
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8393103/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in porous polyoxometalate-based metal–organic framework materials. Chemical Society Reviews, 2014, 43, 4615-4632.	18.7	845
2	Ultrastable Polymolybdate-Based Metal–Organic Frameworks as Highly Active Electrocatalysts for Hydrogen Generation from Water. Journal of the American Chemical Society, 2015, 137, 7169-7177.	6.6	584
3	Effect of Imidazole Arrangements on Proton-Conductivity in Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 6183-6189.	6.6	436
4	Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Central Science, 2018, 4, 440-450.	5.3	382
5	Construction of hierarchically porous metal–organic frameworks through linker labilization. Nature Communications, 2017, 8, 15356.	5.8	326
6	Sequential Linker Installation: Precise Placement of Functional Groups in Multivariate Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 3177-3180.	6.6	323
7	Linker Installation: Engineering Pore Environment with Precisely Placed Functionalities in Zirconium MOFs. Journal of the American Chemical Society, 2016, 138, 8912-8919.	6.6	278
8	N-rich zeolite-like metal–organic framework with sodalite topology: high CO2 uptake, selective gas adsorption and efficient drug delivery. Chemical Science, 2012, 3, 2114.	3.7	277
9	A Fluorescent Sensor for Highly Selective Detection of Nitroaromatic Explosives Based on a 2D, Extremely Stable, Metal–Organic Framework. Chemistry - A European Journal, 2014, 20, 3589-3594.	1.7	271
10	A single crystalline porphyrinic titanium metal–organic framework. Chemical Science, 2015, 6, 3926-3930.	3.7	236
11	Thermodynamically Guided Synthesis of Mixed-Linker Zr-MOFs with Enhanced Tunability. Journal of the American Chemical Society, 2016, 138, 6636-6642.	6.6	232
12	[Ti ₈ Zr ₂ O ₁₂ (COO) ₁₆] Cluster: An Ideal Inorganic Building Unit for Photoactive Metal–Organic Frameworks. ACS Central Science, 2018, 4, 105-111.	5.3	204
13	Stable Luminescent Metal–Organic Frameworks as Dual-Functional Materials To Encapsulate Ln ³⁺ lons for White-Light Emission and To Detect Nitroaromatic Explosives. Inorganic Chemistry, 2015, 54, 3290-3296.	1.9	196
14	Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2015, 54, 14696-14700.	7.2	169
15	Mixed-linker strategy for the construction of multifunctional metal–organic frameworks. Journal of Materials Chemistry A, 2017, 5, 4280-4291.	5.2	163
16	Self-Assembly of 2D→2D Interpenetrating Coordination Polymers Showing Polyrotaxane- and Polycatenane-like Motifs: Influence of Various Ligands on Topological Structural Diversity. Inorganic Chemistry, 2008, 47, 10600-10610.	1.9	162
17	Retrosynthesis of multi-component metalâ~'organic frameworks. Nature Communications, 2018, 9, 808.	5.8	159
18	A Microporous Anionic Metal–Organic Framework for Sensing Luminescence of Lanthanide(III) Ions and Selective Absorption of Dyes by Ionic Exchange. Chemistry - A European Journal, 2014, 20, 5625-5630.	1.7	154

#	Article	IF	CITATIONS
19	Control the Structure of Zr-Tetracarboxylate Frameworks through Steric Tuning. Journal of the American Chemical Society, 2017, 139, 16939-16945.	6.6	153
20	Creating Well-Defined Hexabenzocoronene in Zirconium Metal–Organic Framework by Postsynthetic Annulation. Journal of the American Chemical Society, 2019, 141, 2054-2060.	6.6	148
21	Stable metal–organic frameworks as a host platform for catalysis and biomimetics. Chemical Communications, 2018, 54, 4231-4249.	2.2	137
22	Poreâ€Environment Engineering with Multiple Metal Sites in Rareâ€Earth Porphyrinic Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 5095-5099.	7.2	136
23	Perovskite Quantum Dots Encapsulated in a Mesoporous Metal–Organic Framework as Synergistic Photocathode Materials. Journal of the American Chemical Society, 2021, 143, 14253-14260.	6.6	118
