List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8393227/publications.pdf Version: 2024-02-01

		4146	6471
285	29,124	87	157
papers	citations	h-index	g-index
287	287	287	18755
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nature Genetics, 2016, 48, 134-143.	21.4	1,167
2	Ranibizumab for Macular Edema following Central Retinal Vein Occlusion. Ophthalmology, 2010, 117, 1124-1133.e1.	5.2	911
3	Angiopoietin-2 Is Required for Postnatal Angiogenesis and Lymphatic Patterning, and Only the Latter Role Is Rescued by Angiopoietin-1. Developmental Cell, 2002, 3, 411-423.	7.0	903
4	Ranibizumab for Macular Edema following Branch Retinal Vein Occlusion. Ophthalmology, 2010, 117, 1102-1112.e1.	5.2	772
5	Seven new loci associated with age-related macular degeneration. Nature Genetics, 2013, 45, 433-439.	21.4	687
6	Cell Type–Specific Regulation of Angiogenic Growth Factor Gene Expression and Induction of Angiogenesis in Nonischemic Tissue by a Constitutively Active Form of Hypoxia-Inducible Factor 1. Circulation Research, 2003, 93, 1074-1081.	4.5	561
7	Sustained Benefits from Ranibizumab for Macular Edema following Central Retinal Vein Occlusion: Twelve-Month Outcomes of a Phase III Study. Ophthalmology, 2011, 118, 2041-2049.	5.2	560
8	Genetic variants near <i>TIMP3</i> and high-density lipoprotein–associated loci influence susceptibility to age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7401-7406.	7.1	475
9	Sustained Benefits from Ranibizumab for Macular Edema Following Branch Retinal Vein Occlusion: 12-Month Outcomes of a Phase III Study. Ophthalmology, 2011, 118, 1594-1602.	5.2	430
10	Ranibizumab for Macular Edema Due to Retinal Vein Occlusions. Ophthalmology, 2012, 119, 802-809.	5.2	417
11	Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (<i>LIPC</i>). Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7395-7400.	7.1	406
12	Molecular pathogenesis of retinal and choroidal vascular diseases. Progress in Retinal and Eye Research, 2015, 49, 67-81.	15.5	394
13	Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11300-11305.	7.1	368
14	Long-term Benefit of Sustained-Delivery Fluocinolone Acetonide Vitreous Inserts for Diabetic Macular Edema. Ophthalmology, 2011, 118, 626-635.e2.	5.2	360
15	Retinal and choroidal neovascularization. Journal of Cellular Physiology, 2000, 184, 301-310.	4.1	358
16	Adenoviral Vector-Delivered Pigment Epithelium-Derived Factor for Neovascular Age-Related Macular Degeneration: Results of a Phase I Clinical Trial. Human Gene Therapy, 2006, 17, 167-176.	2.7	336
17	Blockade of Vascular Endothelial Cell Growth Factor Receptor Signaling Is Sufficient to Completely Prevent Retinal Neovascularization. American Journal of Pathology, 2000, 156, 697-707.	3.8	332
18	Vascular Endothelial Growth Factor Is a Critical Stimulus for Diabetic Macular Edema. American Journal of Ophthalmology, 2006, 142, 961-969.e4.	3.3	332

#	Article	IF	CITATIONS
19	Pigment epitheliumâ€derived factor inhibits retinal and choroidal neovascularization. Journal of Cellular Physiology, 2001, 188, 253-263.	4.1	326
20	Primary End Point (Six Months) Results of the Ranibizumab for Edema of the mAcula in Diabetes (READ-2) Study. Ophthalmology, 2009, 116, 2175-2181.e1.	5.2	318
21	Targeted Disruption of the FGF2 Gene Does Not Prevent Choroidal Neovascularization in a Murine Model. American Journal of Pathology, 1998, 153, 1641-1646.	3.8	315
22	Ocular neovascularization. Journal of Molecular Medicine, 2013, 91, 311-321.	3.9	308
23	Long-term Outcomes in Patients with Retinal Vein Occlusion Treated with Ranibizumab. Ophthalmology, 2014, 121, 209-219.	5.2	301
24	Ranibizumab for Macular Edema Due to Retinal Vein Occlusions: Implication of VEGF as a Critical Stimulator. Molecular Therapy, 2008, 16, 791-799.	8.2	291
25	A rare penetrant mutation in CFH confers high risk of age-related macular degeneration. Nature Genetics, 2011, 43, 1232-1236.	21.4	291
26	Intravitreal Aflibercept for Macular Edema Following Branch Retinal Vein Occlusion. Ophthalmology, 2015, 122, 538-544.	5.2	281
27	Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa. Journal of Cellular Physiology, 2005, 203, 457-464.	4.1	271
28	VEGF-TRAPR1R2 suppresses choroidal neovascularization and VEGF-induced breakdown of the blood-retinal barrier. Journal of Cellular Physiology, 2003, 195, 241-248.	4.1	242
29	Intravitreal Sustained Release of VEGF Causes Retinal Neovascularization in Rabbits and Breakdown of the Blood– Retinal Barrier in Rabbits and Primates. Experimental Eye Research, 1997, 64, 505-517.	2.6	241
30	Common variants near FRK/COL10A1 and VEGFA are associated with advanced age-related macular degeneration. Human Molecular Genetics, 2011, 20, 3699-3709.	2.9	232
31	Pigment epithelium-derived factor suppresses ischemia-induced retinal neovascularization and VEGF-induced migration and growth. Investigative Ophthalmology and Visual Science, 2002, 43, 821-9.	3.3	230
32	Antioxidants slow photoreceptor cell death in mouse models of retinitis pigmentosa. Journal of Cellular Physiology, 2007, 213, 809-815.	4.1	219
33	Toll-like Receptor 3 and Geographic Atrophy in Age-Related Macular Degeneration. New England Journal of Medicine, 2008, 359, 1456-1463.	27.0	209
34	The mechanism of cone cell death in Retinitis Pigmentosa. Progress in Retinal and Eye Research, 2018, 62, 24-37.	15.5	205
35	Intravitreal Aflibercept for Macular Edema Following Branch Retinal Vein Occlusion. Ophthalmology, 2016, 123, 330-336.	5.2	204
36	The Port Delivery System with Ranibizumab for Neovascular Age-Related Macular Degeneration. Ophthalmology, 2019, 126, 1141-1154.	5.2	201

