Development in Rice Domestication. Plant Cell, 2016, 28, 2453-2463.	6.6	115
8	NOG1 increases grain production in rice. Nature Communications, 2017, 8, 1497.	12.8	111
9	<i><scp>CLUSTERED PRIMARY BRANCH</scp> 1</i> , a new allele of <i><scp>DWARF</scp>11</i> , controls panicle architecture and seed size in rice. Plant Biotechnology Journal, 2016, 14, 377-386.	8.3	101
10	A super pan-genomic landscape of rice. Cell Research, 2022, 32, 878-896.	12.0	99
11	The APETALA2-Like Transcription Factor SUPERNUMERARY BRACT Controls Rice Seed Shattering and Seed Size. Plant Cell, 2019, 31, 17-36.	6.6	93
12	<i><scp>PAY</scp>1</i> improves plant architecture and enhances grain yield in rice. Plant Journal, 2015, 83, 528-536.	5.7	87
13	Development of Oryza rufipogon and O. sativa Introgression Lines and Assessment for Yield-related Quantitative Trait Loci. Journal of Integrative Plant Biology, 2007, 49, 871-884.	8.5	84
14	Natural Variations at TIG1 Encoding a TCP Transcription Factor Contribute to Plant Architecture Domestication in Rice. Molecular Plant, 2019, 12, 1075-1089.	8.3	70
15	Variation in the regulatory region of <i><scp>FZP</scp></i> causes increases in secondary inflorescence branching and grain yield in rice domestication. Plant Journal, 2018, 96, 716-733.	5.7	65
16	<i><scp>TOND1</scp></i> confers tolerance to nitrogen deficiency in rice. Plant Journal, 2015, 81, 367-376.	5.7	57
17	Genetic control of seed shattering during African rice domestication. Nature Plants, 2018, 4, 331-337.	9.3	55
18	<i>NARROW AND ROLLED LEAF 2</i> regulates leaf shape, male fertility, and seed size in rice. Journal of Integrative Plant Biology, 2016, 58, 983-996.	8.5	53

ZUOFENG ZHU

#	Article	IF	CITATIONS
19	Genomic structure analysis of a set of Oryza nivara introgression lines and identification of yield-associated QTLs using whole-genome resequencing. Scientific Reports, 2016, 6, 27425.	3.3	45
20	A common wild rice-derived BOC1 allele reduces callus browning in indica rice transformation. Nature Communications, 2020, 11, 443.	12.8	43
21	The domestication of plant architecture in African rice. Plant Journal, 2018, 94, 661-669.	5.7	39
22	<i>HIGH-TILLERING AND DWARF 12</i> modulates photosynthesis and plant architecture by affecting carotenoid biosynthesis in rice. Journal of Experimental Botany, 2021, 72, 1212-1224.	4.8	21
23	<i>ESA1</i> Is Involved in Embryo Sac Abortion in Interspecific Hybrid Progeny of Rice. Plant Physiology, 2019, 180, 356-366.	4.8	18
24	Emergence of a Novel Chimeric Gene Underlying Grain Number in Rice. Genetics, 2017, 205, 993-1002.	2.9	15
25	Patterns of nucleotide diversity in wild and cultivated rice. Plant Systematics and Evolution, 2009, 281, 97-106.	0.9	13
26	ldentification of an active miniature invertedâ€repeat transposable element <i><scp>mJ</scp>ing</i> in rice. Plant Journal, 2019, 98, 639-653.	5.7	11
27	Polyamine oxidase 3 is involved in salt tolerance at the germination stage in rice. Journal of Genetics and Genomics, 2022, 49, 458-468.	3.9	11
28	Molecular Evolution of the Sorghum Maturity Gene Ma3. PLoS ONE, 2015, 10, e0124435.	2.5	6
29	Identification of Quantitative Trait Locus for Seed Dormancy and Expression Analysis of Four Dormancy-Related Genes in Sorghum. Tropical Plant Biology, 2015, 8, 9-18.	1.9	4
30	Single-Molecule Sequencing Assists Genome Assembly Improvement and Structural Variation Inference. Molecular Plant, 2016, 9, 1085-1087.	8.3	2
31	A gain-of-function mutation of OsMAPK6 leads to long grain in rice. Crop Journal, 2021, 9, 1481-1481.	5.2	1
32	The genetic control of glabrous glume during African rice domestication. Journal of Genetics and Genomics, 2022, , .	3.9	1