
Carrie A Manore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8394715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distinguishing viruses responsible for influenza-like illness. Journal of Theoretical Biology, 2022, 545, 111145.	1.7	14
2	Bayesian time-varying occupancy model for West Nile virus in Ontario, Canada. Stochastic Environmental Research and Risk Assessment, 2022, 36, 2337-2352.	4.0	5
3	How New Mexico Leveraged a COVID-19 Case Forecasting Model to Preemptively Address the Health Care Needs of the State: Quantitative Analysis. JMIR Public Health and Surveillance, 2021, 7, e27888.	2.6	8
4	Using heterogeneous data to identify signatures of dengue outbreaks at fine spatio-temporal scales across Brazil. PLoS Neglected Tropical Diseases, 2021, 15, e0009392.	3.0	10
5	Trade-offs between individual and ensemble forecasts of an emerging infectious disease. Nature Communications, 2021, 12, 5379.	12.8	16
6	A time-varying vulnerability index for COVID-19 in New Mexico, USA using generalized propensity scores. Health Policy OPEN, 2021, 2, 100052.	1.5	4
7	Updated distribution maps of predominant Culex mosquitoes across the Americas. Parasites and Vectors, 2021, 14, 547.	2.5	40
8	Google Health Trends performance reflecting dengue incidence for the Brazilian states. BMC Infectious Diseases, 2020, 20, 252.	2.9	11
9	Modeling and Cost Benefit Analysis to Guide Deployment of POC Diagnostics for Non-typhoidal Salmonella Infections with Antimicrobial Resistance. Scientific Reports, 2019, 9, 11245.	3.3	8
10	Heterogeneous local dynamics revealed by classification analysis of spatially disaggregated time series data. Epidemics, 2019, 29, 100357.	3.0	9
11	Forecasting Zoonotic Infectious Disease Response to Climate Change: Mosquito Vectors and a Changing Environment. Veterinary Sciences, 2019, 6, 40.	1.7	85
12	Coinfections by noninteracting pathogens are not independent and require new tests of interaction. PLoS Biology, 2019, 17, e3000551.	5.6	26
13	Intermittent Preventive Treatment (IPT): Its Role in Averting Disease-Induced Mortality in Children and in Promoting the Spread of Antimalarial Drug Resistance. Bulletin of Mathematical Biology, 2019, 81, 193-234.	1.9	8
14	Coinfections by noninteracting pathogens are not independent and require new tests of interaction. , 2019, 17, e3000551.		0
15	Coinfections by noninteracting pathogens are not independent and require new tests of interaction. , 2019, 17, e3000551.		0
16	Coinfections by noninteracting pathogens are not independent and require new tests of interaction. , 2019, 17, e3000551.		0
17	Coinfections by noninteracting pathogens are not independent and require new tests of interaction. , 2019, 17, e3000551.		0
18	Coinfections by noninteracting pathogens are not independent and require new tests of interaction. , 2019, 17, e3000551.		0

CARRIE A MANORE

#	Article	IF	CITATIONS
19	Coinfections by noninteracting pathogens are not independent and require new tests of interaction. , 2019, 17, e3000551.		0
20	Spatiotemporal incidence of Zika and associated environmental drivers for the 2015-2016 epidemic in Colombia. Scientific Data, 2018, 5, 180073.	5.3	29
21	Predicting Dengue Incidence in Brazil Using Broad-Scale Spectral Remote Sensing Imagery. , 2018, , .		5
22	Two-sex mosquito model for the persistence of <i>Wolbachia</i> . Journal of Biological Dynamics, 2017, 11, 216-237.	1.7	46
23	Modeling Virus Coinfection to Inform Management of Maize Lethal Necrosis in Kenya. Phytopathology, 2017, 107, 1095-1108.	2.2	41
24	Estimating the reproductive number, total outbreak size, and reporting rates for Zika epidemics in South and Central America. Epidemics, 2017, 21, 63-79.	3.0	33
25	Defining the Risk of Zika and Chikungunya Virus Transmission in Human Population Centers of the Eastern United States. PLoS Neglected Tropical Diseases, 2017, 11, e0005255.	3.0	54
26	Agent-based hantavirus transmission model incorporating host behavior and viral shedding heterogeneities derived from field transmission experiments. Letters in Biomathematics, 2016, 3, 209-228.	0.1	3
27	Constructing Rigorous and Broad Biosurveillance Networks for Detecting Emerging Zoonotic Outbreaks. PLoS ONE, 2015, 10, e0124037.	2.5	7
28	A network-patch methodology for adapting agent-based models for directly transmitted disease to mosquito-borne disease. Journal of Biological Dynamics, 2015, 9, 52-72.	1.7	37
29	Intermittent Preventive Treatment (IPT) and the Spread of Drug Resistant Malaria. The IMA Volumes in Mathematics and Its Applications, 2015, , 197-233.	0.5	3
30	A Flexible Spatial Framework for Modeling Spread of Pathogens in Animals with Biosurveillance and Disease Control Applications. ISPRS International Journal of Geo-Information, 2014, 3, 638-661.	2.9	2
31	Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus. Journal of Theoretical Biology, 2014, 356, 174-191.	1.7	139
32	Towards an Early Warning System for Forecasting Human West Nile Virus Incidence. PLOS Currents, 2014, 6, .	1.4	32
33	Modelling vertical transmission in vector-borne diseases with applications to Rift Valley fever. Journal of Biological Dynamics, 2013, 7, 11-40.	1.7	67
34	Disease properties, geography, and mitigation strategies in a simulation spread of rinderpest across the United States. Veterinary Research, 2011, 42, 55.	3.0	12