
Garry R Willgoose

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/83934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observed spatial organization of soil moisture and its relation to terrain indices. Water Resources Research, 1999, 35, 797-810.	4.2	646
2	A coupled channel network growth and hillslope evolution model: 1. Theory. Water Resources Research, 1991, 27, 1671-1684.	4.2	602
3	Revisiting the hypsometric curve as an indicator of form and process in transport-limited catchment. Earth Surface Processes and Landforms, 1998, 23, 611-623.	2.5	240
4	In situ measurement of soil moisture: a comparison of techniques. Journal of Hydrology, 2004, 293, 85-99.	5.4	240
5	Results from a new model of river basin evolution. Earth Surface Processes and Landforms, 1991, 16, 237-254.	2.5	215
6	A coupled channel network growth and hillslope evolution model: 2. Nondimensionalization and applications. Water Resources Research, 1991, 27, 1685-1696.	4.2	197
7	One-dimensional soil moisture profile retrieval by assimilation of near-surface observations: a comparison of retrieval algorithms. Advances in Water Resources, 2001, 24, 631-650.	3.8	180
8	On the effect of digital elevation model accuracy on hydrology and geomorphology. Water Resources Research, 1999, 35, 2259-2268.	4.2	167
9	A physical explanation of an observed link area-slope relationship. Water Resources Research, 1991, 27, 1697-1702.	4.2	150
10	Mathematical Modeling of Whole Landscape Evolution. Annual Review of Earth and Planetary Sciences, 2005, 33, 443-459.	11.0	149
11	A physical explanation for an observed area-slope-elevation relationship for catchments with declining relief. Water Resources Research, 1994, 30, 151-159.	4.2	139
12	One-Dimensional Soil Moisture Profile Retrieval by Assimilation of Near-Surface Measurements: A Simplified Soil Moisture Model and Field Application. Journal of Hydrometeorology, 2001, 2, 356-373.	1.9	121
13	Characterisation of the hydrology of an estuarine wetland. Journal of Hydrology, 1998, 211, 34-49.	5.4	119
14	Medium-term erosion simulation of an abandoned mine site using the SIBERIA landscape evolution model. Soil Research, 2000, 38, 249.	1.1	96
15	Use of a landscape simulator in the validation of the SIBERIA Catchment Evolution Model: Declining equilibrium landforms. Water Resources Research, 2001, 37, 1981-1992.	4.2	91
16	Goulburn River experimental catchment data set. Water Resources Research, 2007, 43, .	4.2	83
17	The long-term stability of engineered landforms of the Ranger Uranium Mine, Northern Territory, Australia: application of a catchment evolution model. Earth Surface Processes and Landforms, 1998, 23, 237-259.	2.5	82
18	Active microwave remote sensing for soil moisture measurement: a field evaluation using ERS-2. Hydrological Processes, 2004, 18, 1975-1997.	2.6	81

#	Article	IF	CITATIONS
19	A linked surface water-groundwater modelling approach to more realistically simulate rainfall-runoff non-stationarity in semi-arid regions. Journal of Hydrology, 2019, 575, 273-291.	5.4	74
20	Mechanisms influencing non-stationarity in rainfall-runoff relationships in southeast Australia. Journal of Hydrology, 2019, 571, 749-764.	5.4	74
21	A statistic for testing the elevation characteristics of landscape simulation models. Journal of Geophysical Research, 1994, 99, 13987-13996.	3.3	70
22	Spatial prediction of temporal soil moisture dynamics using HYDRUS-1D. Hydrological Processes, 2014, 28, 171-185.	2.6	67
23	Post-mining landform evolution modelling: 2. Effects of vegetation and surface ripping. Earth Surface Processes and Landforms, 2000, 25, 803-823.	2.5	62
24	Three-dimensional soil moisture profile retrieval by assimilation of near-surface measurements: Simplified Kalman filter covariance forecasting and field application. Water Resources Research, 2002, 38, 37-1-37-13.	4.2	61
25	Post-mining landform evolution modelling: 1. Derivation of sediment transport model and rainfall-runoff model parameters. Earth Surface Processes and Landforms, 2000, 25, 743-763.	2.5	60
26	Effects of vertical resolution and map scale of digital elevation models on geomorphological parameters used in hydrology. Hydrological Processes, 1995, 9, 363-382.	2.6	58
27	Channel network simulation models compared with data from the Ashley River, New Zealand. Water Resources Research, 1999, 35, 3875-3890.	4.2	58
28	The interaction between hydrology and geomorphology in a landscape simulator experiment. Hydrological Processes, 2001, 15, 115-133.	2.6	54
29	The mARM spatially distributed soil evolution model: A computationally efficient modeling framework and analysis of hillslope soil surface organization. Journal of Geophysical Research, 2009, 114, .	3.3	49
30	Estimating evapotranspiration for a temperate salt marsh, Newcastle, Australia. Hydrological Processes, 2001, 15, 957-975.	2.6	47
31	Multivariate data assimilation of GRACE, SMOS, SMAP measurements for improved regional soil moisture and groundwater storage estimates. Advances in Water Resources, 2020, 135, 103477.	3.8	47
32	Variations in hydrological connectivity of Australian semiarid landscapes indicate abrupt changes in rainfallâ€use efficiency of vegetation. Journal of Geophysical Research, 2012, 117, .	3.3	45
33	A physical explanation of the cumulative area distribution curve. Water Resources Research, 1998, 34, 1335-1343.	4.2	44
34	The production of digital elevation models for experimental model landscapes. Earth Surface Processes and Landforms, 2001, 26, 475-490.	2.5	43
35	Towards a general equation for frequency domain reflectometers. Journal of Hydrology, 2010, 383, 319-329.	5.4	41
36	The Nerrigundah Data Set: Soil moisture patterns, soil characteristics, and hydrological flux measurements. Water Resources Research, 2001, 37, 2653-2658.	4.2	40

