
Scott V Edwards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8395060/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 6196-6200.	3.3	4,373
2	Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 2014, 346, 1320-1331.	6.0	1,583
3	IS A NEW AND GENERAL THEORY OF MOLECULAR SYSTEMATICS EMERGING?. Evolution; International Journal of Organic Evolution, 2009, 63, 1-19.	1.1	926
4	Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 2014, 346, 1311-1320.	6.0	895
5	The genome of a songbird. Nature, 2010, 464, 757-762.	13.7	770
6	Earth BioGenome Project: Sequencing life for the future of life. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4325-4333.	3.3	652
7	PERSPECTIVE: GENE DIVERGENCE, POPULATION DIVERGENCE, AND THE VARIANCE INCOALESCENCE TIME IN PHYLOGEOGRAPHIC STUDIES. Evolution; International Journal of Organic Evolution, 2000, 54, 1839.	1.1	604
8	The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature, 2011, 477, 587-591.	13.7	575
9	A maximum pseudo-likelihood approach for estimating species trees under the coalescent model. BMC Evolutionary Biology, 2010, 10, 302.	3.2	548
10	The utility of single nucleotide polymorphisms in inferences of population history. Trends in Ecology and Evolution, 2003, 18, 249-256.	4.2	544
11	High-resolution species trees without concatenation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5936-5941.	3.3	530
12	Estimating Divergence Times from Molecular Data on Phylogenetic and Population Genetic Timescales. Annual Review of Ecology, Evolution, and Systematics, 2002, 33, 707-740.	6.7	521
13	Genome 10K: A Proposal to Obtain Whole-Genome Sequence for 10 000 Vertebrate Species. Journal of Heredity, 2009, 100, 659-674.	1.0	504
14	Estimating Species Phylogenies Using Coalescence Times among Sequences. Systematic Biology, 2009, 58, 468-477.	2.7	410
15	Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14942-14947.	3.3	407
16	Evolution and ecology of MHC molecules: from genomics to sexual selection. Trends in Ecology and Evolution, 1998, 13, 305-311.	4.2	358
17	Coalescent methods for estimating phylogenetic trees. Molecular Phylogenetics and Evolution, 2009, 53, 320-328.	1.2	353
18	Implementing and testing the multispecies coalescent model: A valuable paradigm for phylogenomics. Molecular Phylogenetics and Evolution, 2016, 94, 447-462.	1.2	321

#	Article	IF	CITATIONS
19	Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science, 2014, 346, 1254449.	6.0	300
20	Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica, 2009, 135, 439-455.	0.5	281
21	The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biology, 2013, 14, R28.	13.9	276
22	Origin of avian genome size and structure in non-avian dinosaurs. Nature, 2007, 446, 180-184.	13.7	262
23	Dense sampling of bird diversity increases power of comparative genomics. Nature, 2020, 587, 252-257.	13.7	251
24	Speciation in birds: Genes, geography, and sexual selection. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6550-6557.	3.3	228
25	SPECIATIONAL HISTORY OF AUSTRALIAN GRASS FINCHES (POEPHILA) INFERRED FROM THIRTY GENE TREES. Evolution; International Journal of Organic Evolution, 2005, 59, 2033-2047.	1.1	227
26	Genetic Introgression: An Integral but neglected component of speciation in birds. Auk, 2011, 128, 620-632.	0.7	227
27	Speciational history of Australian grass finches (Poephila) inferred from thirty gene trees. Evolution; International Journal of Organic Evolution, 2005, 59, 2033-47.	1.1	205
28	Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. Science, 2017, 357, 495-498.	6.0	204
29	Looking forwards or looking backwards in avian phylogeography? A comment on Zink and Barrowclough 2008. Molecular Ecology, 2009, 18, 2930-2933.	2.0	200
30	ESTIMATING SPECIES TREES USING MULTIPLE-ALLELE DNA SEQUENCE DATA. Evolution; International Journal of Organic Evolution, 2008, 62, 2080-2091.	1.1	189
31	Convergent regulatory evolution and loss of flight in paleognathous birds. Science, 2019, 364, 74-78.	6.0	189
32	The evolution of a tropical biodiversity hotspot. Science, 2020, 370, 1343-1348.	6.0	179
33	EVOLUTION INTO AND OUT OF THE ANDES: A BAYESIAN ANALYSIS OF HISTORICAL DIVERSIFICATION INTHAMNOPHILUSANTSHRIKES. Evolution; International Journal of Organic Evolution, 2007, 61, 346-367.	1.1	169
