Awais Rasheed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8391727/publications.pdf

Version: 2024-02-01

82 papers

4,383 citations

28 h-index 63 g-index

82 all docs 82 docs citations

82 times ranked 3819 citing authors

#	Article	IF	CITATIONS
1	Crop Breeding Chips and Genotyping Platforms: Progress, Challenges, and Perspectives. Molecular Plant, 2017, 10, 1047-1064.	8.3	380
2	Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theoretical and Applied Genetics, 2016, 129, 1843-1860.	3.6	357
3	Genome-Wide Linkage Mapping of QTL for Yield Components, Plant Height and Yield-Related Physiological Traits in the Chinese Wheat Cross Zhou 8425B/Chinese Spring. Frontiers in Plant Science, 2015, 6, 1099.	3.6	267
4	A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. Plant Science, 2019, 282, 95-103.	3.6	238
5	Genome-Wide Association Mapping for Seedling and Adult Plant Resistance to Stripe Rust in Synthetic Hexaploid Wheat. PLoS ONE, 2014, 9, e105593.	2.5	218
6	Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biology, 2019, 19, 168.	3.6	172
7	Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Frontiers in Plant Science, 2015, 6, 743.	3.6	169
8	Fast-Forwarding Genetic Gain. Trends in Plant Science, 2018, 23, 184-186.	8.8	164
9	TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat. Molecular Breeding, 2016, 36, 1.	2.1	163
10	Genome-wide association mapping of black point reaction in common wheat (Triticum aestivum L.). BMC Plant Biology, 2017, 17, 220.	3.6	141
11	Wheat seed storage proteins: Advances in molecular genetics, diversity and breeding applications. Journal of Cereal Science, 2014, 60, 11-24.	3.7	139
12	Genetic Diversity for Wheat Improvement as a Conduit to Food Security. Advances in Agronomy, 2013, , 179-257.	5.2	124
13	Genome-wide association study for agronomic and physiological traits in spring wheat evaluated in a range of heat prone environments. Theoretical and Applied Genetics, 2017, 130, 1819-1835.	3.6	117
14	From markers to genome-based breeding in wheat. Theoretical and Applied Genetics, 2019, 132, 767-784.	3.6	115
15	Genome-wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis. BMC Plant Biology, 2014, 14, 128.	3.6	102
16	Wheat genetic resources in the post-genomics era: promise and challenges. Annals of Botany, 2018, 121, 603-616.	2.9	101
17	Time-Series Multispectral Indices from Unmanned Aerial Vehicle Imagery Reveal Senescence Rate in Bread Wheat. Remote Sensing, 2018, 10, 809.	4.0	98
18	Genetic Progress in Grain Yield and Physiological Traits in Chinese Wheat Cultivars of Southern Yellow and Huai Valley since 1950. Crop Science, 2017, 57, 760-773.	1.8	94

#	Article	IF	CITATIONS
19	Accuracy assessment of plant height using an unmanned aerial vehicle for quantitative genomic analysis in bread wheat. Plant Methods, 2019, 15, 37.	4.3	86
20	Genome-wide variation patterns between landraces and cultivars uncover divergent selection during modern wheat breeding. Theoretical and Applied Genetics, 2019, 132, 2509-2523.	3.6	56
21	Harnessing Wheat Fhb1 for Fusarium Resistance. Trends in Plant Science, 2020, 25, 1-3.	8.8	56
22	Genome-Wide Analyses Reveal Footprints of Divergent Selection and Drought Adaptive Traits in Synthetic-Derived Wheats. G3: Genes, Genomes, Genetics, 2019, 9, 1957-1973.	1.8	53
23	Breeding strategies for structuring salinity tolerance in wheat. Advances in Agronomy, 2019, 155, 121-187.	5.2	53
24	Mobilizing Crop Biodiversity. Molecular Plant, 2020, 13, 1341-1344.	8.3	50
25	Genome-Wide Association of Stem Water Soluble Carbohydrates in Bread Wheat. PLoS ONE, 2016, 11, e0164293.	2.5	50
26	Genome-Wide Association Analysis of Fusarium Head Blight Resistance in Chinese Elite Wheat Lines. Frontiers in Plant Science, 2020, 11, 206.	3.6	44
27	Molecular Characterization of 87 Functional Genes in Wheat Diversity Panel and Their Association With Phenotypes Under Well-Watered and Water-Limited Conditions. Frontiers in Plant Science, 2019, 10, 717.	3.6	43
28	Assessment of Water and Nitrogen Use Efficiencies Through UAV-Based Multispectral Phenotyping in Winter Wheat. Frontiers in Plant Science, 2020, 11, 927.	3.6	43
29	Root system architecture in cereals: progress, challenges and perspective. Plant Journal, 2022, 110, 23-42.	5 . 7	38
30	Functional characterization of germin and germin-like protein genes in various plant species using transgenic approaches. Biotechnology Letters, 2016, 38, 1405-1421.	2.2	33
31	Identifying loci with breeding potential across temperate and tropical adaptation via EigenGWAS and EnvGWAS. Molecular Ecology, 2019, 28, 3544-3560.	3.9	32
32	Dissection of Molecular Processes and Genetic Architecture Underlying Iron and Zinc Homeostasis for Biofortification: From Model Plants to Common Wheat. International Journal of Molecular Sciences, 2020, 21, 9280.	4.1	27
33	Genomic Prediction for Grain Yield and Yield-Related Traits in Chinese Winter Wheat. International Journal of Molecular Sciences, 2020, 21, 1342.	4.1	27
34	Allelic effects and variations for key bread-making quality genes in bread wheat using high-throughput molecular markers. Journal of Cereal Science, 2019, 85, 305-309.	3.7	26
35	Genotypic Variation and Genotype × Environment Interaction for Yieldâ€Related Traits in Synthetic Hexaploid Wheats under a Range of Optimal and Heatâ€Stressed Environments. Crop Science, 2018, 58, 295-303.	1.8	23
36	The goat grass genome's role in wheat improvement. Nature Plants, 2018, 4, 56-58.	9.3	21