#	Article	IF	CITATIONS
37	MicroRNAs Regulate Ocular Neovascularization. Molecular Therapy, 2008, 16, 1208-1216.	8.2	199
38	Vascular Endothelial Growth Factor Promotes Progressive Retinal Nonperfusion in Patients with Retinal Vein Occlusion. Ophthalmology, 2013, 120, 795-802.	5.2	191
39	Angiopoietin-2 plays an important role in retinal angiogenesis. Journal of Cellular Physiology, 2002, 192, 182-187.	4.1	179
40	Supplemental Oxygen Improves Diabetic Macular Edema: A Pilot Study. , 2004, 45, 617.		174
41	Targeting VE-PTP activates TIE2 and stabilizes the ocular vasculature. Journal of Clinical Investigation, 2014, 124, 4564-4576.	8.2	174
42	AAV-mediated gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization. Investigative Ophthalmology and Visual Science, 2002, 43, 1994-2000.	3.3	168
43	Dramatic Inhibition of Retinal and Choroidal Neovascularization by Oral Administration of a Kinase Inhibitor. American Journal of Pathology, 1999, 154, 1743-1753.	3.8	167
44	Intravitreous injection of AAV2-sFLT01 in patients with advanced neovascular age-related macular degeneration: a phase 1, open-label trial. Lancet, The, 2017, 390, 50-61.	13.7	167
45	Inducible Expression of Vascular Endothelial Growth Factor in Adult Mice Causes Severe Proliferative Retinopathy and Retinal Detachment. American Journal of Pathology, 2002, 160, 711-719.	3.8	166
46	Role of hypoxia and extracellular matrixâ€integrin binding in the modulation of angiogenic growth factors secretion by retinal pigmented epithelial cells. Journal of Cellular Biochemistry, 1999, 74, 135-143.	2.6	163
47	Angiopoietin 2 expression in the retina: upregulation during physiologic and pathologic neovascularization. Journal of Cellular Physiology, 2000, 184, 275-284.	4.1	163
48	A functional variant in the CFI gene confers a high risk of age-related macular degeneration. Nature Genetics, 2013, 45, 813-817.	21,4	162
49	Cloning and Characterization of a Human β,β-Carotene-15, 15′-Dioxygenase That Is Highly Expressed in the Retinal Pigment Epithelium. Genomics, 2001, 72, 193-202.	2.9	152
50	Combined phacoemulsification, intraocular lens implantation, and vitrectomy for eyes with coexisting cataract and vitreoretinal pathology. American Journal of Ophthalmology, 2003, 135, 291-296.	3.3	152
51	Inhibition of Choroidal Neovascularization by Intravenous Injection of Adenoviral Vectors Expressing Secretable Endostatin. American Journal of Pathology, 2001, 159, 313-320.	3.8	151
52	Neutralization of Vascular Endothelial Growth Factor Slows Progression of Retinal Nonperfusion in Patients with Diabetic Macular Edema. Ophthalmology, 2014, 121, 1783-1789.	5.2	151
53	Lentiviral Vector Gene Transfer of Endostatin/Angiostatin for Macular Degeneration (GEM) Study. Human Gene Therapy, 2017, 28, 99-111.	2.7	151
54	Blood-retinal barrier (BRB) breakdown in experimental autoimmune uveoretinitis: Comparison with vascular endothelial growth factor, tumor necrosis factor ?, and interleukin-1?-mediated breakdown. Journal of Neuroscience Research, 1997, 49, 268-280.	2.9	150

#	Article	IF	CITATIONS
55	Sustained Ocular Delivery of Fluocinolone Acetonide by an Intravitreal Insert. Ophthalmology, 2010, 117, 1393-1399.e3.	5.2	148
56	A Phase I Trial of an IV-Administered Vascular Endothelial Growth Factor Trap for Treatment in Patients with Choroidal Neovascularization due to Age-Related Macular Degeneration. Ophthalmology, 2006, 113, 1522.e1-1522.e14.	5.2	141
57	Cellular mechanisms of blood-retinal barrier dysfunction in macular edema. Documenta Ophthalmologica, 1999, 97, 217-228.	2.2	139
58	Sustained Delivery Fluocinolone Acetonide Vitreous Implants. Ophthalmology, 2014, 121, 1892-1903.e3.	5.2	137
59	The SDFâ€1/CXCR4 ligand/receptor pair is an important contributor to several types of ocular neovascularization. FASEB Journal, 2007, 21, 3219-3230.	0.5	136
60	Reduction of Diabetic Macular Edema by Oral Administration of the Kinase Inhibitor PKC412. , 2004, 45, 922.		134
61	Regression of ocular neovascularization in response to increased expression of pigment epithelium-derived factor. Investigative Ophthalmology and Visual Science, 2002, 43, 2428-34.	3.3	129
62	Increased Expression of Brain-Derived Neurotrophic Factor Preserves Retinal Function and Slows Cell Death from Rhodopsin Mutation or Oxidative Damage. Journal of Neuroscience, 2003, 23, 4164-4172.	3.6	122
63	NADPH oxidase plays a central role in cone cell death in retinitis pigmentosa. Journal of Neurochemistry, 2009, 110, 1028-1037.	3.9	119
64	Aqueous Levels of Fluocinolone Acetonide after Administration of Fluocinolone Acetonide Inserts or Fluocinolone Acetonide Implants. Ophthalmology, 2013, 120, 583-587.	5.2	119
65	Intraocular expression of endostatin reduces VECFâ€induced retinal vascular permeability, neovascularization, and retinal detachment. FASEB Journal, 2003, 17, 1-22.	0.5	118
66	Oxidative stress promotes ocular neovascularization. Journal of Cellular Physiology, 2009, 219, 544-552.	4.1	117
67	Topical Nepafenac Inhibits Ocular Neovascularization. , 2003, 44, 409.		116
68	Lysosomal-mediated waste clearance in retinal pigment epithelial cells is regulated by CRYBA1/βA3/A1-crystallin via V-ATPase-MTORC1 signaling. Autophagy, 2014, 10, 480-496.	9.1	113
69	Increased Expression of Catalase and Superoxide Dismutase 2 Reduces Cone Cell Death in Retinitis Pigmentosa. Molecular Therapy, 2009, 17, 778-786.	8.2	110
70	Retinal pigment epithelial cells produce PDCF-like proteins and secrete them into their media. Experimental Eye Research, 1989, 49, 217-227.	2.6	108
71	Retinal vascular occlusions. Lancet, The, 2020, 396, 1927-1940.	13.7	108
72	Different effects of angiopoietinâ€2 in different vascular beds in the eye: new vessels are most sensitive. FASEB Journal, 2005, 19, 963-965.	0.5	105

