
Italia Bongarzone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8392797/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	COPZ1 depletion in thyroid tumor cells triggers type I IFN response and immunogenic cell death. Cancer Letters, 2020, 476, 106-119.	7.2	7
2	Alterations of RNA Metabolism by Proteomic Analysis of Breast Cancer Cells Exposed to Marycin: A New Optically Active Porphyrin. Current Molecular Pharmacology, 2019, 12, 147-159.	1.5	1
3	Lipid accumulation in human breast cancer cells injured by iron depletors. Journal of Experimental and Clinical Cancer Research, 2018, 37, 75.	8.6	17
4	Abstract 1908: Search for mediators of the lethal effect of COPZ1 depletion in thyroid tumor cells. , 2018, , .		0
5	MIF/CD74 axis is a target for novel therapies in colon carcinomatosis. Journal of Experimental and Clinical Cancer Research, 2017, 36, 16.	8.6	43
6	Multiple viral infections in primary effusion lymphoma: a model of viral cooperation in lymphomagenesis. Expert Review of Hematology, 2017, 10, 505-514.	2.2	23
7	Toward the Standardization of Mitochondrial Proteomics: The Italian Mitochondrial Human Proteome Project Initiative. Journal of Proteome Research, 2017, 16, 4319-4329.	3.7	66
8	Expression of Iron-Related Proteins Differentiate Non-Cancerous and Cancerous Breast Tumors. International Journal of Molecular Sciences, 2017, 18, 410.	4.1	27
9	Proteomic analysis of cerebrospinal fluid from children with central nervous system tumors identifies candidate proteins relating to tumor metastatic spread. Oncotarget, 2017, 8, 46177-46190.	1.8	24
10	Abstract B19: Disruption of energy homeostasis as an approach to block the proliferation of colon carcinomatosis. , 2017, , .		0
11	Applicability of Under Vacuum Fresh Tissue Sealing and Cooling to Omics Analysis of Tumor Tissues. Biopreservation and Biobanking, 2016, 14, 480-490.	1.0	10
12	Molecular characterization of LASP-1 expression reveals vimentin as its new partner in human hepatocellular carcinoma cells. International Journal of Oncology, 2015, 46, 1901-1912.	3.3	31
13	Preliminary Evidence on the Diagnostic and Molecular Role of Circulating Soluble EGFR in Non-Small Cell Lung Cancer. International Journal of Molecular Sciences, 2015, 16, 19612-19630.	4.1	21
14	Cell-secreted signals shape lymphoma identity. Seminars in Cancer Biology, 2015, 34, 81-91.	9.6	5
15	Plasma hepcidin in early-stage breast cancer patients: no relationship with interleukin-6, erythropoietin and erythroferrone. Expert Review of Proteomics, 2015, 12, 695-701.	3.0	23
16	4-IPP, a selective MIF inhibitor, causes mitotic catastrophe in thyroid carcinomas. Endocrine-Related Cancer, 2015, 22, 759-775.	3.1	23
17	Hepcidin and ferritin blood level as noninvasive tools for predicting breast cancer. Annals of Oncology, 2014, 25, 352-357.	1.2	53
18	Stratification of clear cell renal cell carcinoma by signaling pathway analysis. Expert Review of Proteomics, 2014, 11, 237-249.	3.0	9

#	Article	IF	CITATIONS
19	Primary Effusion Lymphoma. American Journal of Pathology, 2014, 184, 618-630.	3.8	14
20	Abstract 1874: Investigation of the cerebrospinal fluid proteome from central nervous system pediatric tumors using bait loaded hydrogel nanoparticles and mass spectrometry. , 2014, , .		0