3

#	Article	IF	CITATIONS
37	Identification of genome-wide single-nucleotide polymorphisms (SNPs) associated with tolerance to chromium toxicity in spring wheat (Triticum aestivum L.). Plant and Soil, 2018, 422, 371-384.	3.7	21
38	Genome-wide association analysis of stem water-soluble carbohydrate content in bread wheat. Theoretical and Applied Genetics, 2020, 133, 2897-2914.	3.6	20
39	Aegilops tauschii Introgressions in Wheat. , 2015, , 245-271.		19
40	Molecular characterization of the puroindoline-a and b alleles in synthetic hexaploid wheats and in silico functional and structural insights into Pina-D1. Journal of Theoretical Biology, 2015, 376, 1-7.	1.7	19
41	Genome edited wheat- current advances for the second green revolution. Biotechnology Advances, 2022, 60, 108006.	11.7	19
42	Comparison of Economically Important Loci in Landraces and Improved Wheat Cultivars from Pakistan. Crop Science, 2016, 56, 287-301.	1.8	18
43	Genome-wide association mapping of starch granule size distribution in common wheat. Journal of Cereal Science, 2017, 77, 211-218.	3.7	18
44	Characterization of HMW-GS and evaluation of their diversity in morphologically elite synthetic hexaploid wheats. Breeding Science, 2012, 62, 365-370.	1.9	17
45	Physiological, biochemical and agronomic traits associated with drought tolerance in a synthetic-derived wheat diversity panel. Crop and Pasture Science, 2017, 68, 213.	1.5	17
46	Quantifying senescence in bread wheat using multispectral imaging from an unmanned aerial vehicle and QTL mapping. Plant Physiology, 2021, 187, 2623-2636.	4.8	15
47	High Resolution Genome Wide Association Studies Reveal Rich Genetic Architectures of Grain Zinc and Iron in Common Wheat (Triticum aestivum L.). Frontiers in Plant Science, 2022, 13, 840614.	3.6	15
48	Allelic variation and composition of HMW-GS in advanced lines derived from d-genome synthetic hexaploid / bread wheat (Triticum aestivum L.). Journal of Crop Science and Biotechnology, 2012, 15, 1-7.	1.5	14
49	Association mapping identifies QTLS on wheat chromosome 3A for yield related traits. Cereal Research Communications, 2014, 42, 177-188.	1.6	14
50	Comparative Assessment of Synthetic-derived and Conventional Bread Wheat Advanced Lines Under Osmotic Stress and Implications for Molecular Analysis. Plant Molecular Biology Reporter, 2015, 33, 1907-1917.	1.8	14
51	Exploitation of synthetic-derived wheats through osmotic stress responses for drought tolerance improvement. Acta Physiologiae Plantarum, 2014, 36, 2453-2465.	2.1	13
52	Genetic basis of spring wheat resistance to leaf rust (Puccinia triticina) in Kazakhstan and Russia. Euphytica, 2020, 216, 1.	1.2	13
53	Stripe rust resistance in Triticum durum – T. monococcum and T. durum – T. urartu amphiploids. Australasian Plant Pathology, 2014, 43, 109-113.	1.0	12
54	Genetic Gain for Grain Micronutrients and Their Association with Phenology in Historical Wheat Cultivars Released between 1911 and 2016 in Pakistan. Agronomy, 2021, 11, 1247.	3.0	12