#	Article	IF	CITATIONS
73	Oxidative Stress Modulates Complement Factor H Expression in Retinal Pigmented Epithelial Cells by Acetylation of FOXO3. Journal of Biological Chemistry, 2007, 282, 22414-22425.	3.4	105
74	Effects of different types of oxidative stress in RPE cells. Journal of Cellular Physiology, 2006, 206, 119-125.	4.1	103
75	Treatment of Diabetic Macular Edema With a Designed Ankyrin Repeat Protein That Binds Vascular Endothelial Growth Factor: A Phase I/II Study. American Journal of Ophthalmology, 2013, 155, 697-704.e2.	3.3	102
76	Archway Randomized Phase 3 Trial of the Port Delivery System with Ranibizumab for Neovascular Age-Related Macular Degeneration. Ophthalmology, 2022, 129, 295-307.	5.2	102
77	Digoxin inhibits retinal ischemiaâ€induced HIFâ€lα expression and ocular neovascularization. FASEB Journal, 2010, 24, 1759-1767.	0.5	101
78	Genetic and Functional Dissection of HTRA1 and LOC387715 in Age-Related Macular Degeneration. PLoS Genetics, 2010, 6, e1000836.	3.5	101
79	Anti–Vascular Endothelial Growth Factor Agents in the Treatment of Retinal Disease. Ophthalmology, 2016, 123, S78-S88.	5.2	100
80	Is There Excess Oxidative Stress and Damage in Eyes of Patients with Retinitis Pigmentosa?. Antioxidants and Redox Signaling, 2015, 23, 643-648.	5.4	99
81	Scatter Photocoagulation Does Not Reduce Macular Edema or Treatment Burden in Patients with Retinal Vein Occlusion. Ophthalmology, 2015, 122, 1426-1437.	5.2	98
82	A Phase I Study of Intravitreal Vascular Endothelial Growth Factor Trap-Eye in Patients with Neovascular Age-Related Macular Degeneration. Ophthalmology, 2009, 116, 2141-2148.e1.	5.2	96
83	Constituents of bile, bilirubin and TUDCA, protect against oxidative stress-induced retinal degeneration. Journal of Neurochemistry, 2011, 116, 144-153.	3.9	96
84	Enhanced Benefit in Diabetic Macular Edema from AKB-9778 Tie2 Activation Combined with Vascular Endothelial Growth Factor Suppression. Ophthalmology, 2016, 123, 1722-1730.	5.2	96
85	Basic Fibroblast Growth Factor Is Neither Necessary nor Sufficient for the Development of Retinal Neovascularization. American Journal of Pathology, 1998, 153, 757-765.	3.8	94
86	Increased Expression of Glutathione Peroxidase 4 Strongly Protects Retina from Oxidative Damage. Antioxidants and Redox Signaling, 2009, 11, 715-724.	5.4	94
87	Implication of the hypoxia response element of the vegf promoter in mouse models of retinal and choroidal neovascularization, but not retinal vascular development. Journal of Cellular Physiology, 2006, 206, 749-758.	4.1	92
88	N-acetylcysteine promotes long-term survival of cones in a model of retinitis pigmentosa. Journal of Cellular Physiology, 2011, 226, 1843-1849.	4.1	91
89	Periocular Gene Transfer ofsFlt-1Suppresses Ocular Neovascularization and Vascular Endothelial Growth Factor-Induced Breakdown of the Blood-Retinal Barrier. Human Gene Therapy, 2003, 14, 129-141.	2.7	89
90	Analysis of the VMD2 Promoter and Implication of E-box Binding Factors in Its Regulation. Journal of Biological Chemistry, 2004, 279, 19064-19073.	3.4	89

#	Article	IF	CITATIONS
91	Vasohibin is upâ€regulated by VEGF in the retina and suppresses VEGF receptor 2 and retinal neovascularization. FASEB Journal, 2006, 20, 723-725.	0.5	89
92	AAV8-vectored suprachoroidal gene transfer produces widespread ocular transgene expression. Journal of Clinical Investigation, 2019, 129, 4901-4911.	8.2	89
93	Comparison between retinal thickness analyzer and optical coherence tomography for assessment of foveal thickness in eyes with macular disease. American Journal of Ophthalmology, 2002, 134, 240-251.	3.3	88
94	Nitric oxide is proangiogenic in the retina and choroid*. Journal of Cellular Physiology, 2002, 191, 116-124.	4.1	88
95	Identification of Gene Expression Changes Associated with the Progression of Retinal Degeneration in therd1Mouse. , 2004, 45, 2929.		88
96	The Iron Carrier Transferrin Is Upregulated in Retinas from Patients with Age-Related Macular Degeneration. , 2006, 47, 2135.		88
97	Long-term Outcomes in Ranibizumab-Treated Patients With Retinal Vein Occlusion; The Role of Progression of Retinal Nonperfusion. American Journal of Ophthalmology, 2013, 156, 693-705.e11.	3.3	88
98	Hyperoxia causes decreased expression of vascular endothelial growth factor and endothelial cell apoptosis in adult retina. Journal of Cellular Physiology, 1999, 179, 149-156.	4.1	87
99	Angiopoietin-2 enhances retinal vessel sensitivity to vascular endothelial growth factor. Journal of Cellular Physiology, 2004, 199, 412-417.	4.1	87
100	Blockade of sphingosineâ€1â€phosphate reduces macrophage influx and retinal and choroidal neovascularization. Journal of Cellular Physiology, 2009, 218, 192-198.	4.1	87
101	Quantitative assessment of the integrity of the blood-retinal barrier in mice. Investigative Ophthalmology and Visual Science, 2002, 43, 2462-7.	3.3	87
102	Periocular Injection of Microspheres Containing PKC412 Inhibits Choroidal Neovascularization in a Porcine Model. , 2003, 44, 4989.		86
103	Injury-independent induction of reactive gliosis in retina by loss of function of the LIM homeodomain transcription factor Lhx2. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4657-4662.	7.1	86
104	Increased expression of VEGF in retinal pigmented epithelial cells is not sufficient to cause choroidal neovascularization. Journal of Cellular Physiology, 2004, 201, 393-400.	4.1	85
105	ADAM9 Is Involved in Pathological Retinal Neovascularization. Molecular and Cellular Biology, 2009, 29, 2694-2703.	2.3	85
106	Retinal degeneration from oxidative damage. Free Radical Biology and Medicine, 2006, 40, 660-669.	2.9	82
107	Corneal Endothelial Cell Matrix Promotes Expression of Differentiated Features of Retinal Pigmented Epithelial Cells: Implication of Laminin and Basic Fibroblast Growth Factor as Active Components. Experimental Eye Research, 1993, 57, 539-547.	2.6	80
108	Photoreceptor-Specific Expression of Platelet-Derived Growth Factor-B Results in Traction Retinal Detachment. American Journal of Pathology, 2000, 157, 995-1005.	3.8	79