24	A multifunctional microporous anionic metal–organic framework for column-chromatographic dye separation and selective detection and adsorption of Cr ³⁺ . Journal of Materials Chemistry A, 2015, 3, 23426-23434.	5.2	117
25	2D Cd(II)–Lanthanide(III) Heterometallic–Organic Frameworks Based on Metalloligands for Tunable Luminescence and Highly Selective, Sensitive, and Recyclable Detection of Nitrobenzene. Inorganic Chemistry, 2014, 53, 8105-8113.	1.9	105
26	Stepwise Assembly of Turnâ€on Fluorescence Sensors in Multicomponent Metal–Organic Frameworks for inâ€Vitro Cyanide Detection. Angewandte Chemie - International Edition, 2020, 59, 9319-9323.	7.2	104
27	Systematic Engineering of Single Substitution in Zirconium Metal–Organic Frameworks toward High-Performance Catalysis. Journal of the American Chemical Society, 2017, 139, 18590-18597.	6.6	102
28	Face-Sharing Archimedean Solids Stacking for the Construction of Mixed-Ligand Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 13841-13848.	6.6	101
29	A Honeycomb‣ike Bulk Superstructure of Carbon Nanosheets for Electrocatalysis and Energy Storage. Angewandte Chemie - International Edition, 2020, 59, 19627-19632.	7.2	100
30	Polyoxometalate-based crystalline tubular microreactor: redox-active inorganic–organic hybrid materials producing gold nanoparticles and catalytic properties. Chemical Science, 2012, 3, 705-710.	3.7	93
31	Diamondoid-structured polymolybdate-based metal–organic frameworks as high-capacity anodes for lithium-ion batteries. Chemical Communications, 2017, 53, 5204-5207.	2.2	92
32	A stable metal–organic framework with suitable pore sizes and rich uncoordinated nitrogen atoms on the internal surface of micropores for highly efficient CO ₂ capture. Journal of Materials Chemistry A, 2015, 3, 7361-7367.	5.2	86
33	Derivation and Decoration of Nets with Trigonal-Prismatic Nodes: A Unique Route to Reticular Synthesis of Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 5299-5307.	6.6	84
34	A stable Alq3@MOF composite for white-light emission. Chemical Communications, 2016, 52, 3288-3291.	2.2	81
35	A Stable Porous Anionic Metal–Organic Framework for Luminescence Sensing of Ln ³⁺ Ions and Detection of Nitrobenzene. Chemistry - an Asian Journal, 2014, 9, 749-753.	1.7	77
36	Precisely Embedding Active Sites into a Mesoporous Zr-Framework through Linker Installation for High-Efficiency Photocatalysis. Journal of the American Chemical Society, 2020, 142, 15020-15026.	6.6	71

#	Article	IF	CITATIONS
37	Sequential Transformation of Zirconium(IV)â€MOFs into Heterobimetallic MOFs Bearing Magnetic Anisotropic Cobalt(II) Centers. Angewandte Chemie - International Edition, 2018, 57, 12578-12583.	7.2	70
38	Exposed Equatorial Positions of Metal Centers via Sequential Ligand Elimination and Installation in MOFs. Journal of the American Chemical Society, 2018, 140, 10814-10819.	6.6	70
39	Tuning the Ionicity of Stable Metal–Organic Frameworks through Ionic Linker Installation. Journal of the American Chemical Society, 2019, 141, 3129-3136.	6.6	70
40	Metal–Organic Frameworks Based on Group 3 and 4 Metals. Advanced Materials, 2020, 32, e2004414.	11.1	69
41	Lattice Expansion and Contraction in Metal-Organic Frameworks by Sequential Linker Reinstallation. Matter, 2019, 1, 156-167.	5.0	67
42	PCN-250 under Pressure: Sequential Phase Transformation and the Implications for MOF Densification. Joule, 2017, 1, 806-815.	11.7	65
43	Continuous Variation of Lattice Dimensions and Pore Sizes in Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 4732-4738.	6.6	65
44	pH-Dependent Binary Metalâ^'Organic Compounds Assembled from Different Helical Units: Structural Variation and Supramolecular Isomers. Crystal Growth and Design, 2010, 10, 1699-1705.	1.4	63