#	Article	IF	CITATIONS
37	A one-dimensional model for simulating armouring and erosion on hillslopes: 1. model development and event-scale dynamics. Earth Surface Processes and Landforms, 2006, 31, 970-991.	2.5	39
38	The interaction between armouring and particle weathering for eroding landscapes. Earth Surface Processes and Landforms, 2006, 31, 1195-1210.	2.5	38
39	Laboratory simulation of the salt weathering of schist: 1. Weathering of schist blocks in a seasonally wet tropical environment. Earth Surface Processes and Landforms, 2006, 31, 339-354.	2.5	37
40	The mARM3D spatially distributed soil evolution model: Threeâ€dimensional model framework and analysis of hillslope and landform responses. Journal of Geophysical Research, 2010, 115, .	3.3	37
41	A model of river basin evolution. Eos, 1990, 71, 1806.	0.1	34
42	Spatial organization of soil depths using a landform evolution model. Journal of Geophysical Research, 2006, 111, .	3.3	34
43	A methodology for calculating the spatial distribution of the areaâ€slope equation and the hypsometric integral within a catchment. Journal of Geophysical Research, 2008, 113, .	3.3	34
44	Estimating catchment scale soil moisture at a high spatial resolution: Integrating remote sensing and machine learning. Science of the Total Environment, 2021, 776, 145924.	8.0	32
45	The relationship between catchment and hillslope properties: implications of a catchment evolution model. Geomorphology, 1992, 5, 21-37.	2.6	30
46	A hybrid model for point rainfall modeling. Water Resources Research, 1997, 33, 1699-1706.	4.2	30
47	A simple model of saturation excess runoff generation based on geomorphology, steady state soil moisture. Water Resources Research, 2001, 37, 147-155.	4.2	29
48	Investigating the impact of leaf area index temporal variability on soil moisture predictions using remote sensing vegetation data. Journal of Hydrology, 2015, 522, 274-284.	5.4	29
49	Mining rehabilitation – Using geomorphology to engineer ecologically sustainable landscapes for highly disturbed lands. Ecological Engineering, 2020, 155, 105836.	3.6	28
50	The role of moisture cycling in the weathering of a quartz chlorite schist in a tropical environment: findings of a laboratory simulation. Earth Surface Processes and Landforms, 2005, 30, 413-428.	2.5	26
51	Environmental and site factors controlling the vertical distribution and radiocarbon ages of organic carbon in a sandy soil. Biology and Fertility of Soils, 2013, 49, 1015-1026.	4.3	26
52	An in-situ data based model to downscale radiometric satellite soil moisture products in the Upper Hunter Region of NSW, Australia. Journal of Hydrology, 2019, 572, 820-838.	5.4	26
53	Stability and storage of soil organic carbon in a heavy-textured Karst soil from south-eastern Australia. Soil Research, 2014, 52, 476.	1.1	24
54	The feasibility of predicting the spatial pattern of soil particle-size distribution using a pedogenesis model. Geoderma, 2019, 341, 195-205.	5.1	24