#	Article	IF	CITATIONS
109	Fibroblast Growth Factor-2 Decreases Hyperoxia-Induced Photoreceptor Cell Death in Mice. American Journal of Pathology, 2001, 159, 1113-1120.	3.8	77
110	Suppression and Regression of Choroidal Neovascularization by Systemic Administration of an α5β1 Integrin Antagonist. Molecular Pharmacology, 2006, 69, 1820-1828.	2.3	77
111	Overexpression of SOD in retina: Need for increase in H2O2-detoxifying enzyme in same cellular compartment. Free Radical Biology and Medicine, 2011, 51, 1347-1354.	2.9	77
112	Suppression and Regression of Choroidal Neovascularization by the Multitargeted Kinase Inhibitor Pazopanib. JAMA Ophthalmology, 2009, 127, 494.	2.4	76
113	Superoxide dismutase 1 protects retinal cells from oxidative damage. Journal of Cellular Physiology, 2006, 208, 516-526.	4.1	74
114	Treatment of Diabetic Macular Edema with an Inhibitor of Vascular Endothelial-Protein Tyrosine Phosphatase That Activates Tie2. Ophthalmology, 2015, 122, 545-554.	5.2	74
115	Antagonism of Vascular Endothelial Growth Factor for Macular Edema Caused by Retinal Vein Occlusions: Two-Year Outcomes. Ophthalmology, 2010, 117, 2387-2394.e5.	5.2	73
116	Blockade of neuronal nitric oxide synthase reduces cone cell death in a model of retinitis pigmentosa. Free Radical Biology and Medicine, 2008, 45, 905-912.	2.9	71
117	Monthly Versus As-Needed Ranibizumab Injections in Patients with Retinal Vein Occlusion. Ophthalmology, 2014, 121, 2432-2442.	5.2	71
118	Targeting Tie2 for Treatment of Diabetic Retinopathy and Diabetic Macular Edema. Current Diabetes Reports, 2016, 16, 126.	4.2	71
119	Neurotrophic Signaling in Normal and Degenerating Rodent Retinas. Experimental Eye Research, 2001, 73, 693-701.	2.6	70
120	Expression and permeation properties of the K + channel Kir7.1 in the retinal pigment epithelium. Journal of Physiology, 2001, 531, 329-346.	2.9	70
121	Ocular neovascularisation and excessive vascular permeability. Expert Opinion on Biological Therapy, 2004, 4, 1395-1402.	3.1	70
122	Gelling hypotonic polymer solution for extended topical drug delivery to the eye. Nature Biomedical Engineering, 2020, 4, 1053-1062.	22.5	69
123	In vivo micropathology of Best macular dystrophy with optical coherence tomography. Experimental Eye Research, 2003, 76, 203-211.	2.6	68
124	Periocular Gene Transfer of Pigment Epithelium-Derived Factor Inhibits Choroidal Neovascularization in a Human-Sized Eye. Human Gene Therapy, 2005, 16, 473-478.	2.7	67
125	Suprachoroidal Triamcinolone Acetonide for Retinal Vein Occlusion: Results of the Tanzanite Study. Ophthalmology Retina, 2018, 2, 320-328.	2.4	67
126	Changes in Retinal Nonperfusion Associated with Suppression of Vascular Endothelial Growth Factor in Retinal Vein Occlusion. Ophthalmology, 2016, 123, 625-634.e1.	5.2	64

#	Article	IF	CITATIONS
127	Combretastatin A-4 Phosphate Suppresses Development and Induces Regression of Choroidal Neovascularization. , 2003, 44, 3650.		63
128	Differential Sensitivity of Cones to Iron-Mediated Oxidative Damage. , 2007, 48, 438.		63
129	Topical administration of a multiâ€ŧargeted kinase inhibitor suppresses choroidal neovascularization and retinal edema. Journal of Cellular Physiology, 2008, 216, 29-37.	4.1	63
130	Sustained delivery of a HIF-1 antagonist for ocular neovascularization. Journal of Controlled Release, 2013, 172, 625-633.	9.9	63
131	Phase I Trial of Anti–Vascular Endothelial Growth Factor/Anti-angiopoietin 2 Bispecific Antibody RG7716 for Neovascular Age-Related Macular Degeneration. Ophthalmology Retina, 2017, 1, 474-485.	2.4	63
132	Mammalian Homolog ofDrosophila retinal degeneration BRescues the Mutant Fly Phenotype. Journal of Neuroscience, 1997, 17, 5881-5890.	3.6	62
133	Oral N-acetylcysteine improves cone function in retinitis pigmentosa patients in phase I trial. Journal of Clinical Investigation, 2020, 130, 1527-1541.	8.2	62
134	Isoforms of platelet-derived growth factor and its receptors in epiretinal membranes: Immunolocalization to retinal pigmented epithelial cells. Experimental Eye Research, 1995, 60, 607-619.	2.6	61
135	TNF-α is critical for ischemia-induced leukostasis, but not retinal neovascularization nor VEGF-induced leakage. Journal of Neuroimmunology, 2007, 182, 73-79.	2.3	61
136	Intraocular injection of an aptamer that binds PDGF-B: A potential treatment for proliferative retinopathies. Journal of Cellular Physiology, 2006, 207, 407-412.	4.1	60
137	Monitoring Ocular Drug Therapy by Analysis of Aqueous Samples. Ophthalmology, 2009, 116, 2158-2164.	5.2	60
138	In Vivo Immunostaining Demonstrates Macrophages Associate with Growing and Regressing Vessels. , 2007, 48, 4335.		59
139	Prolonged blockade of VEGF family members does not cause identifiable damage to retinal neurons or vessels. Journal of Cellular Physiology, 2008, 217, 13-22.	4.1	59
140	Cytokine Production by Retinal Pigmented Epithelial Cells. International Review of Cytology, 1993, 146, 75-82.	6.2	58
141	Retina-specific expression of PDGF-B versus PDGF-A: vascular versus nonvascular proliferative retinopathy. Investigative Ophthalmology and Visual Science, 2002, 43, 2001-6.	3.3	58
142	EYE PAIN AFTER VITREORETINAL SURGERY. Retina, 2001, 21, 627-632.	1.7	57
143	Sustained suppression of VEGF for treatment of retinal/choroidal vascular diseases. Progress in Retinal and Eye Research, 2021, 83, 100921.	15.5	57
144	Mecamylamine Suppresses Basal and Nicotine-Stimulated Choroidal Neovascularization. , 2008, 49, 1705.		56