21	ls Wilms Tumor a Candidate Neoplasia for Treatment with WNT/β-Catenin Pathway Modulators?—A Report from the Renal Tumors Biology-Driven Drug Development Workshop. Molecular Cancer Therapeutics, 2013, 12, 2619-2627.	4.1	28
22	Proteomic profile in familial breast cancer patients. Clinical Biochemistry, 2013, 46, 259-265.	1.9	8
23	Bioinformatics tools for secretome analysis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 2442-2453.	2.3	93
24	Extracavitary KSHV-positive Solid Lymphoma. American Journal of Surgical Pathology, 2013, 37, 1460-1461.	3.7	13
25	Soluble epidermal growth factor receptor isoforms in non-small cell lung cancer tissue and in blood. Lung Cancer, 2012, 76, 332-338.	2.0	16
26	Body Mass Index and Serum Proteomic Profile in Breast Cancer and Healthy Women: A Prospective Study. PLoS ONE, 2012, 7, e49631.	2.5	14
27	Signaling pathway-based stratification of clear cell renal cell carcinoma Journal of Clinical Oncology, 2012, 30, 434-434.	1.6	Ο
28	Identification of MET and SRC Activation in Melanoma Cell Lines Showing Primary Resistance to PLX4032. Neoplasia, 2011, 13, 1132-IN17.	5.3	89
29	Secretome Compartment Is a Valuable Source of Biomarkers for Cancer-Relevant Pathways. Journal of Proteome Research, 2011, 10, 4196-4207.	3.7	47
30	Activated Leukocyte Cell Adhesion Molecule Expression and Shedding in Thyroid Tumors. PLoS ONE, 2011, 6, e17141.	2.5	21
31	Serological identification of HSP105 as a novel non-Hodgkin lymphoma therapeutic target. Blood, 2011, 118, 4421-4430.	1.4	30
32	Interplay between Ret and Fap-1 regulates CD95-mediated apoptosis in medullary thyroid cancer cells. Biochemical Pharmacology, 2011, 82, 778-788.	4.4	13
33	Proteomic detection of a large amount of SCGFα in the stroma of GISTs after imatinib therapy. Journal of Translational Medicine, 2011, 9, 158.	4.4	8
34	Characterization of a serum protein pattern from NSCLC patients treated with Gefitinib. Clinical Biochemistry, 2011, 44, 936-940.	1.9	10
35	Functional characterization of the MTC-associated germline RET-K666E mutation: evidence of oncogenic potential enhanced by the G691S polymorphism. Endocrine-Related Cancer, 2011, 18, 519-527.	3.1	27
36	Dasatinib reduces FAK phosphorylation increasing the effects of RPI-1 inhibition in a RET/PTC1-expressing cell line. Molecular Cancer, 2010, 9, 278.	19.2	36

#	Article	IF	CITATIONS
37	Proteome profile in Myotonic Dystrophy type 2 myotubes reveals dysfunction in protein processing and mitochondrial pathways. Neurobiology of Disease, 2010, 38, 273-280.	4.4	17
38	Elevated levels of the acuteâ€phase serum amyloid are associated with heightened lung cancer risk. Cancer, 2010, 116, 1326-1335.	4.1	21
39	Improved Clinical Outcome in Indolent B-Cell Lymphoma Patients Vaccinated with Autologous Tumor Cells Experiencing Immunogenic Death. Cancer Research, 2010, 70, 9062-9072.	0.9	126
40	Impact of biospecimens handling on biomarker research in breast cancer. BMC Cancer, 2009, 9, 409.	2.6	81
41	Proteomics study of medullary thyroid carcinomas expressing RET germâ€line mutations: Identification of new signaling elements. Molecular Carcinogenesis, 2009, 48, 220-231.	2.7	26
42	Proteomic Identification of LASP-1 Down-regulation After RNAi Urokinase Silencing in Human Hepatocellular Carcinoma Cells. Neoplasia, 2009, 11, 207-IN13.	5.3	22
43	Regulation of Breast Cancer Response to Chemotherapy by Fibulin-1. Cancer Research, 2007, 67, 4271-4277.	0.9	59