#	Article	IF	CITATIONS
55	Generalisation of a hybrid model for point rainfall. Journal of Hydrology, 1999, 219, 218-224.	5.4	23
56	A one-dimensional model for simulating armouring and erosion on hillslopes: 2. Long term erosion and armouring predictions for two contrasting mine spoils. Earth Surface Processes and Landforms, 2007, 32, 1437-1453.	2.5	23
57	Exploring the sensitivity on a soil area-slope-grading relationship to changes in process parameters using a pedogenesis model. Earth Surface Dynamics, 2016, 4, 607-625.	2.4	22
58	Geomorphic design and modelling at catchment scale for best mine rehabilitation – The Drayton mine example (New South Wales, Australia). Environmental Modelling and Software, 2019, 114, 140-151.	4.5	22
59	An experimental and computer simulation study of erosion on a mine tailings dam wall. Earth Surface Processes and Landforms, 2004, 29, 457-475.	2.5	21
60	A Framework for the Quantitative Testing of Landform Evolution Models. Geophysical Monograph Series, 2013, , 195-216.	0.1	20
61	The effects of sediment transport, weathering, and aeolian mechanisms on soil evolution. Journal of Geophysical Research F: Earth Surface, 2015, 120, 260-274.	2.8	20
62	A coupled soilscape–landform evolution model: model formulation and initial results. Earth Surface Dynamics, 2019, 7, 591-607.	2.4	20
63	A Comparative Study of Australian Cartometric and Photogrammetric Digital Elevation Model Accuracy. Photogrammetric Engineering and Remote Sensing, 2006, 72, 771-779.	0.6	19
64	Detecting inundation thresholds for dryland wetland vulnerability. Advances in Water Resources, 2019, 128, 168-182.	3.8	19
65	Catchment-scale drought: capturing the whole drought cycle using multiple indicators. Hydrology and Earth System Sciences, 2020, 24, 1985-2002.	4.9	19
66	Disaggregating satellite soil moisture products based on soil thermal inertia: A comparison of a downscaling model built at two spatial scales. Journal of Hydrology, 2021, 594, 125894.	5.4	19
67	Monitoring irrigation water use over paddock scales using climate data and landsat observations. Agricultural Water Management, 2019, 221, 175-191.	5.6	17
68	Monitoring irrigation using landsat observations and climate data over regional scales in the Murray-Darling Basin. Journal of Hydrology, 2020, 590, 125356.	5.4	17
69	Soil–landscape response to mid and late Quaternary climate fluctuations based on numerical simulations. Quaternary Research, 2013, 79, 452-457.	1.7	16
70	Development and evaluation of a stochastic daily rainfall model with long-term variability. Hydrology and Earth System Sciences, 2017, 21, 6541-6558.	4.9	15
71	A qualitative and quantitative evaluation of experimental model catchment evolution. Hydrological Processes, 2003, 17, 2347-2363.	2.6	14
72	Stochastic Generation of Future Hydroclimate Using Temperature as a Climate Change Covariate. Water Resources Research, 2021, 57, 2020WR027331.	4.2	13

#	Article	IF	CITATIONS
73	Estimation of subgrid scale kinematic wave parameters for hillslopes. Hydrological Processes, 1995, 9, 469-482.	2.6	10
74	The effect of fragmentation on the distribution of hillslope rock size and abundance: Insights from contrasting field and model data. Geoderma, 2019, 352, 228-240.	5.1	10
75	Patch organization and resilience of dryland wetlands. Science of the Total Environment, 2020, 726, 138581.	8.0	10
76	Geomorphological evolution and sediment stratigraphy of numerically simulated alluvial fans. Earth Surface Processes and Landforms, 2020, 45, 2148-2166.	2.5	10
77	Evaluation of the hydrology of the IBIS land surface model in a semiâ€arid catchment. Hydrological Processes, 2015, 29, 653-670.	2.6	9
78	Predicting gully erosion using landform evolution models: Insights from mining landforms. Earth Surface Processes and Landforms, 2021, 46, 3271-3290.	2.5	9
79	Profile soil moisture estimation using the modified IEM. , 0, , .		7
80	The fingerprints of weathering: Grain size distribution changes along weathering sequences in different lithologies. Geoderma, 2021, 383, 114753.	5.1	7
81	Links between East Coast Lows and the spatial and temporal variability of rainfall along the eastern seaboard of Australia. Journal of Southern Hemisphere Earth Systems Science, 2016, 66, 162.	1.8	7
82	Laboratory simulation of the salt weathering of schist: II. Fragmentation of fine schist particles. Earth Surface Processes and Landforms, 2007, 32, 687-697.	2.5	6
83	Evaluating a new landform evolution model: A case study using a proposed mine rehabilitation landform. Earth Surface Processes and Landforms, 2021, 46, 2298-2314.	2.5	6
84	East Coast Lows and the Pasha Bulker storm - lessons learned nine years on. Journal of Southern Hemisphere Earth Systems Science, 2016, 66, 152.	1.8	6
85	A Comparison of SRTM V4 and ASTER GDEM for Hydrological Applications in Low Relief Terrain. Photogrammetric Engineering and Remote Sensing, 2012, 78, 757-766.	0.6	5
86	Soilscape evolution of aeolian-dominated hillslopes during the Holocene: investigation of sediment transport mechanisms and climatic–anthropogenic drivers. Earth Surface Dynamics, 2017, 5, 101-112.	2.4	4
87	Using paleoclimate reconstructions to analyse hydrological epochs associated with Pacific decadal variability. Hydrology and Earth System Sciences, 2018, 22, 6399-6414.	4.9	4
88	An assessment of the fluvial geomorphology of subcatchments in Parana Valles, Mars. Geomorphology, 2013, 183, 96-109.	2.6	3
89	The longâ€ŧerm stability of engineered landforms of the Ranger Uranium Mine, Northern Territory, Australia: application of a catchment evolution model. Earth Surface Processes and Landforms, 1998, 23, 237-259.	2.5	3
90	Case study on the use of dynamically downscaled climate model data for assessing water security in the Lower Hunter region of the eastern seaboard of Australia. Journal of Southern Hemisphere Earth Systems Science, 2016, 66, 177-202.	1.8	2