#	Article	IF	CITATIONS
145	Pro-permeability Factors in Diabetic Macular Edema; the Diabetic Macular Edema Treated With Ozurdex Trial. American Journal of Ophthalmology, 2016, 168, 13-23.	3.3	56
146	Suppression of GLUT1; A new strategy to prevent diabetic complications. Journal of Cellular Physiology, 2013, 228, 251-257.	4.1	54
147	Long-term Effects of Intravitreal 0.19 mg Fluocinolone Acetonide Implant on Progression and Regression of Diabetic Retinopathy. Ophthalmology, 2017, 124, 440-449.	5.2	54
148	Class III β-tubulin in human retinal pigment epithelial cells in culture and in epiretinal membranes. Experimental Eye Research, 1995, 60, 385-400.	2.6	53
149	Identification of Novel Genes Preferentially Expressed in the Retina Using a Custom Human Retina cDNA Microarray. , 2003, 44, 3732.		53
150	Antagonism of PDGF-BB suppresses subretinal neovascularization and enhances the effects of blocking VEGF-A. Angiogenesis, 2014, 17, 553-62.	7.2	53
151	Delivery from Episcleral Exoplants. , 2006, 47, 4532.		52
152	Sustained treatment of retinal vascular diseases with self-aggregating sunitinib microparticles. Nature Communications, 2020, 11, 694.	12.8	52
153	Inhibition of protein kinase C decreases prostaglandinâ€induced breakdown of the bloodâ€retinal barrier. Journal of Cellular Physiology, 2003, 195, 210-219.	4.1	51
154	Anti-Vascular Endothelial Growth Factor Treatment for Retinal Vein Occlusions. Ophthalmologica, 2012, 227, 30-35.	1.9	51
155	Cell injury unmasks a latent proangiogenic phenotype in mice with increased expression of FGF2 in the retina. Journal of Cellular Physiology, 2000, 185, 135-142.	4.1	50
156	Angiopoietin 1 prevents retinal detachment in an aggressive model of proliferative retinopathy, but has no effect on established neovascularization. Journal of Cellular Physiology, 2005, 204, 227-235.	4.1	49
157	BEST1 expression in the retinal pigment epithelium is modulated by OTX family members. Human Molecular Genetics, 2009, 18, 128-141.	2.9	49
158	Long-term suppression of ocular neovascularization by intraocular injection of biodegradable polymeric particles containing aÂserpin-derived peptide. Biomaterials, 2013, 34, 7544-7551.	11.4	49
159	Dominant Inheritance of Optic Pits. American Journal of Ophthalmology, 1997, 124, 112-113.	3.3	48
160	Neurotrophic Factors, Cytokines and Stress Increase Expression of Basic Fibroblast Growth Factor in Retinal Pigmented Epithelial Cells. Experimental Eye Research, 1997, 64, 865-873.	2.6	48
161	Deficiency of Neuropilin 2 Suppresses VEGF-Induced Retinal Neovascularization. Molecular Medicine, 2004, 10, 12-18.	4.4	48
162	Electron microscopic immunocytochemical demonstration of blood-retinal barrier breakdown in human diabetics and its association with aldose reductase in retinal vascular endothelium and retinal pigment epithelium. The Histochemical Journal, 1993, 25, 648-663.	0.6	47

#	Article	IF	CITATIONS
163	Ocular versus Extraocular Neovascularization: Mirror Images or Vague Resemblances. , 2006, 47, 462.		47
164	Blockade of Nitric-Oxide Synthase Reduces Choroidal Neovascularization. Molecular Pharmacology, 2002, 62, 539-544.	2.3	46
165	Gene expression variation in the adult human retina. Human Molecular Genetics, 2003, 12, 2881-2893.	2.9	46
166	Ocular Gene Transfer with Self-Complementary AAV Vectors. , 2007, 48, 3324.		46
167	Development of Prodrug 4-Chloro-3-(5-methyl-3-{[4-(2-pyrrolidin-1-ylethoxy)phenyl]amino}-1,2,4-benzotriazin-7-yl)phenyl Benzoate (TG100801): A Topically Administered Therapeutic Candidate in Clinical Trials for the Treatment of Age-Related Macular Degeneration. lournal of Medicinal Chemistry. 2008. 51. 1546-1559.	6.4	46
168	Regression of Choroidal Neovascularization Results in Macular Atrophy in Anti-Vascular Endothelial Growth Factor-Treated Eyes. American Journal of Ophthalmology, 2015, 159, 9-19.e2.	3.3	45
169	Human retinal pigment epithelial cells possess muscarinic receptors coupled to calcium mobilization. Brain Research, 1988, 446, 11-16.	2.2	44
170	Vascular cell-adhesion molecule-1 plays a central role in the proangiogenic effects of oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14614-14619.	7.1	44
171	The Multifaceted Therapeutic Role of N-Acetylcysteine (NAC) in Disorders Characterized by Oxidative Stress. Current Neuropharmacology, 2021, 19, 1202-1224.	2.9	44
172	Reversible retinal vessel closure from VEGF-induced leukocyte plugging. JCI Insight, 2017, 2, .	5.0	44
173	RPE Cells Modulate Subretinal Neovascularization, but Do Not Cause Regression in Mice with Sustained Expression of VEGF. , 2003, 44, 5430.		43
174	Spontaneous Involution of Subfoveal Neovascularization. American Journal of Ophthalmology, 1990, 109, 668-675.	3.3	42
175	Molecular targets for retinal vascular diseases. Journal of Cellular Physiology, 2007, 210, 575-581.	4.1	42
176	Equine Infectious Anemia Viral Vector-Mediated Codelivery of Endostatin and Angiostatin Driven by Retinal Pigmented Epithelium-Specific VMD2 Promoter Inhibits Choroidal Neovascularization. Human Gene Therapy, 2009, 20, 31-39.	2.7	42
177	VMD2 Promoter Requires Two Proximal E-box Sites for Its Activity in Vivo and Is Regulated by the MITF-TFE Family. Journal of Biological Chemistry, 2007, 282, 1838-1850.	3.4	41
178	Prolonged blockade of VEGF receptors does not damage retinal photoreceptors or ganglion cells. Journal of Cellular Physiology, 2010, 224, 262-272.	4.1	41
179	Characterization of Intraocular Pressure Increases and Management Strategies Following Treatment With Fluocinolone Acetonide Intravitreal Implants in the FAME Trials. Ophthalmic Surgery Lasers and Imaging Retina, 2016, 47, 426-435.	0.7	41
180	Human retinal pigment epithelial cells in culture possess A2-adenosine receptors. Brain Research, 1989, 492, 29-35.	2.2	39

