Tara L Spires-Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8392380/publications.pdf

Version: 2024-02-01

15504 14208 18,040 161 65 128 citations h-index g-index papers 195 195 195 17902 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Loss of SORCS2 is Associated with Neuronal DNA Double-Strand Breaks. Cellular and Molecular Neurobiology, 2023, 43, 237-249.	3.3	4
2	Potential neurobiological links between social isolation and Alzheimer's disease risk. European Journal of Neuroscience, 2022, 56, 5397-5412.	2.6	16
3	Inhibitory synapse loss and accumulation of amyloid beta in inhibitory presynaptic terminals in Alzheimer's disease. European Journal of Neurology, 2022, 29, 1311-1323.	3.3	27
4	Novel genetic variants in <i>MAPT</i> and alterations in tau phosphorylation in amyotrophic lateral sclerosis postâ€mortem motor cortex and cerebrospinal fluid. Brain Pathology, 2022, 32, e13035.	4.1	15
5	Targeting Tau Mitigates Mitochondrial Fragmentation and Oxidative Stress in Amyotrophic Lateral Sclerosis. Molecular Neurobiology, 2022, 59, 683-702.	4.0	18
6	Reactive astrocytes acquire neuroprotective as well as deleterious signatures in response to Tau and Aß pathology. Nature Communications, 2022, 13, 135.	12.8	97
7	Using R to improve rigour and transparency in translational neuroscience—or is it just a rabbit hole?. Brain Communications, 2022, 4, fcab290.	3.3	4
8	Let's talk about sex (in translational neuroscience). Brain Communications, 2022, 4, fcac028.	3.3	2
9	Reducing voltage-dependent potassium channel Kv3.4 levels ameliorates synapse loss in a mouse model of Alzheimer's disease. Brain and Neuroscience Advances, 2022, 6, 239821282210864.	3.4	6
10	Tau talk $\hat{a} \in \text{``synaptic'}$ and mitochondrial proteins interact with Tau in human neurons. Trends in Neurosciences, 2022, , .	8.6	O
11	Associations between cerebrospinal fluid markers and cognition in ageing and dementia: A systematic review. European Journal of Neuroscience, 2022, 56, 5650-5713.	2.6	4
12	Gender representation in science publication: evidence from $\langle i \rangle$ Brain Communications $\langle i \rangle$. Brain Communications, 2022, 4, .	3.3	6
13	A comparison of blood and brainâ€derived ageing and inflammationâ€related DNA methylation signatures and their association with microglial burdens. European Journal of Neuroscience, 2022, 56, 5637-5649.	2.6	9
14	OUP accepted manuscript. Brain Communications, 2022, 4, fcac099.	3.3	0
15	An epigenetic predictor of death captures multi-modal measures of brain health. Molecular Psychiatry, 2021, 26, 3806-3816.	7.9	77
16	Maintained memory and longâ€term potentiation in a mouse model of Alzheimer's disease with both amyloid pathology and human tau. European Journal of Neuroscience, 2021, 53, 637-648.	2.6	4
17	Microglial contribution to synaptic uptake in the prefrontal cortex in schizophrenia. Neuropathology and Applied Neurobiology, 2021, 47, 346-351.	3.2	7
18	OUP accepted manuscript. Brain Communications, 2021, 3, fcab217.	3.3	2

#	Article	IF	Citations
19	Editorial. Brain Communications, 2021, 3, fcaa225.	3.3	O
20	Creating and Validating a DNA Methylation-Based Proxy for Interleukin-6. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 2284-2292.	3.6	16
21	Lowering Synaptogyrin-3 expression rescues Tau-induced memory defects and synaptic loss in the presence of microglial activation. Neuron, 2021, 109, 767-777.e5.	8.1	41
22	Epigenetic predictors of lifestyle traits applied to the blood and brain. Brain Communications, 2021, 3, fcab082.	3.3	6