34	Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor. Science, 2014, 345, 929-933.	6.0	169
35	Estimating phylogenetic trees from genomeâ€scale data. Annals of the New York Academy of Sciences, 2015, 1360, 36-53.	1.8	165
36	DIVERGENCE ACROSS AUSTRALIA'S CARPENTARIAN BARRIER: STATISTICAL PHYLOGEOGRAPHY OF THE RED-BACKED FAIRY WREN (<i>MALURUS MELANOCEPHALUS</i>). Evolution; International Journal of Organic Evolution, 2008, 62, 3117-3134.	1.1	161

#	Article	IF	CITATIONS
37	Digitization and the Future of Natural History Collections. BioScience, 2020, 70, 243-251.	2.2	161
38	Molecular Evolution of the Toll-Like Receptor Multigene Family in Birds. Molecular Biology and Evolution, 2011, 28, 1703-1715.	3.5	150
39	Ultrafast Evolution and Loss of CRISPRs Following a Host Shift in a Novel Wildlife Pathogen, Mycoplasma gallisepticum. PLoS Genetics, 2012, 8, e1002511.	1.5	145
40	The Phylogenetic Component of Cooperative Breeding in Perching Birds. American Naturalist, 1993, 141, 754-789.	1.0	142
41	Rapid evolution of disease resistance is accompanied by functional changes in gene expression in a wild bird. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7866-7871.	3.3	132
42	Reticulation, divergence, and the phylogeography–phylogenetics continuum. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8025-8032.	3.3	130
43	The Evolution of the Major Histocompatibility Complex in Birds. BioScience, 2002, 52, 423.	2.2	129
44	Phylogenomics of nonavian reptiles and the structure of the ancestral amniote genome. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2767-2772.	3.3	126
45	AnMhcComponent to Kin Recognition and Mate Choice in Birds: Predictions, Progress, and Prospects. American Naturalist, 2002, 160, S225-S237.	1.0	124
46	The Earth BioGenome Project 2020: Starting the clock. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	124
47	Gene duplication and fragmentation in the zebra finch major histocompatibility complex. BMC Biology, 2010, 8, 29.	1.7	121
48	Genomic evidence reveals a radiation of placental mammals uninterrupted by the KPg boundary. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7282-E7290.	3.3	119
49	Embracing heterogeneity: coalescing the Tree of Life and the future of phylogenomics. PeerJ, 2019, 7, e6399.	0.9	111
50	Extensive polymorphism and geographical variation at a positively selected MHC class II B gene of the lesser kestrel (<i>Falco naumanni</i>). Molecular Ecology, 2008, 17, 2652-2665.	2.0	110
51	Conceptual and empirical advances in Neotropical biodiversity research. PeerJ, 2018, 6, e5644.	0.9	107
52	Comparative genomics based on massive parallel transcriptome sequencing reveals patterns of substitution and selection across 10 bird species. Molecular Ecology, 2010, 19, 266-276.	2.0	105
53	The tuatara genome reveals ancient features of amniote evolution. Nature, 2020, 584, 403-409.	13.7	105
54	Phylogenetic Analysis in the Anomaly Zone. Systematic Biology, 2009, 58, 452-460.	2.7	103

#	Article	IF	CITATIONS
55	Evolutionary Dynamics of Intron Size, Genome Size, and Physiological Correlates in Archosaurs. American Naturalist, 2002, 160, 539-552.	1.0	96
56	Temporal increase in organic mercury in an endangered pelagic seabird assessed by century-old museum specimens. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7466-7471.	3.3	96
57	Nucleotide Variation, Linkage Disequilibrium and Founder-Facilitated Speciation in Wild Populations of the Zebra Finch (<i>Taeniopygia guttata</i>). Genetics, 2009, 181, 645-660.	1.2	91
58	Whole-Genome Analyses Resolve the Phylogeny of Flightless Birds (Palaeognathae) in the Presence of an Empirical Anomaly Zone. Systematic Biology, 2019, 68, 937-955.	2.7	88
59	Multilocus tests of <scp>P</scp> leistocene refugia and ancient divergence in a pair of <scp>A</scp> tlantic <scp>F</scp> orest antbirds (<i><scp>M</scp>yrmeciza</i>). Molecular Ecology, 2013, 22, 3996-4013.	2.0	85
60	Characterization, Polymorphism, and Evolution of MHC Class II B Genes in Birds of Prey. Journal of Molecular Evolution, 2007, 65, 541-554.	0.8	84