#	Article	IF	CITATIONS
181	Interleukinâ€18 Has Antipermeablity and Antiangiogenic Activities in the Eye: Reciprocal Suppression With VEGF. Journal of Cellular Physiology, 2014, 229, 974-983.	4.1	39
182	Tyrosine kinase blocking collagen IV–derived peptide suppresses ocular neovascularization and vascular leakage. Science Translational Medicine, 2017, 9, .	12.4	39
183	Suprachoroidal gene transfer with nonviral nanoparticles. Science Advances, 2020, 6, .	10.3	39
184	The HIF-1 antagonist acriflavine: visualization in retina and suppression of ocular neovascularization. Journal of Molecular Medicine, 2017, 95, 417-429.	3.9	38
185	A collagen IV–derived peptide disrupts α5β1 integrin and potentiates Ang2/Tie2 signaling. JCI Insight, 2019, 4, .	5.0	38
186	Immunohistochemical localization of blood-retinal barrier breakdown sites associated with post-surgical macular oedema. The Histochemical Journal, 1994, 26, 655-665.	0.6	36
187	Sustained Transduction of Ocular Cells with a Bovine Immunodeficiency Viral Vector. Human Gene Therapy, 2002, 13, 1305-1316.	2.7	36
188	An Adam15 amplification loop promotes vascular endothelial growth factorâ€induced ocular neovascularization. FASEB Journal, 2008, 22, 2775-2783.	0.5	36
189	Effects of Intraocular Ranibizumab and Bevacizumab in Transgenic Mice Expressing Human Vascular Endothelial Growth Factor. Ophthalmology, 2009, 116, 1748-1754.	5.2	36
190	AAV8-antiVEGFfab Ocular Gene Transfer for Neovascular Age-Related Macular Degeneration. Molecular Therapy, 2018, 26, 542-549.	8.2	36
191	IMPACT OF OPTICAL COHERENCE TOMOGRAPHY ON SURGICAL DECISION MAKING FOR EPIRETINAL MEMBRANES AND VITREOMACULAR TRACTION. Retina, 2007, 27, 552-556.	1.7	35
192	Pro-Permeability Factors After Dexamethasone Implant in Retinal Vein Occlusion; the Ozurdex for Retinal Vein Occlusion (ORVO) Study. American Journal of Ophthalmology, 2015, 160, 313-321.e19.	3.3	35
193	Targeted pharmacotherapy of retinal diseases with ranibizumab. Drugs of Today, 2007, 43, 529.	1.1	35
194	A method for analysis of gene expression in isolated mouse photoreceptor and Müller cells. Molecular Vision, 2004, 10, 366-75.	1.1	35
195	Increased expression of glial cell line-derived neurotrophic factor protects against oxidative damage-induced retinal degeneration. Journal of Neurochemistry, 2007, 103, 1041-1052.	3.9	34
196	Reduction of p66Shc suppresses oxidative damage in retinal pigmented epithelial cells and retina. Journal of Cellular Physiology, 2006, 209, 996-1005.	4.1	33
197	Characterization of adenylate cyclase in human retinal pigment epithelial cells in vitro. Experimental Eye Research, 1987, 44, 471-479.	2.6	32
198	Platelet-Derived Growth Factor-A-Induced Retinal Gliosis Protects against Ischemic Retinopathy. American Journal of Pathology, 2000, 156, 477-487.	3.8	32

#	Article	IF	CITATIONS
199	Dynamic and Quantitative Analysis of Choroidal Neovascularization by Fluorescein Angiography. , 2006, 47, 5460.		30
200	A Small-Molecule Pan-Id Antagonist Inhibits Pathologic Ocular Neovascularization. Cell Reports, 2019, 29, 62-75.e7.	6.4	30
201	Excitatory amino acid analogs evoke release of endogenous amino acids and acetyl choline from chick retina in vitro. Vision Research, 1985, 25, 1375-1386.	1.4	29
202	Topical Mecamylamine for Diabetic Macular Edema. American Journal of Ophthalmology, 2010, 149, 839-851.e1.	3.3	29
203	Gene Transfer for Neovascular Age-Related Macular Degeneration. Human Gene Therapy, 2011, 22, 523-529.	2.7	29
204	Pharmacokinetics of Ranibizumab after Intravitreal Administration in Patients with Retinal Vein Occlusion or Diabetic Macular Edema. Ophthalmology, 2014, 121, 2237-2246.	5.2	29
205	Intraocular adenoviral vector-mediated gene transfer in proliferative retinopathies. Investigative Ophthalmology and Visual Science, 2002, 43, 1610-5.	3.3	29
206	A splice variant of trkB and brain-derived neurotrophic factor are co-expressed in retinal pigmented epithelial cells and promote differentiated characteristics. Brain Research, 1998, 789, 201-212.	2.2	28
207	Vascular Targeting of Ocular Neovascularization with a Vascular Endothelial Growth Factor121/Gelonin Chimeric Protein. Molecular Pharmacology, 2005, 68, 1543-1550.	2.3	28
208	Intravenous Bevacizumab Causes Regression of Choroidal Neovascularization Secondary to Diseases Other Than Age-related Macular Degeneration. American Journal of Ophthalmology, 2008, 145, 257-266.e2.	3.3	28
209	Trans-scleral Delivery of Antiangiogenic Proteins. Journal of Ocular Pharmacology and Therapeutics, 2008, 24, 70-79.	1.4	28
210	Longâ€ŧerm expression of glial cell lineâ€derived neurotrophic factor slows, but does not stop retinal degeneration in a model of retinitis pigmentosa. Journal of Neurochemistry, 2012, 122, 1047-1053.	3.9	28
211	Transcriptional Regulation of Cellular Retinaldehyde-binding Protein in the Retinal Pigment Epithelium. Journal of Biological Chemistry, 1998, 273, 5591-5598.	3.4	27
212	Gene Therapy for Ocular Neovascularization. Current Gene Therapy, 2007, 7, 25-33.	2.0	27
213	Sustained delivery of acriflavine from the suprachoroidal space provides long term suppression of choroidal neovascularization. Biomaterials, 2020, 243, 119935.	11.4	27
214	Suppression and Regression of Choroidal Neovascularization by Polyamine Analogues. , 2005, 46, 3323.		26
215	Progressive ultrastructural damage and thickening of the basement membrane of the retinal pigment epithelium in spontaneously diabetic BB rats. Experimental Eye Research, 1988, 46, 545-558.	2.6	25
216	Protein Transport to Choroid and Retina following Periocular Injection: Theoretical and Experimental Study. Annals of Biomedical Engineering, 2007, 35, 615-630.	2.5	25