23	Editorial April 2021. Brain Communications, 2021, 3, fcab059.	3.3	0
24	MRI-guided histology of TDP-43 knock-in mice implicates parvalbumin interneuron loss, impaired neurogenesis and aberrant neurodevelopment in amyotrophic lateral sclerosis-frontotemporal dementia. Brain Communications, 2021, 3, fcab114.	3.3	11
25	Dysregulation in Subcellular Localization of Myelin Basic Protein mRNA Does Not Result in Altered Myelination in Amyotrophic Lateral Sclerosis. Frontiers in Neuroscience, 2021, 15, 705306.	2.8	3
26	Selective vulnerability of inhibitory networks in multiple sclerosis. Acta Neuropathologica, 2021, 141, 415-429.	7.7	37
27	Preclinical and clinical biomarker studies of CT1812: A novel approach to Alzheimer's disease modification. Alzheimer's and Dementia, 2021, 17, 1365-1382.	0.8	43
28	Toward a holistic model of Alzheimer's How Not to Study a Disease: The Story of Alzheimer's <i>Karl Herrup</i> MIT Press, 2021. 272 pp Science, 2021, 374, 267-267.	12.6	1
29	A role for astrocytes and microglia in synapse loss in Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, .	0.8	1
30	PrP is a central player in toxicity mediated by soluble aggregates of neurodegeneration-causing proteins. Acta Neuropathologica, 2020, 139, 503-526.	7.7	110
31	Editorial June 2020. Brain Communications, 2020, 2, fcaa106.	3.3	0
32	Editorial. Brain Communications, 2020, 2, fcz051.	3.3	2
33	The physiological roles of tau and Aβ: implications for Alzheimer's disease pathology and therapeutics. Acta Neuropathologica, 2020, 140, 417-447.	7.7	221
34	Characterisation of an inflammation-related epigenetic score and its association with cognitive ability. Clinical Epigenetics, 2020, 12, 113.	4.1	38
35	Non-Invasive RF Technique for Detecting Different Stages of Alzheimer's Disease and Imaging Beta-Amyloid Plaques and Tau Tangles in the Brain. IEEE Transactions on Medical Imaging, 2020, 39, 4060-4070.	8.9	20
36	Reflections on the past two decades of neuroscience. Nature Reviews Neuroscience, 2020, 21, 524-534.	10.2	35

#	Article	IF	CITATIONS
37	TMEM97 is a potential amyloid beta receptor in human Alzheimer's disease synapses. Alzheimer's and Dementia, 2020, 16, e041782.	0.8	2
38	The clinical promise of biomarkers of synapse damage or loss in Alzheimer's disease. Alzheimer's Research and Therapy, 2020, 12, 21.	6.2	183
39	Generation of twenty four induced pluripotent stem cell lines from twenty four members of the Lothian Birth Cohort 1936. Stem Cell Research, 2020, 46, 101851.	0.7	16
40	High neural activity accelerates the decline of cognitive plasticity with age in Caenorhabditis elegans. ELife, 2020, 9, .	6.0	12
41	Tackling gaps in developing lifeâ€changing treatments for dementia. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2019, 5, 241-253.	3.7	17
42	Editorial. Brain Communications, 2019, 1, fcz001.	3.3	1
43	Clusterin accumulates in synapses in Alzheimer's disease and is increased in apolipoprotein E4 carriers. Brain Communications, 2019, 1, fcz003.	3.3	42
44	New terminology for a common TDP-43 proteinopathy. Lancet Neurology, The, 2019, 18, 714-715.	10.2	0
45	Nanoscale structure of amyloid-β plaques in Alzheimer's disease. Scientific Reports, 2019, 9, 5181.	3.3	52
46	Sleep well to slow Alzheimer's progression?. Science, 2019, 363, 813-814.	12.6	17
47	Childhood intelligence attenuates the association between biological ageing and health outcomes in later life. Translational Psychiatry, 2019, 9, 323.	4.8	15