44	The ALCAM Shedding by the Metalloprotease ADAM17/TACE Is Involved in Motility of Ovarian Carcinoma Cells. Molecular Cancer Research, 2007, 5, 1246-1253.	3.4	95
45	SH2B1β adaptor is a key enhancer of RET tyrosine kinase signaling. Oncogene, 2007, 26, 6546-6559.	5.9	26
46	RET Is Constitutively Activated by Novel Tandem Mutations that Alter the Active Site Resulting in Multiple Endocrine Neoplasia Type 2B. Cancer Research, 2006, 66, 10179-10187.	0.9	73
47	The RetC620R Mutation Affects Renal and Enteric Development in a Mouse Model of Hirschsprung's Disease. American Journal of Pathology, 2006, 168, 1262-1275.	3.8	37
48	Molecular predictors of response and outcome in ovarian cancer. Critical Reviews in Oncology/Hematology, 2006, 60, 19-37.	4.4	36
49	RET oncoproteins induce tyrosine phosphorylation changes of proteins involved in RNA metabolism. Cellular Signalling, 2006, 18, 2272-2282.	3.6	19
50	A Novel Activating Mutation in the RET Tyrosine Kinase Domain Mediates Neoplastic Transformation. Molecular Endocrinology, 2006, 20, 1633-1643.	3.7	14
51	90Y Labeling of monoclonal antibody MOv18 and preclinical validation for radioimmunotherapy of human ovarian carcinomas. Cancer Immunology, Immunotherapy, 2005, 54, 1200-1213.	4.2	39
52	Internalization and recycling of ALCAM/CD166 detected by a fully human single-chain recombinant antibody. Journal of Cell Science, 2005, 118, 1515-1525.	2.0	55
53	Alternative mutations of BRAF, RET and NTRK1 are associated with similar but distinct gene expression patterns in papillary thyroid cancer. Oncogene, 2004, 23, 7436-7440.	5.9	239
54	PP1 inhibitor induces degradation of RETMEN2A and RETMEN2B oncoproteins through proteosomal targeting. Cancer Research, 2003, 63, 2234-43.	0.9	38

#	Article	IF	CITATIONS
55	The molecular basis of thyroid epithelial tumorigenesis. Tumori, 2003, 89, 514-6.	1.1	5
56	RETMEN2A and RETMEN2B oncoproteins are targets of PP1 inhibitor. Tumori, 2003, 89, 550-2.	1.1	1
57	Human Glial Cell Line-derived Neurotrophic Factor Receptor α4 Is the Receptor for Persephin and Is Predominantly Expressed in Normal and Malignant Thyroid Medullary Cells. Journal of Biological Chemistry, 2001, 276, 9344-9351.	3.4	77
58	The Glu632-Leu633 deletion in cysteine rich domain of Ret induces constitutive dimerization and alters the processing of the receptor protein. Oncogene, 1999, 18, 4833-4838.	5.9	28
59	Expression of Angiogenesis Stimulators and Inhibitors in Human Thyroid Tumors and Correlation with Clinical Pathological Features. American Journal of Pathology, 1999, 155, 1967-1976.	3.8	364
60	Full activation of MEN2B mutant RET by an additional MEN2A mutation or by ligand GDNF stimulation. Oncogene, 1998, 16, 2295-2301.	5.9	58
61	Concurrent pheochromocytoma, paraganglioma, papillary thyroid carcinoma, and desmoid tumor: A case report with analyses at the molecular level. Endocrine Pathology, 1998, 9, 79-90.	9.0	6
62	Comparison of the Breakpoint Regions of ELE1 and RET Genes Involved in the Generation of RET/PTC3 Oncogene in Sporadic and in Radiation-Associated Papillary Thyroid Carcinomas. Genomics, 1997, 42, 252-259.	2.9	50
63	Identification of Shc docking site on Ret tyrosine kinase. Oncogene, 1997, 14, 773-782.	5.9	109
64	Somatic in frame deletions not involving juxtamembranous cysteine residues strongly activate the RET proto-oncogene. Oncogene, 1997, 14, 2609-2612.	5.9	36