61	Introgression and Phenotypic Assimilation in Zimmerius Flycatchers (Tyrannidae): Population Genetic and Phylogenetic Inferences from Genome-Wide SNPs. Systematic Biology, 2014, 63, 134-152.	2.7	84
62	Phylogenetics of modern birds in the era of genomics. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 979-992.	1.2	83
63	The Global Museum: natural history collections and the future of evolutionary science and public education. PeerJ, 2020, 8, e8225.	0.9	81
64	Contrasting histories of avian and mammalian Mhc genes revealed by class II B sequences from songbirds Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 12200-12204.	3.3	80
65	Comparison of Species Tree Methods for Reconstructing the Phylogeny of Bearded Manakins (Aves:) Tj ETQq1 1 ().784314 2.7	rgBT /Over
66	Genome Evolution in Reptilia, the Sister Group of Mammals. Annual Review of Genomics and Human Genetics, 2010, 11, 239-264.	2.5	78
67	Genomics and polymorphism of Agph-DAB1, an Mhc class II B gene in red- winged blackbirds (Agelaius) Tj ETQq1	1	14 _{.79} BT /Ove
68	Natural History Collections as Emerging Resources for Innovative Education. BioScience, 2014, 64, 725-734.	2.2	76
69	Ancient horizontal transfers of retrotransposons between birds and ancestors of human pathogenic nematodes. Nature Communications, 2016, 7, 11396.	5.8	76
70	RECONCILING ACTUAL AND INFERRED POPULATION HISTORIES IN THE HOUSE FINCH (CARPODACUS) TJ ETQq0 (2852-2864.	0 o rgBT / 1.1	Overlock 10 75
71	MITOCHONDRIAL GENE GENEALOGY AND GENE FLOW AMONG ISLAND AND MAINLAND POPULATIONS OF A SEDENTARY SONGBIRD, THE GREYâ€CROWNED BABBLER (<i>POMATOSTOMUS TEMPORALIS</i>). Evolution; International Journal of Organic Evolution, 1993, 47, 1118-1137.	1.1	74
72	Phylogenomic analyses data of the avian phylogenomics project. GigaScience, 2015, 4, 4.	3.3	72

#	Article	IF	CITATIONS
73	Molecular Adaptations for Sensing and Securing Prey and Insight into Amniote Genome Diversity from the Garter Snake Genome. Genome Biology and Evolution, 2018, 10, 2110-2129.	1.1	72
74	Phylogenetics is the New Genetics (for Most of Biodiversity). Trends in Ecology and Evolution, 2020, 35, 415-425.	4.2	72
75	The Evolution of Intron Size in Amniotes: A Role for Powered Flight?. Genome Biology and Evolution, 2012, 4, 1033-1043.	1.1	71
76	Museum specimens of terrestrial vertebrates are sensitive indicators of environmental change in the Anthropocene. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20170387.	1.8	71
77	Population Genomics Reveals Low Genetic Diversity and Adaptation to Hypoxia in Snub-Nosed Monkeys. Molecular Biology and Evolution, 2016, 33, 2670-2681.	3.5	69
78	MHC Class II Pseudogene and Genomic Signature of a 32-kb Cosmid in the House Finch (Carpodacus) Tj ETQq0	0 0.rgBT /	Overlock 10 T
79	Out of Gondwana: the origin of passerine birds. Trends in Ecology and Evolution, 2002, 17, 347-349.	4.2	68
80	Dynamics of <i>Mhc</i> evolution in birds and crocodilians: amplification of class II genes with degenerate primers. Molecular Ecology, 1995, 4, 719-730.	2.0	67
81	A Genomic Schism in Birds Revealed by Phylogenetic Analysis of DNA Strings. Systematic Biology, 2002, 51, 599-613.	2.7	66
82	Ecology of Avian Influenza Virus in Birds. Journal of Infectious Diseases, 2008, 197, S29-S33.	1.9	62
83	Ancestral Polymorphism of <i>Mhc</i> Class II Genes in Mice: Implications for Balancing Selection and the Mammalian Molecular Clock. Genetics, 1997, 146, 655-668.	1.2	61
84	Parallel Evolution of Tetrodotoxin Resistance in Three Voltage-Gated Sodium Channel Genes in the Garter Snake Thamnophis sirtalis. Molecular Biology and Evolution, 2014, 31, 2836-2846.	3.5	60
85	Natural selection and phylogenetic analysis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8799-8800.	3.3	59
86	Museum Genomics. Annual Review of Genetics, 2021, 55, 633-659.	3.2	58
87	Developing markers for multilocus phylogenetics in non-model organisms: A test case with turtles. Molecular Phylogenetics and Evolution, 2008, 49, 514-525.	1.2	57
88	Feather Development Genes and Associated Regulatory Innovation Predate the Origin of Dinosauria. Molecular Biology and Evolution, 2015, 32, 23-28.	3.5	57
89	A Species Tree for the Australo-Papuan Fairy-wrens and Allies (Aves: Maluridae). Systematic Biology, 2012, 61, 253.	2.7	55