48	Comparative profiling of the synaptic proteome from Alzheimer's disease patients with focus on the APOE genotype. Acta Neuropathologica Communications, 2019, 7, 214.	5.2	63
49	Amyloid Beta and Tau Cooperate to Cause Reversible Behavioral and Transcriptional Deficits in a Model of Alzheimer's Disease. Cell Reports, 2019, 29, 3592-3604.e5.	6.4	123
50	Invited Review: APOE at the interface of inflammation, neurodegeneration and pathological protein spread in Alzheimer's disease. Neuropathology and Applied Neurobiology, 2019, 45, 327-346.	3.2	96
51	Changes in Synaptic Proteins Precede Neurodegeneration Markers in Preclinical Alzheimer's Disease Cerebrospinal Fluid. Molecular and Cellular Proteomics, 2019, 18, 546-560.	3.8	115
52	Beyond the neuron–cellular interactions early in Alzheimer disease pathogenesis. Nature Reviews Neuroscience, 2019, 20, 94-108.	10.2	237
53	Opposing Roles of apolipoprotein E in aging and neurodegeneration. Life Science Alliance, 2019, 2, e201900325.	2.8	20
54	sAPPÎ ² and sAPPα increase structural complexity and E/I input ratio in primary hippocampal neurons and alter Ca2+ homeostasis and CREB1-signaling. Experimental Neurology, 2018, 304, 1-13.	4.1	9

#	Article	IF	Citations
55	Synaptogyrin-3 Mediates Presynaptic Dysfunction Induced by Tau. Neuron, 2018, 97, 823-835.e8.	8.1	151
56	Synapse loss in the prefrontal cortex is associated with cognitive decline in amyotrophic lateral sclerosis. Acta Neuropathologica, 2018, 135, 213-226.	7.7	97
57	Antidiabetic Polypill Improves Central Pathology and Cognitive Impairment in a Mixed Model of Alzheimer's Disease and Type 2 Diabetes. Molecular Neurobiology, 2018, 55, 6130-6144.	4.0	30
58	Complementing Tau: New Data Show that the Complement System Is Involved in Degeneration in Tauopathies. Neuron, 2018, 100, 1267-1269.	8.1	8
59	Trajectories of inflammatory biomarkers over the eighth decade and their associations with immune cell profiles and epigenetic ageing. Clinical Epigenetics, 2018, 10, 159.	4.1	30
60	Region-specific depletion of synaptic mitochondria in the brains of patients with Alzheimer's disease. Acta Neuropathologica, 2018, 136, 747-757.	7.7	87
61	A brain boost to fight Alzheimer's disease. Science, 2018, 361, 975-976.	12.6	8
62	Modeling Alzheimer's disease brains in vitro. Nature Neuroscience, 2018, 21, 899-900.	14.8	17
63	Progressive Neuronal Pathology and Synaptic Loss Induced by Prediabetes and Type 2 Diabetes in a Mouse Model of Alzheimer's Disease. Molecular Neurobiology, 2017, 54, 3428-3438.	4.0	50
64	Spread of tau down neural circuits precedes synapse and neuronal loss in the rTgTauEC mouse model of early <scp>A</scp> lzheimer's disease. Synapse, 2017, 71, e21965.	1.2	53
65	Interactions of pathological proteins in neurodegenerative diseases. Acta Neuropathologica, 2017, 134, 187-205.	7.7	288
66	Tau association with synaptic vesicles causes presynaptic dysfunction. Nature Communications, 2017, 8, 15295.	12.8	289
67	Human Brain-Derived A \hat{l}^2 Oligomers Bind to Synapses and Disrupt Synaptic Activity in a Manner That Requires APP. Journal of Neuroscience, 2017, 37, 11947-11966.	3.6	108
68	TDP-43 Depletion in Microglia Promotes Amyloid Clearance but Also Induces Synapse Loss. Neuron, 2017, 95, 297-308.e6.	8.1	171
69	Synaptic phosphorylated α-synuclein in dementia with Lewy bodies. Brain, 2017, 140, 3204-3214.	7.6	90
70	Conditional Deletion of PDK1 in the Forebrain Causes Neuron Loss and Increased Apoptosis during Cortical Development. Frontiers in Cellular Neuroscience, 2017, 11, 330.	3.7	20