#	Article	IF	CITATIONS
217	Agents that bind annexin A2 suppress ocular neovascularization. Journal of Cellular Physiology, 2010, 225, 855-864.	4.1	25
218	Progression of Retinitis Pigmentosa as Measured on Microperimetry: The PREP-1 Study. Ophthalmology Retina, 2018, 2, 502-507.	2.4	25
219	Three-Dimensional Transport Model for Intravitreal and Suprachoroidal Drug Injection. , 2018, 59, 5266.		25
220	Retinal pigment epithelial cells produce a latent fibrinolytic inhibitor that is antigenically and biochemically related to type 1 plasminogen activator inhibitor produced by vascular endothelial cells. Experimental Eye Research, 1989, 49, 195-203.	2.6	24
221	Loss of Peak Vision in Retinal Vein Occlusion Patients Treated for Macular Edema. American Journal of Ophthalmology, 2019, 205, 17-26.	3.3	23
222	Trans-scleral delivery of polyamine analogs for ocular neovascularization. Experimental Eye Research, 2006, 83, 1260-1267.	2.6	22
223	VEGF/VEGFR2 blockade does not cause retinal atrophy in AMD-relevant models. JCI Insight, 2018, 3, .	5.0	22
224	Gene therapy for retinal and choroidal diseases. Expert Opinion on Biological Therapy, 2002, 2, 537-544.	3.1	21
225	The Kinase Inhibitor PKC412 Suppresses Epiretinal Membrane Formation and Retinal Detachment in Mice with Proliferative Retinopathies. , 2003, 44, 3656.		21
226	Evaluation of Very High- and Very Low-Dose Intravitreal Aflibercept in Patients with Neovascular Age-Related Macular Degeneration. Journal of Ocular Pharmacology and Therapeutics, 2012, 28, 581-588.	1.4	21
227	The impact of optical coherence tomography on surgical decision making in epiretinal membrane and vitreomacular traction. Transactions of the American Ophthalmological Society, 2006, 104, 161-6.	1.4	21
228	INTRAOPERATIVE KETOROLAC AND EYE PAIN AFTER VITREORETINAL SURGERY. Retina, 2003, 23, 8-13.	1.7	20
229	Changes in Retinal Pigment Epithelial Gene Expression Induced by Rod Outer Segment Uptake. , 2004, 45, 2098.		20
230	Topical Pazopanib Blocks VEGF-Induced Vascular Leakage and Neovascularization in the Mouse Retina but Is Ineffective in the Rabbit. , 2013, 54, 503.		20
231	Classification of disease severity in retinitis pigmentosa. British Journal of Ophthalmology, 2019, 103, 1595-1599.	3.9	20
232	Prevention or moderation of some ultrastructural changes in the RPE and retina of galactosemic rats by aldose reductase inhibition. Experimental Eye Research, 1989, 49, 495-510.	2.6	19
233	Recombinant non-collagenous domain of $\hat{I}\pm 2$ (IV) collagen causes involution of choroidal neovascularization by inducing apoptosis. Journal of Cellular Physiology, 2006, 208, 161-166.	4.1	19
234	The dissociation of evoked release of [3H]-GABA and of endogenous GABA from chick retina in vitro. Experimental Eye Research, 1984, 39, 299-305.	2.6	18

#	Article	IF	CITATIONS
235	Evolution of morphologic changes after intravitreous injection of gentamicin. Current Eye Research, 1993, 12, 521-529.	1.5	18
236	A retina-derived stimulator(s) of retinal pigment epithelial cell and astrocyte proliferation. Experimental Eye Research, 1986, 43, 449-457.	2.6	17
237	Photoreceptor-specific overexpression of platelet-derived growth factor induces proliferation of endothelial cells, pericytes, and glial cells and aberrant vascular development: an ultrastructural and immunocytochemical study. Developmental Brain Research, 2003, 140, 169-183.	1.7	17
238	Intraocular gutless adenoviral-vectored VEGF stimulates anterior segment but not retinal neovascularization. Journal of Cellular Physiology, 2004, 199, 399-411.	4.1	17
239	Gene Transfer of An Engineered Zinc Finger Protein Enhances the Anti-angiogenic Defense System. Molecular Therapy, 2007, 15, 1917-1923.	8.2	17
240	Human retinal pigment epithelial cells possess V ₁ vasopressin receptors. Current Eye Research, 1991, 10, 811-816.	1.5	16
241	Mouse model of post-surgical breakdown of the blood-retinal barrier. Current Eye Research, 2004, 28, 421-426.	1.5	16
242	Anisotropic poly(lactic-co-glycolic acid) microparticles enable sustained release of a peptide for long-term inhibition of ocular neovascularization. Acta Biomaterialia, 2019, 97, 451-460.	8.3	16
243	Seeing the light: New insights into the molecular pathogenesis of retinal diseases. Journal of Cellular Physiology, 2007, 213, 348-354.	4.1	15
244	Increased Frequency of Topical Steroids Provides Benefit in Patients With Recalcitrant Postsurgical Macular Edema. American Journal of Ophthalmology, 2017, 178, 163-175.	3.3	13
245	Systematic Functional Testing of Rare Variants: Contributions of <i>CFI</i> to Age-Related Macular Degeneration. , 2017, 58, 1570.		13
246	Metipranolol promotes structure and function of retinal photoreceptors in the <i>rd10</i> mouse model of human retinitis pigmentosa. Journal of Neurochemistry, 2019, 148, 307-318.	3.9	12
247	Thrombin is a stimulator of retinal pigment epithelial cell proliferation. Experimental Eye Research, 1991, 53, 95-100.	2.6	11
248	Mousetap, a Novel Technique to Collect Uncontaminated Vitreous or Aqueous and Expand Usefulness of Mouse Models. Scientific Reports, 2018, 8, 6371.	3.3	11
249	Suppression of Ocular Vascular Inflammation through Peptide-Mediated Activation of Angiopoietin-Tie2 Signaling. International Journal of Molecular Sciences, 2020, 21, 5142.	4.1	10
250	Intraobserver Repeatability of Automated versus Adjusted Optical Coherence Tomography Measurements in Patients with Neovascular Age-Related Macular Degeneration. Ophthalmologica, 2007, 221, 227-232.	1.9	9
251	Hepatocyte growth factor is upregulated in ischemic retina and contributes to retinal vascular leakage and neovascularization. FASEB BioAdvances, 2020, 2, 219-233.	2.4	9
252	Locus-Level Changes in Macular Sensitivity in Patients with Retinitis Pigmentosa Treated with Oral N-acetylcysteine. American Journal of Ophthalmology, 2021, 221, 105-114.	3.3	9