45	Piezochromic luminescent (PCL) behavior and aggregation-induced emission (AIE) property of a new cationic iridium(iii) complex. Dalton Transactions, 2012, 41, 9590.	1.6	62
46	Selfâ€Assembly versus Stepwise Synthesis: Heterometal–Organic Frameworks Based on Metalloligands with Tunable Luminescence Properties. Chemistry - A European Journal, 2013, 19, 11279-11286.	1.7	55
47	A Highly Energetic Nâ€Rich Zeoliteâ€Like Metalâ€Organic Framework with Excellent Air Stability and Insensitivity. Advanced Science, 2015, 2, 1500150.	5.6	53
48	Assembly of 3D Metal-Organic Frameworks Based on Different Helical Units: Chiral and Achiral Structures Constructed by Length-Modulated N-Donor Ligands. Crystal Growth and Design, 2009, 9, 4142-4146.	1.4	49
49	Flexible Zirconium MOF as the Crystalline Sponge for Coordinative Alignment of Dicarboxylates. ACS Applied Materials & Interfaces, 2017, 9, 33408-33412.	4.0	48
50	A (4,8)-Connected Fluorite Topology Framework Based on Mononuclear and Dinuclear Metal Centers. Crystal Growth and Design, 2008, 8, 2055-2057.	1.4	47
51	Functionalization of Zirconiumâ€Based Metal–Organic Layers with Tailored Pore Environments for Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2020, 59, 18224-18228.	7.2	44
52	The Enhancement on Proton Conductivity of Stable Polyoxometalateâ€Based Coordination Polymers by the Synergistic Effect of MultiProton Units. Chemistry - A European Journal, 2016, 22, 9299-9304.	1.7	42
53	Encapsulation of an iridium complex in a metal–organic framework to give a composite with efficient white light emission. Inorganic Chemistry Frontiers, 2017, 4, 547-552.	3.0	42
54	Controllable synthesis of microporous, nanotubular and mesocage-like metal–organic frameworks by adjusting the reactant ratio and modulated luminescence properties of Alq3@MOF composites. Journal of Materials Chemistry, 2012, 22, 17947.	6.7	40

#	Article	IF	CITATIONS
55	Dualâ€Functional Photocatalysis for Cooperative Hydrogen Evolution and Benzylamine Oxidation Coupling over Sandwiched‣ike Pd@TiO ₂ @ZnIn ₂ S ₄ Nanobox. Small, 2022, 18, e2105114.	5.2	40
56	An unprecedented (3,4,24)-connected heteropolyoxozincate organic framework as heterogeneous crystalline Lewis acid catalyst for biodiesel production. Scientific Reports, 2013, 3, 2616.	1.6	39
57	An unprecedented 3D 8-connected pure inorganic framework based on nanosized {[Na12PO16H24]âŠ,[P4Mo6O31H6]4}15â^ clusters and zinc cations. Chemical Communications, 2011, 47, 283	32 <mark>2.2</mark>	36
58	Fluorescence Enhancement in the Solid State by Isolating Perylene Fluorophores in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 26727-26732.	4.0	36
59	Interior Decoration of Stable Metal–Organic Frameworks. Langmuir, 2018, 34, 13795-13807.	1.6	34
60	3d - 4f Heterometallic Complexes for the Construction of POM-based Inorganic - Organic Hybrid Compounds: from Nanoclusters to One-Dimensional Ladder-Like Chains. Australian Journal of Chemistry, 2010, 63, 1389.	0.5	33
61	Functional heterometallic coordination polymers with metalloligands as tunable luminescent crystalline materials. Journal of Materials Chemistry, 2012, 22, 19673.	6.7	30
62	Solvent-Assisted, Thermally Triggered Structural Transformation in Flexible Mesoporous Metal–Organic Frameworks. Chemistry of Materials, 2019, 31, 8787-8793.	3.2	30
63	Spatially Separated Bifunctional Cocatalysts Decorated on Hollow-Structured TiO ₂ for Enhanced Photocatalytic Hydrogen Generation. ACS Applied Materials & Interfaces, 2020, 12, 23356-23362.	4.0	28
64	pH-Tuned self-assembly of organic–inorganic hybrids based on different vanadate chains, Zn(<scp>ii</scp>) ions and flexible ligands: crystallizing in polar and centrosymmetric space group. CrystEngComm, 2011, 13, 779-786.	1.3	25