71	Amyloidâ€beta oligomerization is associated with the generation of a typical peptide fragment fingerprint. Alzheimer's and Dementia, 2016, 12, 996-1013.	0.8	17
72	Synaptic pathology: A shared mechanism in neurological disease. Ageing Research Reviews, 2016, 28, 72-84.	10.9	122

#	Article	IF	Citations
73	Opening up: open access publishing, data sharing, and how they can influence your neuroscience career. European Journal of Neuroscience, 2016, 43, 1413-1419.	2.6	16
74	Non-Fibrillar Oligomeric Amyloid- \hat{l}^2 within Synapses. Journal of Alzheimer's Disease, 2016, 53, 787-800.	2.6	65
75	Human tau increases amyloid β plaque size but not amyloid βâ€mediated synapse loss in a novel mouse model of Alzheimer's disease. European Journal of Neuroscience, 2016, 44, 3056-3066.	2.6	81
76	You are not alone: selecting your group members and leading an outstanding research team. European Journal of Neuroscience, 2015, 42, 3012-3017.	2.6	4
77	Removing endogenous tau does not prevent tau propagation yet reduces its neurotoxicity. EMBO Journal, 2015, 34, 3028-3041.	7.8	112
78	Clearing the way for tau immunotherapy in Alzheimer's disease. Journal of Neurochemistry, 2015, 132, 1-4.	3.9	16
79	Pathological Tau Disrupts Ongoing Network Activity. Neuron, 2015, 85, 959-966.	8.1	152
80	Amyloid accelerates tau propagation and toxicity in a model of early Alzheimer's disease. Acta Neuropathologica Communications, 2015, 3, 14.	5.2	176
81	Post-mortem brain analyses of the Lothian Birth Cohort 1936: extending lifetime cognitive and brain phenotyping to the level of the synapse. Acta Neuropathologica Communications, 2015, 3, 53.	5.2	25
82	Carboxy Terminus Heat Shock Protein 70 Interacting Protein Reduces Tau-Associated Degenerative Changes. Journal of Alzheimer's Disease, 2015, 44, 937-947.	2.6	29
83	Alzheimer's Therapeutics Targeting Amyloid Beta 1–42 Oligomers II: Sigma-2/PGRMC1 Receptors Mediate Abeta 42 Oligomer Binding and Synaptotoxicity. PLoS ONE, 2014, 9, e111899.	2.5	151
84	Frequent and symmetric deposition of misfolded tau oligomers within presynaptic and postsynaptic terminals in Alzheimer's disease. Acta Neuropathologica Communications, 2014, 2, 146.	5.2	79
85	Neurofibrillary tangle-bearing neurons are functionally integrated in cortical circuits in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 510-514.	7.1	170
86	Tau pathology does not affect experience-driven single-neuron and network-wide Arc/Arg3.1 responses. Acta Neuropathologica Communications, 2014, 2, 63.	5.2	24
87	The Calcium-Binding Protein EFhd2 Modulates Synapse Formation In Vitro and Is Linked to Human Dementia. Journal of Neuropathology and Experimental Neurology, 2014, 73, 1166-1182.	1.7	25
88	Analyzing Alzheimer's Disease-Related Protein Deposition In Vivo By Multiphoton Laser Scanning Microscopy. , 2014, , 97-104.		0
89	Methylene blue does not reverse existing neurofibrillary tangle pathology in the rTg4510 mouse model of tauopathy. Neuroscience Letters, 2014, 562, 63-68.	2.1	33
90	Soluble pathological tau in the entorhinal cortex leads to presynaptic deficits in an early Alzheimer's disease model. Acta Neuropathologica, 2014, 127, 257-270.	7.7	88

#	Article	IF	Citations
91	The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer's Disease. Neuron, 2014, 82, 756-771.	8.1	862
92	Synapse Density and Dendritic Complexity Are Reduced in the Prefrontal Cortex following Seven Days of Forced Abstinence from Cocaine Self-Administration. PLoS ONE, 2014, 9, e102524.	2.5	35