#	Article	IF	CITATIONS
253	Implication of Protein Carboxymethylation in Retinal Pigment Epithelial Cell Chemotaxis. Ophthalmic Research, 1988, 20, 54-59.	1.9	8
254	The Nicotinic Cholinergic Pathway Contributes to Retinal Neovascularization in a Mouse Model of Retinopathy of Prematurity. , 2017, 58, 1296.		8
255	Vegf or EphA2 Antisense Polyamide-nucleic acids; Vascular Localization and Suppression of Retinal Neovascularization. Molecular Therapy, 2007, 15, 1924-1930.	8.2	7
256	Low risk to retina from sustained suppression of VEGF. Journal of Clinical Investigation, 2019, 129, 3029-3031.	8.2	7
257	Oxidative stress-induced alterations in retinal glucose metabolism in Retinitis Pigmentosa. Free Radical Biology and Medicine, 2022, 181, 143-153.	2.9	7
258	Candidal Endophthalmitis After Lithotripsy of Renal Calculi. Southern Medical Journal, 1992, 85, 773-774.	0.7	6
259	Ultrastructural localization of RPE-associated epitopes recognized by monoclonal antibodies in human RPE and their induction in human fibroblasts by vitreous. Graefe's Archive for Clinical and Experimental Ophthalmology, 1993, 231, 395-401.	1.9	6
260	Double-labeling for Keratin and Class III Î ² -Tubulin Within Cultured Retinal Pigment Epithelial Cells: Comparison of Chromogens to Yield Maximum Resolution of Two Structural Proteins Within The Same Cell. Journal of Histotechnology, 1997, 20, 19-25.	0.5	6
261	Retinal and Choroidal Vascular Diseases: Past, Present, and Future: The 2021 Proctor Lecture. , 2021, 62, 26.		6
262	Identification of novel bovine RPE and retinal genes by subtractive hybridization. Molecular Vision, 2002, 8, 251-8.	1.1	6
263	Shortest Distance From Fovea to Subfoveal Hemorrhage Border Is Important in Patients With Neovascular Age-related Macular Degeneration. American Journal of Ophthalmology, 2018, 189, 86-95.	3.3	5
264	High glucose concentrations inhibit protein synthesis in retinal pigment epithelium in vitro. Experimental Eye Research, 1987, 44, 951-958.	2.6	4
265	Proteosomal degradation impairs transcytosis of AAV vectors from suprachoroidal space to retina. Gene Therapy, 2021, 28, 740-747.	4.5	3
266	Angiopoietin 2 expression in the retina: upregulation during physiologic and pathologic neovascularization. Journal of Cellular Physiology, 2000, 184, 275-284.	4.1	3
267	Ocular Neovascularization. , 2008, , 517-531.		3
268	Fibulin-7 C-terminal fragment and its active synthetic peptide suppress choroidal and retinal neovascularization. Microvascular Research, 2020, 129, 103986.	2.5	3
269	Viewpoints: Dual-blocking antibody against VEGF-A and angiopoietin-2 for treating vascular diseases of the eye. Trends in Molecular Medicine, 2022, 28, 347-349.	6.7	3
270	Structure-Guided Molecular Engineering of a Vascular Endothelial Growth Factor Antagonist to Treat Retinal Diseases. Cellular and Molecular Bioengineering, 2020, 13, 405-418.	2.1	2

#	Article	IF	CITATIONS
271	Studies on Retinal and Retinal Pigment Epithelial Gene Expression. Novartis Foundation Symposium, 2008, , 131-146.	1.1	1
272	The Complexity of Animal Model Generation for Complex DiseasesANIMAL MODEL GENERATION FOR COMPLEX DISEASES. JAMA - Journal of the American Medical Association, 2010, 303, 657.	7.4	1
273	Reply. Ophthalmology, 2016, 123, e60-e61.	5.2	1
274	Reply. American Journal of Ophthalmology, 2016, 170, 245-246.	3.3	1
275	Ocular gene therapy for neovascular AMD: a new era? – Authors' reply. Lancet, The, 2017, 390, 2140.	13.7	1
276	Retinal and choroidal neovascularization. , 0, .		1
277	Vasohibin is Upâ€regulated by VECF in the Retina and Suppresses VEGF receptor 2 and Retinal Neovascularization. FASEB Journal, 2006, 20, A716.	0.5	1
278	Cytokine production and responsiveness by retinal pigmented epithelial cell. Experimental Eye Research, 1992, 55, 138.	2.6	0
279	Endophthalmitis Following Cataract Surgery. Seminars in Ophthalmology, 1993, 8, 130-135.	1.6	0
280	788. Engineered Zinc Finger Protein Transcription Factors as a Potential Therapy for Choroidal Neovascularization. Molecular Therapy, 2006, 13, S305.	8.2	0
281	Reply. Ophthalmology, 2016, 123, e33-e34.	5.2	0
282	Reply. American Journal of Ophthalmology, 2016, 161, 216-217.	3.3	0
283	Reply. Ophthalmology, 2019, 126, e88-e89.	5.2	0
284	Comment on "Use of biomaterials for sustained delivery of anti-VEGF to treat retinal diseases― Eye, 2021, 35, 1024-1025.	2.1	0
285	Using crowdsourcing to understand patients attitudes toward a clinical trial for retinitis pigmentosa requiring 4 years of participation. Ophthalmic Genetics, 2022, 43, 36-41.	1.2	О