90	Relevance of Microevolutionary Processes to Higher Level Molecular Systematics. , 1997, , 251-278.		54

#	Article	IF	CITATIONS
91	A phylogeny of the megapodes (Aves: Megapodiidae) based on nuclear and mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 2002, 23, 408-421.	1.2	53
92	Response to Comment on "Whole-genome analyses resolve early branches in the tree of life of modern birds― Science, 2015, 349, 1460-1460.	6.0	53
93	Toward an evolutionary genomics of the avian Mhc. Immunological Reviews, 1999, 167, 119-132.	2.8	52
94	High gene flow on a continental scale in the polyandrous <scp>K</scp> entish plover <i><scp>C</scp>haradrius alexandrinus</i> . Molecular Ecology, 2012, 21, 5864-5879.	2.0	52
95	Conflict between Genetic and Phenotypic Differentiation: The Evolutionary History of a â€~Lost and Rediscovered' Shorebird. PLoS ONE, 2011, 6, e26995.	1.1	52
96	Why sequence all eukaryotes?. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	51
97	Dynamics and Phylogenetic Implications of MtDNA Control Region Sequences in New World Jays (Aves:) Tj ETQq1	10.7843 0.8	14 rgBT /Ov
98	Innate immunity and the evolution of resistance to an emerging infectious disease in a wild bird. Molecular Ecology, 2012, 21, 2628-2639.	2.0	50
99	Phylogenomic subsampling: a brief review. Zoologica Scripta, 2016, 45, 63-74.	0.7	49
100	COMPARATIVE METHODS AT THE SPECIES LEVEL: GEOGRAPHIC VARIATION IN MORPHOLOGY AND GROUP SIZE IN GREY ROWNED BABBLERS (<i>POMATOSTOMUS TEMPORALIS</i>). Evolution; International Journal of Organic Evolution, 1995, 49, 1134-1146.	1.1	48
101	Can Weighting Improve Bushy Trees? Models of Cytochrome b Evolution and the Molecular Systematics of Pipits and Wagtails (Aves: Motacillidae). Systematic Biology, 1998, 47, 589-603.	2.7	48
102	Next-generation sequencing and the expanding domain of phylogeography. Folia Zoologica, 2015, 64, 187-206.	0.9	47
103	Evolutionary Dynamics of Sex Chromosomes of Paleognathous Birds. Genome Biology and Evolution, 2019, 11, 2376-2390.	1.1	47
104	The Multispecies Coalescent Model Outperforms Concatenation Across Diverse Phylogenomic Data Sets. Systematic Biology, 2020, 69, 795-812.	2.7	47
105	Songbird Genomics: Analysis of 45 kb Upstream of a Polymorphic Mhc Class II Gene in Red-Winged Blackbirds (Agelaius phoeniceus). Genomics, 2001, 75, 26-34.	1.3	46
106	Three tiers of genome evolution in reptiles. Integrative and Comparative Biology, 2008, 48, 494-504.	0.9	46
107	Physical Mapping and Refinement of the Painted Turtle Genome (Chrysemys picta) Inform Amniote Genome Evolution and Challenge Turtle-Bird Chromosomal Conservation. Genome Biology and Evolution, 2015, 7, 2038-2050.	1.1	46
108	Conserved Nonexonic Elements: A Novel Class of Marker for Phylogenomics. Systematic Biology, 2017, 66, 1028-1044.	2.7	46

#	Article	IF	CITATIONS
109	Physiological and regulatory underpinnings of geographic variation in reptilian cold tolerance across a latitudinal cline. Molecular Ecology, 2018, 27, 2243-2255.	2.0	46
110	The Anolis Lizard Genome: An Amniote Genome without Isochores. Genome Biology and Evolution, 2011, 3, 974-984.	1.1	44
111	A 39-kb Sequence Around a Blackbird Mhc Class II Gene: Ghost of Selection Past and Songbird Genome Architecture. Molecular Biology and Evolution, 2000, 17, 1384-1395.	3.5	43
112	Mid-Pleistocene divergence of Cuban and North American ivory-billed woodpeckers. Biology Letters, 2006, 2, 466-469.	1.0	43
113	MHC class I genes of birds of prey: isolation, polymorphism and diversifying selection. Conservation Genetics, 2009, 10, 1349-1355.	0.8	43
114	Avian MHC Evolution in the Era of Genomics: Phase 1.0. Cells, 2019, 8, 1152.	1.8	43
115	Mitochondrial DNA Variation and the Phylogeny of African Mole Rats (Rodentia: Bathyergidae). Systematic Zoology, 1987, 36, 280.	1.6	42
116	Molecular and Paleontological Evidence for a Post-Cretaceous Origin of Rodents. PLoS ONE, 2012, 7, e46445.	1.1	42
117	Sequence and gene content of a large fragment of a lizard sex chromosome and evaluation of candidate sex differentiating gene R-spondin 1. BMC Genomics, 2013, 14, 899.	1.2	41
118	Morphological and genomic comparisons of <scp>H</scp> awaiian and <scp>J</scp> apanese <scp>B</scp> lackâ€footed <scp>A</scp> lbatrosses (<i><scp>P</scp>hoebastria nigripes</i>) using double digest <scp>RAD</scp> seq: implications for conservation. Evolutionary Applications, 2015, 8, 662-678.	1.5	41