93	Frequent and symmetric deposition of misfolded tau oligomers within presynaptic and postsynaptic terminals in Alzheimer¿s disease. Acta Neuropathologica Communications, 2014, 2, 146.	5.2	60
94	Studying synapses in human brain with array tomography and electron microscopy. Nature Protocols, 2013, 8, 1366-1380.	12.0	95
95	Reversal of Neurofibrillary Tangles and Tau-Associated Phenotype in the rTgTauEC Model of Early Alzheimer's Disease. Journal of Neuroscience, 2013, 33, 13300-13311.	3.6	42
96	Gene Transfer of Human <i>Apoe</i> Isoforms Results in Differential Modulation of Amyloid Deposition and Neurotoxicity in Mouse Brain. Science Translational Medicine, 2013, 5, 212ra161.	12.4	135
97	Endogenous Tau Aggregates in Oligodendrocytes of rTg4510 Mice Induced by Human P301L Tau. Journal of Alzheimer's Disease, 2013, 38, 589-600.	2.6	11
98	Tau–amyloid interactions in the rTgTauEC model of early Alzheimer's disease suggest amyloidâ€induced disruption of axonal projections and exacerbated axonal pathology. Journal of Comparative Neurology, 2013, 521, 4236-4248.	1.6	28
99	O2-01-01: Neurofibrillary tangles remain functionally integrated in cortical networks. , 2013, 9, P314-P314.		0
100	The intersection of amyloid beta and tau in glutamatergic synaptic dysfunction and collapse in Alzheimer's disease. Ageing Research Reviews, 2013, 12, 757-763.	10.9	130
101	Synaptic alterations in the rTg4510 mouse model of tauopathy. Journal of Comparative Neurology, 2013, 521, 1334-1353.	1.6	98
102	Brain interstitial oligomeric amyloid \hat{l}^2 increases with age and is resistant to clearance from brain in a mouse model of Alzheimer's disease. FASEB Journal, 2013, 27, 3239-3248.	0.5	57
103	Differential central pathology and cognitive impairment in pre-diabetic and diabetic mice. Psychoneuroendocrinology, 2013, 38, 2462-2475.	2.7	118
104	Propagation of tau pathology in Alzheimer's disease: identification of novel therapeutic targets. Alzheimer's Research and Therapy, 2013, 5, 49.	6.2	84
105	Rapid \hat{I}^2 -Amyloid Deposition and Cognitive Impairment After Cholinergic Denervation in APP/PS1 Mice. Journal of Neuropathology and Experimental Neurology, 2013, 72, 272-285.	1.7	91
106	Tau Causes Synapse Loss without Disrupting Calcium Homeostasis in the rTg4510 Model of Tauopathy. PLoS ONE, 2013, 8, e80834.	2.5	38
107	Apolipoprotein E4 effects in Alzheimer's disease are mediated by synaptotoxic oligomeric amyloid-β. Brain, 2012, 135, 2155-2168.	7.6	268
108	Spines, Plasticity, and Cognition in Alzheimer's Model Mice. Neural Plasticity, 2012, 2012, 1-10.	2.2	117

#	Article	IF	CITATIONS
109	Pathology of Synapses and Dendritic Spines. Neural Plasticity, 2012, 2012, 1-2.	2.2	3
110	Propagation of Tau Pathology in a Model of Early Alzheimer's Disease. Neuron, 2012, 73, 685-697.	8.1	1,191
111	Apolipoprotein E, Especially Apolipoprotein E4, Increases the Oligomerization of Amyloid \hat{I}^2 Peptide. Journal of Neuroscience, 2012, 32, 15181-15192.	3.6	219
112	Orchestrated experience-driven Arc responses are disrupted in a mouse model of Alzheimer's disease. Nature Neuroscience, 2012, 15, 1422-1429.	14.8	108
113	Soluble forms of tau are toxic in Alzheimer's disease. Translational Neuroscience, 2012, 3, 223-233.	1.4	185
114	Propagation of Tau Pathology in a Model of Early Alzheimer's Disease. Neuron, 2012, 76, 461.	8.1	5
115	The Synaptic Accumulation of Hyperphosphorylated Tau Oligomers in Alzheimer Disease Is Associated With Dysfunction of the Ubiquitin-Proteasome System. American Journal of Pathology, 2012, 181, 1426-1435.	3.8	369