65	Chromosome I rearrangements involving the genes TPR and NTRK1 produce structurally different thyroid-specific TRK oncogenes. Genes Chromosomes and Cancer, 1997, 19, 112-123.	2.8	78
66	Chromosome I rearrangements involving the genes TPR and NTRK1 produce structurally different thyroidâ€specific TRK oncogenes. Genes Chromosomes and Cancer, 1997, 19, 112-123.	2.8	1
67	Insular Carcinoma. American Journal of Surgical Pathology, 1997, 21, 1466-1473.	3.7	109
68	Cytogenetics and molecular genetics of carcinomas arising from thyroid epithelial follicular cells. Genes Chromosomes and Cancer, 1996, 16, 1-14.	2.8	152
69	Cytogenetics and molecular genetics of carcinomas arising from thyroid epithelial follicular cells. Genes Chromosomes and Cancer, 1996, 16, 1-14.	2.8	9
70	Age-related activation of the tyrosine kinase receptor protooncogenes RET and NTRK1 in papillary thyroid carcinoma. Journal of Clinical Endocrinology and Metabolism, 1996, 81, 2006-2009.	3.6	130
71	Loss of function effect of RET mutations causing Hirschsprung disease. Nature Genetics, 1995, 10, 35-40.	21.4	225
72	Tyrosines outside the Kinase Core and Dimerization Are Required for the Mitogenic Activity of RET/ptc2. Journal of Biological Chemistry, 1995, 270, 24642-24645.	3.4	35

#	Article	IF	CITATIONS
73	Induction of RET Proto-Oncogene Expression in Neuroblastoma Cells Precedes Neuronal Differentiation and Is Not Mediated by Protein Synthesis. Experimental Cell Research, 1995, 217, 92-99.	2.6	52
74	A Sequence Analysis of the Genomic Regions Involved in the Rearrangements between TPM3 and NTRK1 Genes Producing TRK Oncogenes in Papillary Thyroid Carcinomas. Genomics, 1995, 28, 15-24.	2.9	101
75	Rearrangements of TRK proto-oncogene in papillary thyroid carcinomas. Journal of Endocrinological Investigation, 1995, 18, 130-133.	3.3	57
76	The two genes generatingRET/PTC3 are localized in chromosomal band 10q11.2. Genes Chromosomes and Cancer, 1994, 11, 51-57.	2.8	65
77	trk andret proto-oncogene expression in human neuroblastoma specimens: High frequency oftrk expression in non-advanced stages. International Journal of Cancer, 1993, 54, 540-545.	5.1	77
78	Molecular characterization of a thyroid tumor-specific transforming sequence formed by the fusion of ret tyrosine kinase and the regulatory subunit RI alpha of cyclic AMP-dependent protein kinase A Molecular and Cellular Biology, 1993, 13, 358-366.	2.3	251
79	A t(2;3)(q12–13;p24–25) in follicular thyroid adenomas. Cancer Genetics and Cytogenetics, 1992, 64, 38-41.	1.0	38
80	Cytogenetic and molecular genetic characterization of papillary thyroid carcinomas. Genes Chromosomes and Cancer, 1992, 5, 212-218.	2.8	45
81	Ultrastructural cytoskeleton alterations and modification of actin expression in the NIH/3T3 cell line after transformation with Ha-ras-Activated oncogene. Cytoskeleton, 1990, 15, 220-229.	4.4	26
82	PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell, 1990, 60, 557-563.	28.9	905
83	DNA Methylation of the Human Hras1 Gene. , 1989, , 67-73.		0
84	Modulation of the human Ha1 oncogene expression by DNA methylation. European Journal of Cancer & Clinical Oncology, 1987, 23, 1788-1789.	0.7	0
85	In vitro methylation of the human Ha-ras oncogene (T24) affects its transforming activity on NIH/3T3 cells. Cell Biology International Reports, 1986, 10, 175-175.	0.6	0