119	Out of <scp>F</scp> lorida: mt <scp>DNA</scp> reveals patterns of migration and <scp>P</scp> leistocene range expansion of the <scp>G</scp> reen <scp>A</scp> nole lizard (<i><scp>A</scp>nolis carolinensis</i>). Ecology and Evolution, 2012, 2, 2274-2284.	0.8	40
120	<scp>SNP</scp> s across time and space: population genomic signatures of founder events and epizootics in the House Finch (<i>Haemorhous mexicanus</i>). Ecology and Evolution, 2016, 6, 7475-7489.	0.8	40
121	Adaptive Evolution as a Predictor of Species-Specific Innate Immune Response. Molecular Biology and Evolution, 2015, 32, 1717-1729.	3.5	39
122	Bayesian Detection of Convergent Rate Changes of Conserved Noncoding Elements on Phylogenetic Trees. Molecular Biology and Evolution, 2019, 36, 1086-1100.	3.5	39
123	Exploration of phylogenetic data using a global sequence analysis method. BMC Evolutionary Biology, 2005, 5, 63.	3.2	38
124	Inferring the phylogeography and evolutionary history of the splendid fairyâ€wren <i>Malurus splendens</i> from mitochondrial DNA and spectrophotometry. Journal of Avian Biology, 2009, 40, 7-17.	0.6	38
125	Multiple Phylogenetically Distinct Events Shaped the Evolution of Limb Skeletal Morphologies Associated with Bipedalism in the Jerboas. Current Biology, 2015, 25, 2785-2794.	1.8	38
126	What Have We Learned from the First 500 Avian Genomes?. Annual Review of Ecology, Evolution, and Systematics, 2021, 52, 611-639.	3.8	38

#	Article	IF	CITATIONS
127	Tuatara (Sphenodon) Genomics: BAC Library Construction, Sequence Survey, and Application to the DMRT Gene Family. Journal of Heredity, 2006, 97, 541-548.	1.0	37
128	Reply to Gatesy and Springer: Claims of homology errors and zombie lineages do not compromise the dating of placental diversification. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9433-E9434.	3.3	37
129	Ecology can inform genetics: Disassortative mating contributes to MHC polymorphism in Leach's stormâ€petrels (<i>Oceanodroma leucorhoa</i>). Molecular Ecology, 2018, 27, 3371-3385.	2.0	37
130	The Evolution of Comparative Phylogeography: Putting the Geography (and More) into Comparative Population Genomics. Genome Biology and Evolution, 2022, 14, .	1.1	37
131	Major histocompatibility complex class I evolution in songbirds: universal primers, rapid evolution and base compositional shifts in exon 3. PeerJ, 2013, 1, e86.	0.9	37
132	A cDNA macroarray approach to parasite-induced gene expression changes in a songbird host: genetic response of house finches to experimental infection by Mycoplasma gallisepticum. Molecular Ecology, 2005, 15, 1263-1273.	2.0	36
133	Core Genome Multilocus Sequence Typing: a Standardized Approach for Molecular Typing of Mycoplasma gallisepticum. Journal of Clinical Microbiology, 2018, 56, .	1.8	36
134	Genomic Consequences of Long-Term Population Decline in Brown Eared Pheasant. Molecular Biology and Evolution, 2021, 38, 263-273.	3.5	36
135	Comparative Methods at the Species Level: Geographic Variation in Morphology and Group Size in Grey-Crowned Babblers (Pomatostomus temporalis). Evolution; International Journal of Organic Evolution, 1995, 49, 1134.	1.1	34
136	Hitchhiking and recombination in birds: evidence from Mhc-linked and unlinked loci in Red-winged Blackbirds (Agelaius phoeniceus). Genetical Research, 2004, 84, 175-192.	0.3	34
137	Patterns of Variation in MHC Class II \hat{I}^2 Loci of the Little Greenbul (Andropadus virens) with Comments on MHC Evolution in Birds. Journal of Heredity, 2006, 97, 133-142.	1.0	34
138	Climateâ€mediated adaptation after mainland colonization of an ancestrally subtropical island lizard, <i><scp>A</scp>nolis carolinensis</i> . Journal of Evolutionary Biology, 2016, 29, 2168-2180.	0.8	34
139	Early origin of sweet perception in the songbird radiation. Science, 2021, 373, 226-231.	6.0	34
140	Triploid plover female provides support for a role of the W chromosome in avian sex determination. Biology Letters, 2012, 8, 787-789.	1.0	32
141	Integrating natural history collections and comparative genomics to study the genetic architecture of convergent evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180248.	1.8	32