116	Inhibition of Sirtuin 2 with Sulfobenzoic Acid Derivative AK1 is Non-Toxic and Potentially Neuroprotective in a Mouse Model of Frontotemporal Dementia. Frontiers in Pharmacology, 2012, 3, 42.	3.5	45
117	Inhibition of the NFAT Pathway Alleviates Amyloid Beta Neurotoxicity in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2012, 32, 3176-3192.	3.6	92
118	Nanoparticles enhance brain delivery of blood–brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18837-18842.	7.1	228
119	Tau Accumulation Causes Mitochondrial Distribution Deficits in Neurons in a Mouse Model of Tauopathy and in Human Alzheimer's Disease Brain. American Journal of Pathology, 2011, 179, 2071-2082.	3.8	224
120	Calcineurin inhibition with systemic FK506 treatment increases dendritic branching and dendritic spine density in healthy adult mouse brain. Neuroscience Letters, 2011, 487, 260-263.	2.1	40
121	Monitoring protein aggregation and toxicity in Alzheimer's disease mouse models using in vivo imaging. Methods, 2011, 53, 201-207.	3.8	22
122	O1-05-01: APOE4 plays a role in Abeta-mediated synapse loss in Alzheimer's disease., 2011, 7, S103-S104.		0
123	Apolipoprotein E: Isoform Specific Differences in Tertiary Structure and Interaction with Amyloid- \hat{l}^2 in Human Alzheimer Brain. PLoS ONE, 2011, 6, e14586.	2.5	66
124	Soluble tau Species, Not Neurofibrillary Aggregates, Disrupt Neural System Integration in a tau Transgenic Model. Journal of Neuropathology and Experimental Neurology, 2011, 70, 588-595.	1.7	74
125	Calcineurin inhibition with FK506 ameliorates dendritic spine density deficits in plaque-bearing Alzheimer model mice. Neurobiology of Disease, 2011, 41, 650-654.	4.4	80
126	Are Tangles as Toxic as They Look?. Journal of Molecular Neuroscience, 2011, 45, 438-444.	2.3	93

#	Article	IF	CITATIONS
127	T cell mediated cerebral hemorrhages and microhemorrhages during passive $\hat{A^2}$ immunization in APPPS1 transgenic mice. Molecular Neurodegeneration, 2011, 6, 22.	10.8	14
128	Alzheimer's disease: synapses gone cold. Molecular Neurodegeneration, 2011, 6, 63.	10.8	250
129	Environmental Enrichment Reduces Neuronal Intranuclear Inclusion Load But Has No Effect on Messenger RNA Expression in a Mouse Model of Huntington Disease. Journal of Neuropathology and Experimental Neurology, 2010, 69, 817-827.	1.7	33
130	Caspase activation precedes and leads to tangles. Nature, 2010, 464, 1201-1204.	27.8	463
131	PL-05-01: A transgenic model of the earliest stage of Alzheimer's disease. , 2010, 6, S165-S165.		0
132	Amyloid \hat{I}^2 Induces the Morphological Neurodegenerative Triad of Spine Loss, Dendritic Simplification, and Neuritic Dystrophies through Calcineurin Activation. Journal of Neuroscience, 2010, 30, 2636-2649.	3.6	328
133	A Reporter of Local Dendritic Translocation Shows Plaque- Related Loss of Neural System Function in APP-Transgenic Mice. Journal of Neuroscience, 2009, 29, 12636-12640.	3.6	54
134	Tangle-Bearing Neurons Survive Despite Disruption of Membrane Integrity in a Mouse Model of Tauopathy. Journal of Neuropathology and Experimental Neurology, 2009, 68, 757-761.	1.7	69
135	Oligomeric amyloid \hat{l}^2 associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4012-4017.	7.1	734
136	Passive immunotherapy rapidly increases structural plasticity in a mouse model of Alzheimer disease. Neurobiology of Disease, 2009, 33, 213-220.	4.4	66
137	A single dose of passive immunotherapy has extended benefits on synapses and neurites in an Alzheimer's disease mouse model. Brain Research, 2009, 1280, 178-185.	2.2	20