#	Article	IF	CITATIONS
55	High-molecular-weight (HMW) glutenin subunit composition of the Elite-II synthetic hexaploid wheat subset (<i>Triticum turgidumÂA—ÂAegilops tauschii</i> ; 2 <i>n</i> Â-Â6 <i>x</i> Â-Â42; AABBDD). Plant Genetic Resources: Characterisation and Utilisation, 2012, 10, 1-4.	0.8	11
56	Characterization of D-genome diversity for tolerance to boron toxicity in synthetic hexaploid wheat and in silico analysis of candidate genes. Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	11
57	Appraisal of wheat genomics for gene discovery and breeding applications: a special emphasis on advances in Asia. Theoretical and Applied Genetics, 2020, 133, 1503-1520.	3.6	11
58	Genome-wide analyses reveal footprints of divergent selection and popping-related traits in CIMMYT's maize inbred lines. Journal of Experimental Botany, 2021, 72, 1307-1320.	4.8	11
59	Characterization of Synthetic Hexaploids Derived from Same <i>Aegilops tauschii</i> Accessions and Different Durum Cultivars. Cytologia, 2015, 80, 427-440.	0.6	10
60	An overview of stripe rust of wheat (<i>Puccinia striiformis</i> f. sp. <i>tritici</i>) in Pakistan. Archives of Phytopathology and Plant Protection, 2012, 45, 2278-2289.	1.3	9
61	Characterization of new COBRA like (COBL) genes in wheat (Triticum aestivum) and their expression analysis under drought stress. Molecular Biology Reports, 2022, 49, 1379-1387.	2.3	9
62	Cytological, Phenological and Molecular Characterization of B (S)-Genome Synthetic Hexaploids (2n =) Tj ETQq0 (O O ggBT /C	verlock 10
63	QTL mapping for seedling morphology under drought stress in wheat cross synthetic (W7984)/Opata. Plant Genetic Resources: Characterisation and Utilisation, 2018, 16, 359-366.	0.8	8
64	Characterization of the genetic basis of local adaptation of wheat landraces from Iran and Pakistan using genomeâ€wide association study. Plant Genome, 2021, 14, e20096.	2.8	8
65	Diversity and Adaptation of Currently Grown Wheat Landraces and Modern Germplasm in Afghanistan, Iran, and Turkey. Crops, 2021, 1, 54-67.	1.4	8
66	Genetic gain and G×E interaction in bread wheat cultivars representing 105 years of breeding in Pakistan. Crop Science, 2022, 62, 178-191.	1.8	8
67	Powdery mildew resistance in some new wheat amphiploids $(2 < i > n < / i > \hat{A} = \hat{A}6 < i > x < / i > \hat{A} = \hat{A}42)$ derived from A-and S-genome diploid progenitors. Plant Genetic Resources: Characterisation and Utilisation, 2012, 10, 165-170.	0.8	7
68	Aegilops tauschii presents a genetic roadmap for hexaploid wheat improvement. Trends in Genetics, 2022, 38, 307-309.	6.7	7
69	Genome-Wide Association and Genomic Prediction for Stripe Rust Resistance in Synthetic-Derived Wheats. Frontiers in Plant Science, 2022, 13, 788593.	3.6	7
70	Genome-Wide Association Mapping of Adult-Plant Resistance to Stripe Rust in Common Wheat (<i>Triticum aestivum</i>). Plant Disease, 2020, 104, 2174-2180.	1.4	6
71	Diversity in D-genome synthetic hexaploid wheat association panel for seedling emergence traits under salinity stress. Plant Genetic Resources: Characterisation and Utilisation, 2017, 15, 488-495.	0.8	5
72	Genetic diversity and agronomic performance of wheat landraces currently grown in Tajikistan. Crop Science, 2021, 61, 2548-2564.	1.8	5

#	Article	IF	CITATIONS
73	China-CIMMYT collaboration enhances wheat improvement in China. Frontiers of Agricultural Science and Engineering, 2019, 6, 233.	1.4	5
74	Stripe rust analysis of D-genome synthetic wheats $(2 < i > n < /i > = 6 < i > x < /i > = 42$, AABBDD) and their molecular diversity. Archives of Phytopathology and Plant Protection, 2012, 45, 1479-1487.	1.3	4
75	Analysis of Genetic Diversity in Synthetic Wheat Assemblage (T. turgidum^ ^times;Aegilops tauschii;) Tj ETQq1 1	0.784314 0.6	l rgBT /Over
76	Molecular Basis of Disease Resistance in Cereal Crops: An Overview., 2012,, 477-489.		2
77	Biotic Stress and Crop Improvement: A Wheat Focus Around Novel Strategies. , 2013, , 239-267.		2
78	An Overview of Omics for Wheat Grain Quality Improvement., 2013,, 307-344.		2
79	Genetic Variability and Aggressiveness of Tilletia indica Isolates Causing Karnal Bunt in Wheat. Journal of Fungi (Basel, Switzerland), 2022, 8, 219.	3.5	2
80	Genetic Diversity and Selection Signatures in Synthetic-Derived Wheats and Modern Spring Wheat. Frontiers in Plant Science, $0,13,.$	3.6	2
81	Advanced Genomics and Breeding Tools to Accelerate the Development of Climate Resilient Wheat., 2020, , 45-95.		1
82	Molecular Marker Development and Application for Improving Qualities in Bread Wheat. , 2020, , 323-345.		0