142	Molecular, functional and evolutionary characterization of the gene encoding HMG-CoA reductase in the fission yeast,Schizosaccharomyces pombe. Yeast, 1996, 12, 1107-1124.	0.8	31
143	A proposal to sequence the genome of a garter snake (Thamnophis sirtalis). Standards in Genomic Sciences, 2011, 4, 257-270.	1.5	31
144	New Frontiers for Organismal Biology. BioScience, 2013, 63, 464-471.	2.2	30

#	Article	IF	CITATIONS
145	Outlier analyses to test for local adaptation to breeding grounds in a migratory arctic seabird. Ecology and Evolution, 2017, 7, 2370-2381.	0.8	30
146	Modern Phylogenomics: Building Phylogenetic Trees Using the Multispecies Coalescent Model. Methods in Molecular Biology, 2019, 1910, 211-239.	0.4	30
147	Multiple origins of XY female mice (genus Akodon): phylogenetic and chromosomal evidence. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 1825-1831.	1.2	29
148	Structure and Evolution of a New Avian MHC Class II B Gene in a Sub-Antarctic Seabird, the Thin-Billed Prion (Procellariiformes: Pachyptila belcheri). Journal of Molecular Evolution, 2009, 68, 279-291.	0.8	28
149	Reptiles and Mammals Have Differentially Retained Long Conserved Noncoding Sequences from the Amniote Ancestor. Genome Biology and Evolution, 2011, 3, 102-113.	1.1	28
150	Major Histocompatibility Complex Genes Map to Two Chromosomes in an Evolutionarily Ancient Reptile, the Tuatara <i>Sphenodon punctatus</i> . G3: Genes, Genomes, Genetics, 2015, 5, 1439-1451.	0.8	28
151	Polymorphism across an exon-intron boundary in an avian Mhc class II B gene. Molecular Biology and Evolution, 1999, 16, 1599-1606.	3.5	27
152	Mitochondrial Gene Genealogy and Gene Flow among Island and Mainland Populations of a Sedentary Songbird, the Grey-Crowned Babbler (Pomatostomus temporalis). Evolution; International Journal of Organic Evolution, 1993, 47, 1118.	1.1	26
153	Reply to Gatesy and Springer: The multispecies coalescent model can effectively handle recombination and gene tree heterogeneity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1180.	3.3	26
154	A bird-like genome from a frog: Mechanisms of genome size reduction in the ornate burrowing frog, <i>Platyplectrum ornatum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
155	Conservation genetics and Pacific fisheries bycatch: Mitochondrial differentiation and population assignment in black-footed albatrosses (Phoebastria nigripes). Conservation Genetics, 2005, 6, 289-295.	0.8	25
156	Recombination and Nucleotide Diversity in the Sex Chromosomal Pseudoautosomal Region of the Emu, Dromaius novaehollandiae. Journal of Heredity, 2009, 100, 125-136.	1.0	24
157	Attenuated Fgf Signaling Underlies the Forelimb Heterochrony in the Emu Dromaius novaehollandiae. Current Biology, 2019, 29, 3681-3691.e5.	1.8	24
158	Endless forms of sexual selection. PeerJ, 2019, 7, e7988.	0.9	24
159	Evidence from a House Finch (Haemorhous mexicanus) Spleen Transcriptome for Adaptive Evolution and Biased Gene Conversion in Passerine Birds. Molecular Biology and Evolution, 2013, 30, 1046-1050.	3.5	23
160	Genetic diversity, demographic history and neo-sex chromosomes in the Critically Endangered Raso lark. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192613.	1.2	23
161	Genomics of host-pathogen interactions: challenges and opportunities across ecological and spatiotemporal scales. PeerJ, 2019, 7, e8013.	0.9	23
162	Prevalence and evolutionary origins of autoimmune susceptibility alleles in natural mouse populations. Genes and Immunity, 2008, 9, 61-68.	2.2	21

#	Article	IF	CITATIONS
163	Genome evolution in Reptilia: in silico chicken mapping of 12,000 BAC-end sequences from two reptiles and a basal bird. BMC Genomics, 2009, 10, S8.	1.2	21
164	Tangled Trees: The Challenge of Inferring Species Trees from Coalescent and Noncoalescent Genes. Methods in Molecular Biology, 2012, 856, 3-28.	0.4	21
165	Homology and Comparative Methods in the Study of Avian Cooperative Breeding. American Naturalist, 1994, 143, 723-733.	1.0	21
166	Molecular evolution of <i>Dmrt1</i> accompanies change of sex-determining mechanisms in reptilia. Biology Letters, 2014, 10, 20140809.	1.0	20