65	Syntheses, structures and luminescent properties of a series of 3D lanthanide coordination polymers with tripodal semirigid ligand. Journal of Solid State Chemistry, 2011, 184, 373-378.	1.4	24
66	A series of inorganic–organic hybrid compounds constructed from bis(undecatungstophosphate) lanthanates and copper-organic units. Inorganica Chimica Acta, 2010, 363, 3823-3831.	1.2	22
67	Redox-active polyoxometalate-based crystalline material-immobilized noble metal nanoparticles: spontaneous reduction and synergistic catalytic activity. Journal of Materials Chemistry, 2012, 22, 21040.	6.7	22
68	3D Chiral Microporous (10,3)-a Topology Metal–Organic Framework Containing Large Helical Channels. Crystal Growth and Design, 2011, 11, 2510-2514.	1.4	21
69	Sophisticated Construction of Electronically Labile Materials: A Neutral, Radical-Rich, Cobalt Valence Tautomeric Triangle. Journal of the American Chemical Society, 2018, 140, 14581-14585.	6.6	21
70	Spatially separated bimetallic cocatalysts on hollow-structured TiO ₂ for photocatalytic hydrogen generation. Materials Chemistry Frontiers, 2020, 4, 1671-1678.	3.2	19
71	Poreâ€Environment Engineering with Multiple Metal Sites in Rareâ€Earth Porphyrinic Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 5189-5193.	1.6	18
72	Stepwise Assembly of Turnâ€on Fluorescence Sensors in Multicomponent Metal–Organic Frameworks for inâ€Vitro Cyanide Detection. Angewandte Chemie, 2020, 132, 9405-9409.	1.6	18

#	Article	IF	CITATIONS
73	Building block approach to a series of substituted Keggin-type inorganic–organic hybrids. Solid State Sciences, 2011, 13, 1115-1121.	1.5	16
74	A flexible thioether-based MOF as a crystalline sponge for structural characterization of liquid organic molecules. Materials Chemistry Frontiers, 2017, 1, 1764-1767.	3.2	15
75	A en-templated 3D coordination polymer based on H2pzdc with macrometallocycles. Inorganic Chemistry Communication, 2010, 13, 1227-1230.	1.8	14
76	Thermodynamically Controlled Linker Installation in Flexible Zirconium Metal–Organic Frameworks. Crystal Growth and Design, 2019, 19, 2069-2073.	1.4	13
77	Morphology Transcription in Hierarchical MOF-on-MOF Architectures. , 2021, 3, 738-743.		13
78	Bioinspired spike-like double yolk–shell structured TiO ₂ @ZnIn ₂ S ₄ for efficient photocatalytic CO ₂ reduction. Catalysis Science and Technology, 2022, 12, 1092-1099.	2.1	9
79	A novel 3-connected [3 + 3] topological net showing both rotaxane- and catenane-like motifs. CrystEngComm, 2011, 13, 4945.	1.3	8
80	Functionalization of Zirconiumâ€Based Metal–Organic Layers with Tailored Pore Environments for Heterogeneous Catalysis. Angewandte Chemie, 2020, 132, 18381-18385.	1.6	7
81	Discrete nanographene implanted in zirconium metal-organic framework for electrochemical energy storage. Journal of Solid State Chemistry, 2020, 287, 121377.	1.4	7
82	A Honeycombâ€Like Bulk Superstructure of Carbon Nanosheets for Electrocatalysis and Energy Storage. Angewandte Chemie, 2020, 132, 19795-19800.	1.6	7
83	Tuning the Structure of Fe-Tetracarboxylate Frameworks Through Linker-Symmetry Reduction. CCS Chemistry, 2021, 3, 1701-1709.	4.6	7
84	Sequential Transformation of Zirconium(IV)â€MOFs into Heterobimetallic MOFs Bearing Magnetic Anisotropic Cobalt(II) Centers. Angewandte Chemie, 2018, 130, 12758-12763.	1.6	5
85	Bioinspired Selfâ€Supporting Phthalocyanine@ZnIn ₂ S ₄ Foam for Photocatalytic CO ₂ Reduction Under Visible Light Irradiation. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	5
86	Bis{4,4′-[(2,2′-bi-1H-imidazole-1,1′-diyl)dimethylene]dipyridinium} β-octamolybdate. Acta Crystallograph Section E: Structure Reports Online, 2007, 63, m2817-m2817.	iica 0.2	1
87	Tetraaquabis(2-oxo-1,2-dihydroquinoline-4-carboxylato-κO4)nickel(II). Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m389-m390.	0.2	0