138	Differential effect of threeâ€repeat and fourâ€repeat tau on mitochondrial axonal transport. Journal of Neurochemistry, 2009, 111, 417-427.	3.9	123
139	Tau pathophysiology in neurodegeneration: a tangled issue. Trends in Neurosciences, 2009, 32, 150-159.	8.6	284
140	Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer's disease. Nature, 2008, 451, 720-724.	27.8	916
141	Wheel running from a juvenile age delays onset of specific motor deficits but does not alter protein aggregate density in a mouse model of Huntington's disease. BMC Neuroscience, 2008, 9, 34.	1.9	104
142	Neuropathology of Alzheimer's Disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2008, 89, 233-243.	1.8	44
143	<i>In Vivo</i> Imaging Reveals Dissociation between Caspase Activation and Acute Neuronal Death in Tangle-Bearing Neurons. Journal of Neuroscience, 2008, 28, 862-867.	3.6	132
144	Two postprocessing techniques for the elimination of background autofluorescence for fluorescence lifetime imaging microscopy. Journal of Biomedical Optics, 2008, 13, 014008.	2.6	15

#	Article	IF	Citations
145	TAR-DNA Binding Protein 43 in Pick Disease. Journal of Neuropathology and Experimental Neurology, 2008, 67, 62-67.	1.7	72
146	An automatic method for spine detection and spine tracking in in vivo images. , 2007, , .		0
147	Spine tingling polymorphisms—Is apolipoprotein E involved in dendritic shape and plasticity?. Neurobiology of Aging, 2007, 28, 687-688.	3.1	0
148	Impaired Spine Stability Underlies Plaque-Related Spine Loss in an Alzheimer's Disease Mouse Model. American Journal of Pathology, 2007, 171, 1304-1311.	3.8	179
149	Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nature Cell Biology, 2007, 9, 139-148.	10.3	399
150	Molecular mechanisms mediating pathological plasticity in Huntington's disease and Alzheimer's disease. Journal of Neurochemistry, 2007, 100, 874-882.	3.9	26
151	Region-specific Dissociation of Neuronal Loss and Neurofibrillary Pathology in a Mouse Model of Tauopathy. American Journal of Pathology, 2006, 168, 1598-1607.	3.8	349
152	Nature, nurture and neurology: gene-environment interactions in neurodegenerative disease. FEBS Journal, 2005, 272, 2347-2361.	4.7	87
153	Dendritic Spine Abnormalities in Amyloid Precursor Protein Transgenic Mice Demonstrated by Gene Transfer and Intravital Multiphoton Microscopy. Journal of Neuroscience, 2005, 25, 7278-7287.	3.6	524
154	Tau Suppression in a Neurodegenerative Mouse Model Improves Memory Function. Science, 2005, 309, 476-481.	12.6	1,766
155	Transgenic models of Alzheimer's disease: Learning from animals. NeuroRx, 2005, 2, 423-437.	6.0	180
156	Environmental Enrichment Rescues Protein Deficits in a Mouse Model of Huntington's Disease, Indicating a Possible Disease Mechanism. Journal of Neuroscience, 2004, 24, 2270-2276.	3.6	342
157	Neuronal Structure is Altered by Amyloid Plaques. Reviews in the Neurosciences, 2004, 15, 267-278.	2.9	96
158	Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington's disease transgenic mice. European Journal of Neuroscience, 2004, 19, 2799-2807.	2.6	172
159	The Synthesis of Megatubes:Â New Dimensions in Carbon Materials. Inorganic Chemistry, 2001, 40, 2751-2755.	4.0	18
160	Assessing amyloid- \hat{l}^2 , tau, and glial features in Lothian Birth Cohort 1936 participants post-mortem. Matters, 0 , , .	1.0	2
161	Reducing Tau Ameliorates Behavioural and Transcriptional Deficits in a Novel Model of Alzheimer's Disease. SSRN Electronic Journal, 0, , .	0.4	0