167	Evolutionary genetics of Carpodacus mexicanus, a recently colonized host of a bacterial pathogen, Mycoplasma gallisepticum. Genetica, 2007, 129, 217-225.	0.5	18
168	High-Speed Developments in Avian Genomics. BioScience, 2008, 58, 587-595.	2.2	18
169	The Zebra Finch genome and avian genomics in the wild. Emu, 2010, 110, 233-241.	0.2	18
170	Frequent Coinfection Reduces RNA Virus Population Genetic Diversity. Journal of Heredity, 2013, 104, 704-712.	1.0	18
171	Comment on "Statistical binning enables an accurate coalescent-based estimation of the avian tree― Science, 2015, 350, 171-171.	6.0	18
172	Genome-scale DNA sequence data and the evolutionary history of placental mammals. Data in Brief, 2018, 18, 1972-1975.	0.5	18
173	Cryptic differentiation and geographic variation in genetic diversity of Hall's Babbler Pomatostomus halli. Journal of Avian Biology, 2001, 32, 102-110.	0.6	17
174	The Maluridae: inferring avian biology and evolutionary history from DNA sequences. Emu, 2013, 113, 195-207.	0.2	16
175	Genomic footprints of adaptation in a cooperatively breeding tropical bird across a vegetation gradient. Molecular Ecology, 2017, 26, 4483-4496.	2.0	16
176	Gene flow during glacial habitat shifts facilitates character displacement in a Neotropical flycatcher radiation. BMC Evolutionary Biology, 2017, 17, 210.	3.2	16
177	GEOGRAPHIC DIFFERENCES IN SEXUAL REASSORTMENT IN RNA PHAGE. Evolution; International Journal of Organic Evolution, 2010, 64, no-no.	1.1	15
178	Sex-Biased Expression of Sex-Differentiating Genes <i>FOXL2</i> and <i>FGF9</i> in American Alligators, <i>Alligator mississippiensis</i> . Sexual Development, 2013, 7, 253-260.	1.1	15
179	Rhetoric vs. reality: A commentary on "Bird Origins Anew―by A. Feduccia. Auk, 2015, 132, 467-480.	0.7	15
180	Comparative Genomics as a Foundation for Evo-Devo Studies in Birds. Methods in Molecular Biology, 2017, 1650, 11-46.	0.4	15

11

#	Article	IF	CITATIONS
181	Climate change, collections and the classroom: using big data to tackle big problems. Evolution: Education and Outreach, 2017, 10, .	0.3	15
182	A review of evolutionary research on birds of the New Guinean savannas and closely associated habitats of riparian rainforests, mangroves and grasslands. Emu, 2019, 119, 317-330.	0.2	15
183	Evidence for the Pleistocene Arc Hypothesis from genomeâ€wide SNPs in a Neotropical dry forest specialist, the Rufousâ€fronted Thornbird (Furnariidae: <i>Phacellodomus rufifrons</i>). Molecular Ecology, 2020, 29, 4457-4472.	2.0	15
184	THE EVOLUTION OF BIPEDALISM IN JERBOAS (RODENTIA: DIPODOIDEA): ORIGIN IN HUMID AND FORESTED ENVIRONMENTS. Evolution; International Journal of Organic Evolution, 2014, 68, 2108-2118.	1.1	14
185	Nextâ€generation <scp>QTL</scp> mapping: crowdsourcing <scp>SNP</scp> s, without pedigrees. Molecular Ecology, 2013, 22, 3885-3887.	2.0	13
186	Understanding the evolution of viviparity using intraspecific variation in reproductive mode and transitional forms of pregnancy. Biological Reviews, 2022, 97, 1179-1192.	4.7	13
187	When did Neanderthals and modern humans diverge?. Evolutionary Anthropology, 2003, 11, 60-63.	1.7	12
188	Future of Avian Genetic Resources Collections: Archives of Evolutionary and Environmental History. Auk, 2005, 122, 979-984.	0.7	12
189	A house finch (Haemorhous mexicanus) spleen transcriptome reveals intra- and interspecific patterns of gene expression, alternative splicing and genetic diversity in passerines. BMC Genomics, 2014, 15, 305.	1.2	12
190	The "Atlantis Forest hypothesis―does not explain Atlantic Forest phylogeography. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2097-8.	3.3	12
191	Future of Avian Genetic Resources Collections: Archives of Evolutionary and Environmental History. Auk, 2005, 122, 979.	0.7	11
192	Cisâ€regulatory sequence variation and association with <i>Mycoplasma</i> load in natural populations of the house finch (<i>Carpodacus mexicanus</i>). Ecology and Evolution, 2013, 3, 655-666.	0.8	11
193	The effect of alignment uncertainty, substitution models and priors in building and dating the mammal tree of life. BMC Evolutionary Biology, 2019, 19, 203.	3.2	11
194	Demographic History, Not Mating System, Explains Signatures of Inbreeding and Inbreeding Depression in a Large Outbred Population. American Naturalist, 2021, 197, 658-676.	1.0	11
195	Re: Congruence and Phylogenetic Reanalysis of Perching Bird Cytochrome b Sequences. Molecular Phylogenetics and Evolution, 1997, 7, 266-271.	1.2	10
196	Variability in Sex-Determining Mechanisms Influences Genome Complexity in Reptilia. Cytogenetic and Genome Research, 2009, 127, 242-248.	0.6	10
197	Rapid diversification and hybridization have shaped the dynamic history of the genus Elaenia. Molecular Phylogenetics and Evolution, 2018, 127, 522-533.	1.2	9
198	<i>De Novo</i> Assembly of the Northern Cardinal (<i>Cardinalis cardinalis</i>) Genome Reveals Candidate Regulatory Regions for Sexually Dichromatic Red Plumage Coloration. G3: Genes, Genomes, Genetics, 2020, 10, 3541-3548.	0.8	9

#	Article	IF	CITATIONS
199	Sex Chromosome Evolution in Amniotes: Applications for Bacterial Artificial Chromosome Libraries. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-6.	3.0	8
200	Amniote Phylogenomics: Testing Evolutionary Hypotheses with BAC Library Scanning and Targeted Clone Analysis of Large-Scale DNA Sequences from Reptiles. Methods in Molecular Biology, 2008, 422, 91-117.	0.4	8
201	Olfactory receptor subgenome and expression in a highly olfactory procellariiform seabird. Genetics, 2022, 220, .	1.2	8
202	Inferential reasoning and egg rejection in a cooperatively breeding cuckoo. Animal Cognition, 2015, 18, 75-82.	0.9	7
203	Plumage color and pathogen-induced gene expression in a wild bird. Behavioral Ecology, 2015, 26, 1100-1110.	1.0	7
204	Comparative Population Genomics of Cryptic Speciation and Adaptive Divergence in Bicknell's and Gray-Cheeked Thrushes (Aves: <i>Catharus bicknelli</i> and <i>Catharus minimus</i>). Genome Biology and Evolution, 2022, 14, .	1.1	7
205	RECONCILING ACTUAL AND INFERRED POPULATION HISTORIES IN THE HOUSE FINCH (CARPODACUS) Tj ETQq1	1 0.78431 1.1	l4 _f gBT /Over
206	PERSPECTIVE: A <i>smörgåsbord</i> of markers for avian ecology and evolution. Molecular Ecology, 2008, 17, 945-946.	2.0	5
207	phenotools: An r package for visualizing and analysing phenomic datasets. Methods in Ecology and Evolution, 2019, 10, 1393-1400.	2.2	5
208	SPECIATIONAL HISTORY OF AUSTRALIAN GRASS FINCHES (POEPHILA) INFERRED FROM THIRTY GENE TREES*. Evolution; International Journal of Organic Evolution, 2005, 59, 2033.	1.1	4
209	Eight anonymous nuclear loci for the squamate antbird (Myrmeciza squamosa), cross-amplifiable in other species of typical antbirds (Aves, Thamnophilidae). Conservation Genetics Resources, 2012, 4, 645-647.	0.4	4
210	Museums' Role: Increasing Knowledge. Science, 2013, 339, 1148-1149.	6.0	4
211	Evolution of the DAN gene family in vertebrates. Developmental Biology, 2022, 482, 34-43.	0.9	4
212	Wholeâ€genome phylogeography of the blueâ€faced honeyeater (<i>Entomyzon cyanotis</i>) and discovery and characterization of a <scp>neoâ€Z</scp> chromosome. Molecular Ecology, 2023, 32, 1248-1270.	2.0	4
213	Genomics and ornithology. Journal Fur Ornithologie, 2007, 148, 27-33.	1.2	3
214	Characterization, chromosomal location, and genomic neighborhood of a ratite ortholog of a gene with gonadal expression in mammals. Integrative and Comparative Biology, 2008, 48, 505-511.	0.9	3
215	Editorial: Evolutionary Feedbacks Between Population Biology and Genome Architecture. Frontiers in Genetics, 2018, 9, 329.	1.1	2
216	Genomics of adaptation and acclimation: from field to lab and back. National Science Review, 2020, 7, 128-128.	4.6	2

#	Article	IF	CITATIONS
217	Prospects for sociogenomics in avian cooperative breeding and parental care. Environmental Epigenetics, 2020, 66, 293-306.	0.9	2
218	BIRD SPECIATION: SELECTION AND THE ORIGIN OF SPECIES ¹ . Evolution; International Journal of Organic Evolution, 2008, 62, 991-995.	1.1	1
219	Phylogeography and Phylogenetics in the Nuclear Age. , 2021, , 65-88.		1
220	A Birds-Eye View of Animal Evolution. BioScience, 2011, 61, 331-333.	2.2	0
221	Editorial of the Proceedings of the 25th International Ornithological Congress. Journal of Ornithology, 2012, 153, 1-1.	0.5	0
222	Bicycling, Birding and #BLM across America in a Summer of Chaos. Biodiversity Information Science and Standards, 0, 4, .	0.0	0